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Abstract We investigate full strongly exceptional collections on smooth, complete toric
varieties. We obtain explicit results for a large family of varieties with Picard number three,
containing many of the families already known. We also describe the relations between the
collections and the split of the push forward of the trivial line bundle by the toric Frobenius
morphism.
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1 Introduction

Let X be a smooth variety over an algebraically closed field K of characteristic zero and let
D" (X) be the derived category of bounded complexes of coherent sheaves of Ox-modules.
This category is an important algebraic invariant of X. In order to understand the derived
category D”(X) one is interested in knowing a strongly exceptional collection of objects that
generate DP(X), see also [4].

For a smooth, complete toric variety X there is a well known construction due to Bondal
which gives a full collection of line bundles in D®(X). In some cases Bondal’s collection of
line bundles is a strongly exceptional collection (see also [3]), but it is not true in general.
Often one can find a subset of this collection and order it in such a way that it becomes
strongly exceptional and remains full. This approach was well described in [8] for a class of
toric varieties with Picard number three.

One of the first conjectures concerning this topic was made by King [21]:

Conjecture 1.1 King’s For any smooth, complete toric variety X there exists a full, strongly
exceptional collection of line bundles.

Originally this conjecture was made in terms of existence of titling bundles whose direct
summands are line bundles, but it is easy to see that they are equivalent, see [9]. It was dis-
proved by Hille and Perling [17]. They gave an example of a smooth, complete toric surface
which does not have a full, strongly exceptional collection of line bundles. The conjecture
was reformulated by Miré-Roig and Costa (stated also in [6]):

Conjecture 1.2 For any smooth, complete Fano toric variety there exists a full, strongly
exceptional collection of line bundles.

This conjecture has an affirmative answer when the Picard number of X is less then or
equal to two [9] or the dimension of X is at most three [2,4,6]. Recently it was disproved
by Efimov [12]. In the same paper the author states the following conjecture, suggested by
D. Orlov.

Conjecture 1.3 [12] For any smooth projective toric DM stack Y, the derived category
DP(Y) is generated by a strong exceptional collection.

Here the assumption on the objects forming the collection is relaxed. We believe that
one could possibly ask if the collection can be made from coherent sheaves or toric vector
bundles. There is a well known result due to Kawamata in this direction [20].

Theorem 1 [20] For any smooth projective toric DM stack Y, the derived category DP(Y)
is generated by an exceptional collection of coherent sheaves.

The goal of this paper is to investigate when it is possible to find a full, strongly excep-
tional collection and whether line bundles that come from Bondal’s construction contain such
a collection. The examples in which such collections do or do not exist are now excessively
studied, see for example [18,23,26]. We restrict our attention to smooth, complete toric vari-
eties with Picard number three. There are some families among these varieties for which
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Exceptional collections on toric varieties 271

Conjecture 1.2 is true [8,11]. We state Theorem 4.24 for a much larger family of varieties
containing boths families already known. Namely for family having half of parameters fixed
and the other half arbitrary, among toric varieties with Picard number three.

In Sect. 5 we also show that in general it is not possible to find a full, strongly exceptional
collection among line bundles that come from Bondal’s construction, even in the Fano case.

To determine the image of Bondals construction we look at the image of the real torus
in the Picard group of a toric variety. We also compare this with the result of Thomsen’s
algorithm [27] that gives a decomposition of the push forward of a line bundle by a toric
Frobenius morphism. This leads to some unexpected results like Corollary 3.5.

To prove that a given collection of line bundles is strongly exceptional we develop new,
efficient methods of counting homologies of simplicial complexes given by primitive col-
lections, that is minimal subsets of points that do not form a simplex. To do this we use the
results of [24]. In particular this enables us to determine all acyclic simplicial complexes
arising from complete toric varieties with Picard number three.

2 Preliminaries
2.1 Full, strongly exceptional collections

For an algebraic variety X let D? (X) be the derived category of coherent sheaves on X . For an
introduction to derived categories the reader is advised to look in [7, 14, 19]. The structure and
properties of the derived category of an arbitrary variety X can be very complicated and they
are an object of many studies. One of the approaches to understand the derived category uses
the notion of exceptional objects. Let us introduce the following definitions (see also [15]):

Definition 2.1

1. A coherent sheaf F on X is exceptional if Hom(F, F) = K and Ext ’bx (F, F) =0 for
i>1

2. An ordered collection (Fy, Fi, ..., F,) of coherent sheaves on X is an exceptional
collection if each sheaf F; is exceptional and Ext’OX (Fy, Fj) =0for j <kandi > 0.

3. An exceptional collection (Fo, Fi, ..., Fy) of coherent sheaves on X is a strongly
exceptional collection if Ext’ox (Fj, Fr)=0forj <kandi > 1.

4. A (strongly) exceptional collection (Fp, Fi, ..., F,;) of coherent sheaves on X is a full,
(strongly) exceptional collection if it generates the bounded derived category Db (X)
of X i.e. the smallest triangulated category containing {Fo, Fi, ..., F,} is equivalent to
Db (X).

For an exceptional collection (Fy, ..., F;;) one may define an object /' = @], F; and an

algebra A = Hom(F, F). Such an object gives us a functor G r from DP(X) to the derived
category D? (A —mod) of right finite-dimensional modules over the algebra A. Bondal proved
in [4], that if X is smooth and (F;) is a full, strongly exceptional collection, then the functor
G F gives an equivalence of these categories. For further reading only the definition of the
full strongly exceptional collection is necessary.

2.2 Toric varieties

A normal algebraic variety is called toric if it contains a dense torus (C*)" whose action on
itself extends to the action on the whole variety. For a good introduction to toric varieties the
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reader is advised to look in [10] or [13]. Varieties of this type form a sufficiently large class
among normal varieties to test many hypothesis in algebraic geometry. Many invariants of a
toric variety can be effectively computed using combinatorial description. Let us recall it.

Given an n dimensional torus 7 we may consider one parameter subgroups of 7', that
is morphisms C* — T and characters of T, that is morphisms 7 — C*. One parameter
subgroups form a lattice N and characters form a lattice M. These lattices are dual to each
other and isomorphic to Z".

A toric variety X is constructed from a fan X, that is a system of cones o; C N. This is
done by gluing together affine schemes Spec(C[o;*]), where o;* C M is a cone dual to o;.
One dimensional cones in ¥ are called rays. The generators of these semigroups are called
ray generators.

Many properties of the variety X can be described using the fan . For example X is
smooth if and only if for every cone o; the set of its ray generators can be extended to the
basis of N. Moreover to each ray generator v we may associate a unique 7 invariant Weil
divisor denoted by D, . There is a well known exact sequence:

0— M — Divyr - Cl(X) — 0, 2.1)

where Divr is the group of T invariant Weil divisors and CI(X) is the class group. The map
M — Divr is given by:

m — Zm(vi)Dvl.,

where the sum is taken over all ray generators v;.

Smooth, complete toric varieties with Picard number three have been classified by Betyrev
[1] according to their primitive relations. Let ¥ be a fan in N = Z" and let R be the set of
rays of X.

Definition 2.2 We say that a subset P C R is a primitive collection if it is a minimal subset
of R which does not span a cone in X.

In other words a primitive collection is a subset of ray generators, such that all together
they do not span a cone in X but if we remove any generator, then the rest spans a cone
that belongs to . To each primitive collection P = {x1, ..., x;x} we associate a primitive
relation. Let w = Zle x;. Let o € X be the cone of the smallest dimension that contains
w and let yq, ..., ys be the ray generators of this cone. The toric variety of ¥ was assumed
to be smooth, so there are unique positive integers ny, ..., ng such that

N
w= E niYi.
i=1

Definition 2.3 For each primitive collection P = {xy, ..., xx} let n; and y; be as described
above. The linear relation:

Xp+-ootx—nmyr— - —ngys =0
is called the primitive relation (associated to P).

Using the results of [16,25] Batyrev proved in [1] that for any smooth, complete n dimen-
sional fan with n 4 3 generators its set of ray generators can be partitioned into / non-empty
sets Xo, ..., X;—1 in such a way that the primitive collections are exactly sums of p + 1
consecutive sets X; (we use a circular numeration, that is we assume that i € Z/[7Z), where
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Exceptional collections on toric varieties 279

| = 2p + 3. Moreover [ is equal to 3 or 5. The number [/ is of course the number of primitive
collections. In the case / = 3 the fan X is a splitting fan (that is any two primitive collections
are disjoint). These varieties are well characterized, and we know much about full, strongly
exceptional collections of line bundles on them. The case of five primitive collections is
much more complicated and is our object of study. For / = 5 we have the following result of
Batyrev [1, Theorem 6.6]:

Theorem 2.4 LetY; = X; U X1, where i € Z/5Z,

X0={v17"'7vp()}7 X1={y17---7yp|}a X2={le~--7zp2}v
X ={t1,....tp;}, Xga={ur,...,up},

where po + p1 + p2 + p3 + pa = n + 3. Then any n-dimensional fan ¥ with the set
of generators | J X; and five primitive collections Y; can be described up to a symmetry
of the pentagon by the following primitive relations with nonnegative integral coefficients
Cz,...,cm,bl,...,bm:

Vit Upg YL Y — €222 = = Cpy Ty
=1+ Dty — - = (bpy + Dty =0,
Vit vtttz —ur— s —up, =0,
2+t gt =0,
t1+~-~+tp3+u1+~-~+up4—y1—~-~—yp1=0,
UL+ lp, V1 Upy — €220 — - — CpyZpy — b1t — - — bty = 0.
[}
In this case we may assume that
Uls ooy Upgs Y25 evvs Vpys 2255 Ypoo tl,...,[p3, U2, ..., Upy
form a basis of the lattice N. The other vectors are given by
=== —Zpp—H—
R e L IRt TR 02
”l:_”2_"'_“174_”1_"‘_Upo+c212+"'+cpzzpz

+ bty + -+ bpytps.

3 First results and methods
3.1 Bondal’s construction and Thomsen’s algorithm

We start this section by recalling Thomsen’s [27] algorit for computing the summands of the
push forward of a line bundle by a Frobenius morphism. We do this because of two reasons.

First is that Thomsen in his paper assumes finite characteristic of the ground field and
uses absolute Frobenius morphism. We claim that the arguments used apply also in case of
geometric Frobenius morphism and characteristic zero.

Moreover by recalling all methods we are able to show that the results of Thomsen coincide
with the results stated by Bondal [3]. Combining these both methods enables us to deduce
some interesting facts about toric varieties.
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280 M. Lason, M. Michatek

Most of the results of this section are due to Bondal and Thomsen. We use the notation
from [27]. Let ¥ C N be a fan such that the toric variety X = X (%) is smooth. Let us
denote by 0; € X the cones of our fan and by 7 the torus of our variety. If we fix a basis
(e1, ..., ey) of the lattice N, then of course T = Spec R, where R = k[Xj%l, R X;"E;l].

In characteristic p we have got two pth Frobenius morphisms F : X — X. One of them
is the absolute Frobenius morphism given as an identity on the underlying topological space
and a pth power on sheaves. Notice that on the torus it is given by a map R — R that is
simply a pth power map, hence it is not a morphism of k algebras (it is not an identity on k).

The other morphism is called the geometric Frobenius morphism and can be defined in any
characteristic. Let us fix an integer m. Consider a morphism of tori 7 — T that associates ™
to a point 7. This is a morphism of schemes over k that can be extended to the mth geometric
Frobenius morphism F : X — X. What is important is that both of these morphisms can be
considered as endomorphisms of open affine subsets associated to cones of X. We claim that
in both cases the Thomsen’s algorithm works.

We begin by recalling the algorithm from [27]. Let v;y, ..., v;q; be the ray generators of
the d; dimensional cone o;. As the variety was assumed to be smooth we may extend this
set to a basis of N. Let A; be a square matrix whose rows are vectors v;; in the fixed basis
of N.Let B; = A;l and let w;; be the jth column of B;. Of course the columns of B; are
ray generators (extended to a basis) of the dual cone 6 C M = N*.

Let us remind that X (¥) is covered by affine open subsets U,, = Spec R;, where R; =
k[XWit, ..., XWid x*Wid+1 x*win] Here we use the notation X? = Xz,l e X:g Let
also X;; = X™i. In this way the monomials X;, ..., X;, should be considerled as coordi-
nates on the affine subset Uy, so we are able to think about monomials on Uy, as vectors:
a vector v corresponds to the monomial X 7. Of course all of these affine subsets contain T,
that corresponds to the inclusions R; C R.

Using the results of [13] we know that Uy, N Uy, = Using, and this is a principal open
subset of Uy, . This means that there is a monomial M;; such that Usino; = Spec((R;) m; j).

We are interested in Picard divisors. A T invariant Picard divisor is given by a compatible
collection {(Uy,, X ;’ )}o,ex. Compatible means that the quotient of any two functions in the
collection is invertible on the intersection of domains. This motivates the definition:

lij = {v: X} is invertible in (R;)p,; }-

Given a monomial X}’, if we want to know how it looks in coordinates Xé’T’ vy Xex

(obviously from the definition of X;) we just have to multiply v by B;: X/ = X Biv We see
—1

that X! = X j.gj B . That is why we define C;; = Bi_lB,- and we think of C;; as the matrices
that translate the monomials in coordinates of one affine piece to another.

Now the compatibility in the definition of a Cartier divisor simply is equivalent to the
condition u; — C;ju; € Ij;. We define u;; = u; — C;ju; and think about them as transition
maps. Of course a divisor is principal if and only if u;; = O for all i, j (vector equal to 0
corresponds to a constant function equal to 1).

Let P, = {v = (v1,...,vy) : 0 < v; < m}. Later we will see that this set has got a
description in terms of characters of the kernel of the Frobenius map between tori.

Using simple algebra Thomsen proves that the following functions are well defined (the
only think to prove is that the image of / is in [};):

Letus fix w € I;; and a positive integer m. We define the functions

woo. ,
Bt P =
woo.

r,’jm~Pm > P,
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for any v € P,, by the equation

Cijv+w = mhj, (v) +ri5, (v).

ijm ijm
This is a simple division by m with the rest. Moreover ri‘j?m is bijective.

Now if we have any v € P,, a T-Cartier divisor D = {(Uy,, Xf”)}(,l.ez and a fixed
o7 € X then Thomsen defines t; = h}‘i’,"n (v). He proves that the collection {(Us,, Xfi Voiex
is a T-Cartier divisor D,. This is of course independent on the representation of D up to
linear equivalence. The choice of / corresponds to “normalizing” the representation of D
on the affine subset U,,. Although the definition of D, may depend on [/, the vector bundle
@vep, O(Dy) is independent on /. Moreover Thomsen proves that in case of pth absolute
Frobenius morphism and characteristic p > 0 this vector bundle is a push forward of the line
bundle O(D). The proof uses only the fact that the Frobenius morphism can be considered
as a morphism of affine pieces Uy, , so can be extended to the case of geometric Frobenius
morphism and arbitrary characteristic. One only has to notice that the basis of free modules
obtained by Thomsen in [27, Section 5, Theorem 1] are exactly the same in all cases.

Now let us remind that there is an exact sequence 2.1:

0—- M — Dpr - Pic — 0,

where Dy are T invariant divisors. Let (g;) be the collection of ray generators of the fan X
and Dy, a divisor associated to the ray generator g;. The morphism from M to Dr is given
by v — Zj v(g;) Dyg;. Such a map may be extended to a map from Mr = M ®z R by
[ iv— 2 ;[v(gj)1Dg;. Notice that this is no longer a morphism, however if @ € M and

b € Mg, then f(a +b) = f(a) + f(b). Weobtainamap T := % — Pic, where T is a
real torus (do not confuse with 7). We also fix the notation for an R-divisor D = > a; Dg;:

[D]:= Y [a;1Dy;.
j

Let G be the kernel of the mth geometric Frobenius morphism between the tori 7. By
acting with the functor Hom(-, C*) we obtain an exact sequence:

M
0-M—->M-—>G"~—— — 0.
mM
We also have a morphism:
—: G~ — > T,

that simply divides the coordinates by m. By composing it with the morphism from T — Pic
we get a morphism from G* to Pic. It can be also described as follows:

We fix x € G* and arbitrarily lift it to an element x); € M. Now we use the morphism
M — Divr to obtain a T invariant principal divisor D, . The image of x in Pic is simply
equal to [%]. Of course for different lifts of x to M we get linearly equivalent divisors. Now
we prove one of the results stated by Bondal in [3]:

Proposition 3.1 Let L = O(D) by any line bundle on a smooth toric variety X. The push
forward Fy(O(D)) is equal to @ e+ O ([ D+Dy ]).

m

Remark 3.2 The characters of G play the role of v € P, in Thomsen’s algorithm. Notice

. D+D; ] . . .
also that it is not clear that & Xeg*O([ -;1 X ] is independent on the representation of L
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by D. If we prove that this is equal to the push forward then this fact will follow, but in
the proof we have to take any representation of L and we cannot change D with a linearly
equivalent divisor.

Proof Let D = {(Uy;, X?i)} and let us fix x € G*. We have to prove that O ([M

m
one of O(D,) for v € P, and that this correspondence is one to one over all y € G*. We
already know that [%] is independent on the choice of the lift of x, so we may take such a
lift, that v = xas + u; is in the P,,. Here [ is an index of a cone, but we may assume that its
ray generators form a standard basis of N, so A; = Id. Of course such a matching between
x € G*and v € P, is bijective.
Now let us compare the coefficients of [%] and D,. We fix a ray generator r =

(r1,...,rn) € oj. Let k be such that this ray generator is the kth row of matrix A;. We
compare coefficients of D,. Let xp = (ay, ..., a,). We see that:
D+ D Uk + 5" _ayr
[ R (1S5 > BT P
m m

Here of course (u ;) is not a transition map u jx, but the kth entry of vector u ; that is of course
the coefficient of D, of the divisor D. Now from Thomsen’s algorithm described above we
know that

Cij(x +up) +uj =mtj +r,

where r € P,,. We see that

Cri(x +up) +wyj
— |

Now A; = Id and from the definition of u;; we have Cjju; + u;j = uj, so:
|:Aj)( + uji|
fj=|————].
m

This gives us:

D. — + |:ZZ,—1 awrw+(uj)k
= --

o+
m

what completes the proof.

From [3] we know that the image B of T in Pic is a full collection of line bundles. Of
course B is a finite set (the coefficients of divisors associated to ray generators are bounded).
Moreover the image of rational points of T contains the whole image of T (a set of equalities
and inequalities with rational coefficients has got a solution in R if and only if it has got a
solution in Q). This means that for sufficiently large m the split of the push forward of the
trivial bundle by the mth Frobenius morphism coincides with the image of T and hence is
full.

Let us now consider an example of P2, Let vy, vp and v3 = —v| — vy be the ray generators
of the fan. We fix a basis (vy, v2) of N. The image of the torus T is equal to the set of all
divisors of the form [a] Dy, + [b]D,, +[—a — b]D,, for 0 < a, b < 1. We see that the image
of the torus T is O, O(—1), O(—2). This is a full collection. Notice however that it is not
true that if we have a line bundle L then there exists an integer m¢ such that the push forward
of L by the mth Frobenius morphism for m > my is a direct sum of line bundles from B.
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For example the push forward of O(—3) always contains in the split O(—3) that is not an
element of B. However, as we will see only minor differences from the set B are possible.

Definition 3.3 Let us fix a natural bijection between points of T and elements of M with
entries from [0, 1) in some fixed basis. Now each element of B has got a natural representant
in Divy as sum of Dg/. with integer coefficients. Let By C Divr be the set of these repre-
sentatives. We define the set B’ as the set of all divisors D in Pic for which there exists an
element in b € By, such that there exists a representation of D whose coefficients differ by
at most one from the coefficients of b.

In other words we take (some fixed) representations of all elements of B, we take all other
representations whose coefficients differ by at most one and we take the image in Pic to
obtain B’.

Let us look once more at the example of P2. With previous notation B is equal to
0, —Dy;, —2D,,. The set B’ would be equal to £D,, + D,, + D,,, £D,, & Dy, & Dy,
—Dy,, Dy, £ Dy, £D,;—2D,,. This givesus O(3),0(2),0(1), O, O(—1), O(=2), O(-3),
O(—4), O(-5).

Proposition 3.4 For any smooth toric variety and any line bundle there exists an integer my
such that the push forward by the mth Frobenius morphism for any m > my splits into the
line bundles form B’'.

Proof From 3.1 we know that the line bundles from the split are of the form [% + %],
where L = O(D) is a fixed representation of L. Of course for sufficiently large m all coeffi-
cients of % belong to the interval (—1, 1), so the coefficients of [% + %] differ by at most

one from the coefficients of [%] that is in B, so in fact [% + %] € B

This combined with the result of Thomsen [27] that the push forward and the line bundle
are isomorphic as sheaves or abelian groups gives us the following result:

Corollary 3.5 There exists a finite set, namely B’, such that each line bundle is isomorphic
as a sheaf of abelian groups to a direct sum of line bundles from B'. In particular their
cohomologies agree.

3.2 Techniques of counting homology

Our aim will be to describe line bundles on toric varieties with vanishing higher cohomolo-
gies, that we call acyclic. Later, we will use this characterization to check if E xt' (L, M) =
H! (LY ® M) is equal to zero for i > 0. We start with general remarks on cohomology of
line bundles on smooth, complete toric varieties.

Let ¥ be a fanin N = Z" withrays x, ..., x,, and let Py denote the variety constructed
from the fan . For I C {1, ..., m} let C; be a simplicial complex generated by sets J C [
such that {x; : i € J} generate a cone in X. Forr = (r; : i = 1,...,m) let us define
Supp(r) := Cii: r;>0)-

The proof of the following well known fact can be found in the paper [6]:

Proposition 3.6 The cohomology H/ (Ps,, L) is isomorphic to the direct sum over all r =

(rizi=1,...,m)suchthat O3 /L riDy,) = L of the (n — j)th reduced homology of the
simplicial complex Supp(r).
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Definition 3.7 We call a line bundle L on Py, acyclic if Hi(Pz, L)=0foralli > 1.

Definition 3.8 For a fixed fan ¥ we call a proper subset I of {1, ..., m} a forbidden set if
the simplicial complex C; has nontrivial reduced homology.

From Proposition 3.6 we have the following characterization of acyclic line bundles:

Proposition 3.9 A line bundle L on Py is acyclic if it is not isomorphic to any of the following
line bundles

O D> 1Dy =D (A+r)Dy

iel igl
where r; > 0 and I is a proper forbidden subset of {1, ..., m}.

Hence to determine which bundles on Py, are acyclic it is enough to know which sets /
are forbidden.

Inourcase C; ={J C I : f’\, ={j:xj e} g Jfori =1,...,5}, since ¥; are
primitive collections. We call sets f’\, also primitive collections. The only difference between
sets f/\, and Y; is that the first one is the set of indices of rays in the second one, so in fact they
could be even identified.

In case of a simplicial complex S on the set of vertices V we also define a primitive col-
lection as a minimal subset of vertices that do not form a simplex. Complex S is determined
by its primitive collections, namely it contains simplexes (subsets of V') that contain none of
primitive collections.

We describe a very powerful method of counting homologies of simplicial complexes
which are given by their primitive collections (as in our case). We use the result of Mrozek
and Batko [24]:

Lemma 3.10 Let X be a simplicial complex and let Z be a cycle in the chain complex whose
boundary B is exactly one simplex. Then we can remove the pair (Z, B) from the chain
complex without changing the homology.

Definition 3.11 Let X be a simplicial complex defined by its set of primitive collections P
on the set of vertices V. We say that simplicial complex X’ on the set of vertices V' \ P is
obtained from X by delating a primitive collection P if the set of primitive collections of X’
is equal to the set of minimal sets in {Q N (X \ P) : Q € P}.

Lemma 3.12 Let X be a simplicial complex and suppose that there exists an element x
which belongs to exactly one primitive collection P. Let m = |P| and let X' be a simplicial
complex obtained from X by delating P, then

hl(X) — I’li_m+l(X/).

Proof Using Lemma 3.10 we will be removing subsequently on dimension reductive pairs
(Z, B) such that x € Z. We start from ({x}, ). One can see that in each dimension we can
take all (Z, Z \ {x}) for Z containing x as reductive pairs. Let us consider all simplexes of X
that do not contain P \ {x}. One can prove by induction on dimension that we will remove
all of them:

Let D be a simplex. If it contains x, than it will be removed as a first element of a reductive
pair. If it does not, then D U {x} is also a simplex of X and we will remove (D U {x}, D).

We see that our simplicial complex can be reduced to a complex with simplexes containing
P\ {x}. Now one immediately sees that such a complex is isomorphic to a complex X’ (with
a degree shifted by |P \ {x}| =m — 1).
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The same method allows us to easily compute homologies when there are few primitive
collections and many points. The idea is that we can glue together points that are in exactly
the same primitive collections.

Definition 3.13 Let X be a simplicial complex defined by its set of primitive collections P
on the set of vertices V. Suppose that there exist two points x, y € X such that they belong
to the same primitive collections. We say that a simplicial complex X’ on the set of vertices
V \ {y} is obtained from X by gluing points x and y if the set of primitive collections of X’
isequal {Q \ {y}: O € P}. We can think of it like x was in fact two points x, y.

Proposition 3.14 Let X be a simplicial complex and suppose that there exist two points
X,y € X such that they belong to the same primitive collections. Let X' be a simplicial
complex obtained from X by gluing points x and y, then

H(X) = ~'(X).

Proof Inboth complexes we will be removing reductive pairs of the form (Z, B) withx € Z
just as in Lemma 3.12. In both situations all that is left are simplexes that contain a set of a
form P \ {x}, where P is a primitive collection containing x. In this situation all of simplexes
of X that are left contain y and they can be identified with simplexes of X’ that are left, the
maps are exactly the same what finishes the proof.

Corollary 3.15 Ler X be a simplicial complex on the set of vertices V. Let X' be a simpli-
cial complex obtained from X by gluing equivalence classes of the relation ~ that identifies
elements that are in exactly the same primitive collections. Suppose |V| — |V / ~ | = m,
then

h'(X) =h""(X").
Proof We use Proposition 3.14 for pairs of points in the equivalence classes.

Corollary 3.16 In the situation of Lemma 3.12 and Corollary 3.15 X is acyclic if and only
if X' is acyclic.

With these tools we are ready to determine forbidden subsets. In general we have got two
following lemmas:

Lemma 3.17 If a nonempty subset I is not a sum of primitive collections, then it is not
forbidden.

Proof There exists a € I such that a does not belong to any primitive collection which is
contained in /. Using Lemma 3.10 we can remove subsequently on dimension reductive pairs
(Z, B) such that a € Z. We start from ({a}, #). One can see that in this way we remove all
of simplexes and as a consequence the chain complex is exact.

Lemma 3.18 A primitive collection is a forbidden subset.

Proof Using Lemma 3.12 we can remove this primitive collection and get a complex con-
sisting of the empty set only that has nontrivial reduced homologies.
This can be also seen from the fact that the considered complex topologically is a sphere.

The following lemmas apply to the case when the Picard number is three and we have five
primitive collections as in Batyrev’s classification. Let us remind that primitive collections
of simplicial complex in this case are 17, :={J : x; € Y;}, for our convenience we define
alsoj(; ={j:x; € X;}.
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Lemma 3.19 A sum of two consecutive primitive collections is a forbidden subset.

Proof Using Lemma 3.12 we remove one primitive collection and get a situation of
Lemma 3.18.

Lemma 3.20 A sum of three consecutive primitive collections Y;, Yi+1, Yi+2 is not a forbid-
den subset.

Proof First we can remove primitive collection Y;. The image of 7!; contains the image of
a, so in fact we are left with just one primitive collection P which is an image of 7,:
We can remove P and obtain a nonempty full simplicial complex which is known to have
trivial homologies.

Above lemmas match together to the following

Theorem 3.21 The only forbidden subsets are primitive collections, their complements and
the empty set.

This gives us that in our situation

Corollary 3.22 A line bundle L is acyclic if and only if it is not isomorphic to any of the
following line bundles

O(a]lDUl++a%D}'l+..+a§DZI++a411D11++a51Du1+)

where exactly 2, 3 or 5 consecutive o := (al-l, A aipi) are all less or equal to —1 and the
rest is nonnegative.

Proof It is an immediate consequence of Proposition 3.9 and Theorem 3.21

Corollary 3.23 If all of the coefficients b and c are zero in the primitive relations from
Theorem 2.4 then a line bundle L is acyclic if and only if it is not isomorphic to any of the
following line bundles

O(a1Dy + a2 Dy + a3 D; + ag Dy + asDy)
where exactly 2, 3 or 5 consecutive o; are negative and if a; < 0 then o; < —|X;|.

Proof Since all divisors corresponding to elements of the set X; are linearly equivalent we
match them together and as a consequence «; is the sum of all of their coefficients.

4 Main theorem

This section contains the main, new result of this work. We give an explicit construction of a
full, strongly exceptional collection of line bundles in the derived category D?(X) for a large
family of smooth, complete toric varieties X with Picard number three. Namely for varieties
X whose sets X, X3 and X4 from Batyrev’s classification presented in Theorem 2.4 have
only one element. We will use results from Sect. 3.
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4.1 Our setting

In this section we establish a family of varieties which we consider in this section and we
also fix notation.
From now on for the whole Section let X be a smooth, complete toric variety with Picard
number three, which using the notation from Theorem 2.4 has | X | = |X3| = [X4| = 1.
Let r = |X2|. Then of course |Xo| = n — r. We allow arbitrary nonnegative integer
parameters b := by, c2, ..., ¢-. This family generalizes one considered in [11] (there, the
case r = 1 was considered) and [8] (there the case b = ¢y = --- = ¢, = 0 was considered).

Remark 4.1 A variety of this type is Fano iff

.
n—r>20r+b.
i=2

In what follows we do not restrict to the Fano case.

Letey, ..., e, be abasis of the lattice N. Let us write what are the coordinates of the ray
generators in the considered situation:

V) =¢€1, Vy=¢€2,..., Up—yp =€n_r

y=—e1— - —eprt+c2enyiat - tcren — 0+ Deg—ri1+-- +ep)

2l = €p—r+ls---53r = €p (4~1)
I=—ep—rt1— " —€n

u=—eyp— - —e—r+crepry2t---+cren —blep—ry1+---+ep)

Let Dy, be the divisor associated to the ray generator w. One can easily see that the divi-
sors Dy, ..., D,,_, are all linearly equivalent. Let D, be any their representant in the Picard
group. The other equivalence relations that generate all the relations in the Picard group are:

D, ~ D, + D,
D, ~D;+bDy,+ (b+1)D, 4.2)
D; ~Di+ b —ci))Dy+b—ci+1)Dy 2<i<r

From these relations we can easily deduce:

Proposition 4.2 The Picard group of the variety X is isomorphic to Z* and is generated by
D, Dy, D,

We introduce two sets of divisors. We claim that these sets can be ordered in such a
way that line bundles corresponding to divisors from these sets form a strongly exceptional
collection.

Coly ={—sD; —sDy+(—(n—r)—bs+q)D, :0<s5s <r,0<qg <n-—r} 13

4.3)
Colp ={—sD;—(s— DDy +(-(m—r)—bs+q)Dy:1<5s<r,0<g=<n—-r—1}
Definition 4.3 Let Col = Coly U Cols.

Remark 4.4 Let us notice that |Coli| = (r + 1)(n — r + 1) and |Colp| = r(n — r), so
|Col| =2rn —2r2 +n + 1.

@ Springer



288 M. Lason, M. Michatek

We calculate the number of maximal cones in the fan defining the variety X. In order to
obtain a maximal cone we have to choose n ray generators that do not contain a primitive
collection. This is equivalent to removing three ray generators in such a way that the rest do
not contain a primitive collection. First let us notice that we can remove at most one element
from each group X; because otherwise the rest would contain a primitive collection. We have
the following possibilities:

(1) We remove one element from Xq and X,. Then we have to remove one element from
X3 or X4. We have got 2(n — r)r such possibilities.

(2) We remove one element from Xy and none from X,. We have got n — r such
possibilities.

(3) We remove one element from X» and none from X(. We have got r such possibilities.

(4) We do not remove any elements from X and from X,. We have got 1 such possibility.

All together we see that we have 2rn — 2r2 + n + 1 maximal cones. From the general
theory we know that the rank of the Grothendieck group is the same. Let us notice that from
Remark 4.4 our set Col is of the same number of elements.

4.2 Acyclicity of differences of line bundles from Col

In this section we order the set Col and prove that line bundles corresponding to divisors
from Col form a strongly exceptional collection.

Let us first check that Ext‘bx (O(Dy), O(Dy)) = 0 for any divisors D1, D> from the set
Col and for any i > 0. We know that

Extly (O(D1), O(Dy)) = H(O(D1)" ® O(Dy)) = H' (O(D; — Dy)).

This means that we have to show that all line bundles associated to differences of divisors
from Col are acyclic.

Definition 4.5 Let Diff be the set of all divisors of the form D — D,, where D1, D> € Col.

Proposition 4.6 The set Diff is the sum of sets Dif f1, Dif fa, Diff3, where:

Diffi ={sD; +sDy+ (bs+q)Dy: —r <s <r,r—n<qg=<n-—rj
Diffp ={sD; +(s—1D)Dy+bs+q)Dy: —r+1<s<rr—n+1=<qg<n-—r}
Diffs={sD;+ G+ 1)Dy+(bs+q)Dy:—r <s<r—1,r—-n<qg=<n-—r—1}.

Proof The set Diff) is equal to the set of all possible differences of two divisors from Col;
and this set contains all possible differences of two divisors from Col,. The set Dif f> is the
set of all possible differences of the form D; — D,, where D; € Coly, D> € Col;. The set
Diffsisequal to —Dif f> and so it is equal to the set of all differences of the form D, — Dy,
where D; € Coly, D € Col,. These are of course all possible differences of two elements
from Col.

From the Corollary 3.22 we know that it is enough to prove that elements of Diff are not
of the form

a1Dy + @Dy +aiD; + 3D, + -+ oD, + asD; + asDy,
where exactly two, three or five consecutive ¢;’s are negative (we call a number positive

when it is nonnegative and consider only two signs positive and negative) and:
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(1) ifa; <0, then oy < —(n —r) (og is in fact sum of all the coefficients of D,,, which
have to be of the same sign),

(2) if any aé < 0 then aé < 0 (all parameters ag are treated as one group and have the
same sign).

From now on we assume that these conditions on «;’s are satisfied.
Using the relations 4.2 we obtain:

a1Dy +axDy + oz%DZl —|—oz§DZ2 +--+a5D;, +ouD; +asD,

r r
= om—}-Zaé D, + Otz—ots-l—Zaé D,
j=1 j=1

r
+ (a1 +baj + > (b—cj)ed +as | D, 4.4)
j=2

Lemma 4.7 If the elements ozg are negative then the divisors form Diff are not of the
form (4.4).

Proof If ag was negative, then the coefficient of D; would be less than or equal to —r — 1
and none of the divisors from Di f f has got such a coefficient, so a4 has to be positive. Since
a3 is negative and o4 is positive, then a, has to be negative and a5 has to be positive. This
means that the coefficient of Dy is less then or equal to —r — 1. The divisors from Diff are
not of this form.

From now on we may assume that o3 is positive.
Lemma 4.8 The divisors from Dif f| are not of the form (4.4).

Proof Suppose that a divisor from Dif f; can be written in a form (4.4). We have:

r r
a4+2a§ :az—as—i—Zaé,
j=1 j=1

SO a4 + a5 = ap. But a2, oq4 and s cannot be of the same sign, so 4 and a5 have to have
different signs. As o3 was positive we see that a4 is positive, so s and o are negative. Let
us notice that:

.
o +ba; + Z(b — cj)ot_{ + a5

j=2
r .
<-—n+r+b[Ded| -1
j=1
r .
<-n+r—14+5b om—i—Zaé

j=1

This shows precisely that the coefficient of D, is less than or equal to —n +r — 1 plus b
times the coefficient of D;. Let s be the coefficient of D,. From the definition of Diff the
coefficient of D, is at least —n + r + bs. This gives us a contradiction.
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Lemma 4.9 The divisors from Dif fz are not of the form (4.4).

Proof Suppose that a divisor from Di f f3 can be written in a form (4.4). We have:

r r
wit Yad —o—as 1+ Yah,
j=1 j=1
so a4 + a5 = ap — 1. The rest of the proof is identical to the proof of Lemma 4.8.

Lemma 4.10 The divisors from Diff> are not of the form (4.4).

Proof Suppose that a divisor from Dif f> can be written in a form (4.4). We have:

r r
om—i—Zaé =a2—a5+1+2a§,
j=1 j=1

S0 a4 + s = ap + 1. But a2, a4 and a5 cannot be of the same sign, so we have two possible
cases:

(1) The coefficients o4 and a5 have different signs. In this case the proof is the same as in
Lemmas 4.8 and 4.9.
(2) Wehave oy = o5 = 0 and op = —1. In this case «] has to be negative, because o3 was

positive. Let s = aq + Z;:l ag be the coefficient of D;. We have:

,
o] +ba3] +Z(b—cj)aé +as < —n+r—+bs,
j=2

so the coefficient of D, is less than or equal to —n + r + bs. But from the definition
of Diff> we know that the coefficient of D, is at least bs +r — n + 1 what gives us a
contradiction.

Now we only have to order the line bundles corresponding to divisors from Col in such
a way that

0 = Ext), (O(Dy), O(Dy)) = H'(O(D1)" ® O(Dy)) = H(O(D; — Dy)).

for any divisors D| > D;.
Let us define the order by: L, ;, < Lqu < Lgg41, Lgy1,4; < Ly g, where

Ly =0(=sD; —sDy+(q —bs —(n—r))Dy)
fors =0,...,randg =0,...,n —r and
Lqu =0(—sD; — (s —1)Dy+(q —bs — (n—r))D,)

fors=1,...,r—1landg =0,...,n —r — 1. Itis easy to see that zero cohomology of
appropriate differences vanish.

4.3 Generating the derived category
We prove that the strongly exceptional collection from Sect. 4.1 is also full. First we show

that it generates all line bundles. Due to [5, Corollary 4.8] the collection generates the derived
category. In order to generate all line bundles we need several lemmas:
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Lemma 4.11 Let s and k be any integers. Line bundles Ly = O(—sD; —sDy + (k+q) Dy)
forq = 0,...,n—randL; =0O(=sD;—(s—1)Dy+(k+q)Dy) forq =0,...,n—r—1
generate O(—sD; — (s — 1)Dy + (n — r + k) D) in the derived category.

Proof We consider the Koszul complex for O(Dy), O(Dy,), ..., O(Dy,_,):
0— O(=Dy—(m—r)Dy) > --- = O(=D,)"" @ O(—Dy) - O — 0.
By tensoring it with O(—sD; — (s — 1)Dy + (k +n — r)D,) we obtain:

0— O(—=sD; — sDy + kDy)—> -+ — O(=sD; — (s — )Dy + (k +n —r — 1)D,)" !
@O(—sD; —sDy + (k+n —r)Dy) — O(=sD; — (s — 1)Dy) + (k +n —r)D,) — 0.

All sheaves that appear in this exact sequence, apart from the last one, are exactly O(—sD; —
sDy+kD,), ..., O(=sD;—sDy+(k+n—r)D,), O(=sD;—(s—1)Dy+kDy), ..., O(=sD,
— (s —=1)Dy + (k+n—r—1)Dy), so indeed we can generate O(—sD; — (s — 1) Dy + (k +
n—r)Dy).

Lemma 4.12 Let s and k be any integers. Line bundles Ly = O(—sD; —sDy + (k+q) D,)
forqg=0,....n—rand L, = O(=sD; — (s =)Dy + (k + q)Dy) forqg = 1,...,n —r
generate O(—sD; — (s — 1)Dy + kD,) in the derived category.

Proof The proof is similar to the last one. We deduce assertion from the same exact sequence
of sheaves.

Lemma 4.13 Let s and k be any integers. Line bundles Ly = O(—sD; —sDy + (k+q) D)
forq = 1,...,n—randL; =0(=sD; — (s —1)Dy+ (k+q)Dy) forq =0,...,n—r
generate O(—sD; —sDy + (n —r + k + 1) Dy) in the derived category.

Proof The proof is similar to the first one. We have to consider the Koszul complex for line
bundles O(Dy), O(Dy,), ..., O(Dy,_,):

0— O=D,—(mn—r)Dy) = ---— O(=D,)" "®0O(-D,) > 0O —0
we dualize it and we tensor it with O(—sD; — (s — 1) Dy + kD,).

Lemma 4.14 Let s and k be any integers. Line bundles Ly = O(—sD; —sDy + (k+q) D)
forqg = 1,...,n—r+1andL’q =O0(=sD;—(s—1)Dy+(k+q)Dy) forqg=1,...,n—r
generate O(—sD; — s Dy + kD) in the derived category.

Proof The proof is similar to the last one. We deduce assertion from the same exact sequence
of sheaves.

Lemma 4.15 Let s and k be any integers. Line bundles Ly = O(—sD; —sDy + (k+q) D)
forq = 0,...,n—randL;1 =O(=sD;—(s—1)Dy+(k+q)D,) forq =0,...,n—r—1
generate in the derived category line bundles O(—sD; —sDy + q’' D) and O(—sD; — (s —
)Dy + g’ Dy) for an arbitrary integer q'.

Proof We prove it by induction on |¢’|. For ¢’ > k +n — r we use Lemmas 4.11 and 4.13,
for ¢’ < k we use Lemmas 4.12 and 4.14.

Lemma 4.16 Let k be any integer. Line bundles Ly ; = O(—sD; — sDy + qDy) for s =
k, ..., k+randarbitrary q andL"w =O(=sD;—(s—1)Dy+qDy) fors =k, ..., k+r—1
and arbitrary q generate in the derived category line bundles L' (k+r, q) = O(—(k+r)D; —
(k +r —1)Dy + g D,) with arbitrary q.
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Proof Consider the Koszul complex for O(Dy), O(D;,), ..., O(D,,):

0— O(=D; — (r —1)D;y — D)) = --- = O(=D;)) ® O(=D,,)" "' & O(-Dy)

- O - 0.

After tensoring it with O(—(k — 1) Dy, + ¢’ D,) for appropriate ¢’ we get the assertion.

Lemma 4.17 Let k be any integer. Line bundles Ly y = O(—sD; — sDy + qD,) for s =
k, ..., k+randarbitrary q andL;’q = O(=sD;—(s—1)Dy+qD,) fors =k+1, ..., k+r
and arbitrary q generate in the derived category line bundles L'(k, q) = O(—kD; — (k —
1)Dy + g Dy) for arbitrary q.

Proof The proof is similar to the last one. We deduce assertion from the same exact sequence
of sheaves.

Lemma 4.18 Let k be any integer. Line bundles Ly ; = O(—sD; — sDy + qDy) for s
k+1,....k + r and arbitrary q and L;’q = O(=sD; — (s = 1)Dy + qDy) for s =
k+1, ..., k+r+1andarbitrary q generate in the derived category line bundles L(k, q)
O(=kD; — kDy + qD,) for arbitrary q.

Proof Consider the Koszul complex for O(Dy,), ..., O(D;,), O(D;):

0—- OD;; —(r—1)Dy —D;) = -+ = O(=D;) ® (9(—DZ2)r_1 @® O(—Dy)
- 0 —0.

After tensoring it with O(—kD, + ¢’ D,) for appropriate ¢’ we get the assertion.

Lemma 4.19 Let k be any integer. Line bundles Ly ; = O(—sD; — sDy + qDy) for s =
k, ..., k+randarbitrary q andLg’q = O(=sD;—(s—1)Dy+qD,) fors =k+1, ..., k+r
and arbitrary q generate in the derived category line bundles L'(k +r + 1, q) = O(—(k +
r+1)D; — (k +r)Dy + qDy) for arbitrary q.

Proof The proof is similar to the last one. We deduce assertion from the same exact sequence
of sheaves.

Lemma 4.20 Let k be any integer. Line bundles Ly ; = O(—sD; — sDy + qD,) for s =
k, ..., k+r andarbitrary q ana’Lgﬁq = O(=sD;—(s—1)Dy+gD,) fors =k, ..., k+r—1
and arbitrary q generate in the derived category line bundles L(s, q) = O(—sD; — sDy +
gDy) and L' (s, q) = O(—sD; — (s — 1)Dy + g Dy) for arbitrary s and q.

Proof We prove it by induction on |s|. For s > k +n — r we use Lemmas 4.16 and 4.19, for
r < k we use Lemmas 4.17 and 4.18.

Lemma 4.21 Let k be any integer. Line bundles O(—s D; — (s +k) Dy +q Dy) and O(—s D; —
(s +k + 1)Dy + g Dy) for arbitrary s and q generate in the derived category line bundles
O(=sD; — (s + k +2)Dy + gD,) for arbitrary s and q.

Proof Consider the Koszul complex for O(D;), O(D,):
0— O(-D; — D) —> O(—-D;)®O(—D,) - O — 0.

After tensoring it with O(—k’Dy, + q’) for appropriate k" and ¢’ we get the assertion.
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Lemma 4.22 Let k be any integer. Line bundles O(—s D; — (s +k) Dy+q Dy) and O(—s D; —
(s +k + 1)Dy + qDy) for arbitrary s and q generate in the derived category line bundles
O(=sD; — (s +k — 1)Dy + gD,) for arbitrary s and q.

Proof Consider the Koszul complex for O(D;), O(D,):
0— O(-D;—D,)— O(—D;)® O(-D,) - O — 0.
After tensoring it with O(—k’Dy, + q’) for appropriate k" and ¢’ we get the assertion.
Proposition 4.23 Line bundles
Lyy = O(—sD; — sDy + (q — bs — (n — r)) D,)
fors =0,...,randq=0,...,n—rand
Ll’w =O(—=sD; — (s =)Dy + (g —bs — (n —r))Dy)

fors =0,....,r —landq = 0,...,n —r — 1 generate in the derived category all line
bundles.

Proof We use Lemmas 4.15, 4.20, 4.21 and 4.22.
Summarizing, we have proved:

Theorem 4.24 Let X be a smooth, complete, n dimensional toric variety with Picard number
three and the set of ray generators Xo U ... U X4, where

Xo=A{vi, .., v}, Xi={y}, Xo=A{z1,..., 2z}, Xz={t}), Xqa={u},
primitive collections Xo U X1, X1 U X3, ..., X4 U Xo and primitive relations:

Vit v ty—ca—-—cz, —(b+ Dt =0,
yt+z+--+z—u=0,

2tttz +1=0,

t+u—y=0,

Utvi+- v —c2z2— =z —bt =0,

where b and c are positive integers.
Then the ordered collection of line bundles

Lsg=0O(=sD; —sDy+ (g —bs — (n —r))Dy)
fors =0,...,randq=0,...,n—r and
L;yq =O(=sD; — (s = 1)Dy + (g — bs — (n —r))Dy)

fors =0,....,r—1landq =0, ...,n—r — 1 where the order is defined by Ly 4, < L:,’q <
L g+1, Lsy1,qy < Ly,g, is a full, strongly exceptional collection of line bundles.

Proof From Sect. 4.2 we already know that this is a strongly exceptional collection. We have
just checked the sufficient condition for fullness in Proposition 4.23.
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5 Bondal’s construction not containing a full, strongly exceptional collection
5.1 Example

Let us consider the case when:
Xo=A{vi}, X1i={y1,.-.. ), Xo=A{zh
Xs={t1,....tx}, Xa=A{uy,...,ux}
then we can take
Vs Y25 ooy iy By ooy Ly UDy oo, UL

to be a basis of the lattice N = Z3*~1. Other vectors are like in 2.2 with all coefficients b;
and ¢; equal to zero. We have linear dependencies of divisors:

Dy, =Dy, + Dy,, D, =D; + Dy, Dy =Dy, Dy =Dy

Let B be the image of the real torus in the Picard group as described in the Sect. 3.1. One
can easily see that:

k k k k
B = {O([Z —afi| D, + |:Z —otfl —cx,{| Dy, + [—all, + Z—(x; + Zcxg]Dyl) :

i=1 i=2 i=2 i=1
0<oal,o, 0, < l].

So B is contained in the set:
S :={O0(=aD; —bDy,, + (a—c)Dy,) :a,b,c €{0,...,k}}
= {O(=a(D;, — Dy,) —=bD,, —cDy,) :a,b,c €{0,...,k}}.

From Corollary 3.23 we know that line bundle is acyclic if and only if it is not isomorphic to
any of the following line bundles

O(ay Dy, + a2 Dy, +a3D; + a4 Dy + as5Dy,)
= O((a3 + a4)(Dy — Dy)) + (a1 +az +a3) Dy, + (a1 +a5)Dy,),

where exactly 2, 3 or 5 consecutive « are negative and if ap < O then ap < —k,if g < 0
then oy < —k and if @5 < 0 then a5 < —k. Let us observe that line bundles form the set

R= [(o(a(DZl —Dy,) +bDy, +cDy,) : (a,b,c) € [%k] x |:—k, —g - 1} x [0, k]]

are not acyclic. Indeed fixing oy = —k, 3 = % and taking o4, @s nonnegative and o

negative we can achieve all of them. Let us define the set of pairs

P k a D..—D kK b D kK ¢ D k a D D
=1715317) Pa=Dy)=\5+5) P = |5+ 5) Pu-=\5 =5 ) (Pa = Dy))
k b k k k
—(E—E)Dyl—(E—%)Dul):(a,b,c)e[E,k}x[—k,—i—l}x[o,k]}.

It is easy to see that elements of these pairs are distinct and they belong to S. Difference
in each pair is an element of R so it is not acyclic line bundle. Hence to have a strongly
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exceptional collection C in S we have to exclude at least one element from each pair. To have
integer coefficients of divisors in P we should take a = b = ¢ = k (mod 2), so we have
to throw out at least % elements among (k 4 1)? elements in S. Full, strongly exceptional
collection has to have / elements, where [ is the rank of the Grothendick group K 0(X) (for
toric varieties it is isomorphic to 7!, where [ is the number of maximal cones). In our case
there are at least k> maximal cones, since each time we throw out one element from X 2, X4
and X5 we get different maximal cone (exact number is k> 4 2k% + 2k). So we have proven
the following:

Theorem 5.1 If (k+ 1) — 55k < k® +2k? 42k, what is when k > 32, then there is no full,
strongly exceptional collection among line bundles that come from Bondal’s construction.

Remark 5.2 Notice that the considered variety is Fano, so is expected to have a full, strongly
exceptional collection.

5.2 Our case

Let us consider the case from Sect. 4.1, but with all coefficients ¢; equal to ¢ < b. Let B be
the image of the real torus in the Picard group as described in the Sect. 3.1. One can see that:

r n—r r r
B = (’)( Z—a; D, + Z—ab+cZa;—(b+l)Za§) D,
i=1 i=1 i=2 i=1
n—r r r
+ Z—aé—l—cZaé—bZa;) D, ):0<a,,a, <1
i=2 i=1

i=1
So B is contained in the set:

S :={O(=sD; —sDy +qD,), O(=sD; — (s = 1)Dy +gqDy) :5s € {0,...,r},
ge{-m—r)—c—(b-0)s),...,(b—c)(—s+ 1}}

Our collection defined in Sect. 4.1, or its torsion, is contained in the set S unless cr < b.
It can be also shown that if this inequality fails then there is no full strongly exceptional
collection among line bundles that come from Bondal’s construction.
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