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Abstract

Fairness in machine learning (ML) is an ever-growing field of research due to the
manifold potential for harm from algorithmic discrimination. To prevent such harm,
a large body of literature develops new approaches to quantify fairness. Here, we
investigate how one can divert the quantification of fairness by describing a practice
we call “fairness hacking” for the purpose of shrouding unfairness in algorithms. This
impacts end-users who rely on learning algorithms, as well as the broader community
interested in fair Al practices. We introduce two different categories of fairness hacking
in reference to the established concept of p-hacking. The first category, intra-metric
fairness hacking, describes the misuse of a particular metric by adding or removing
sensitive attributes from the analysis. In this context, countermeasures that have been
developed to prevent or reduce p-hacking can be applied to similarly prevent or reduce
fairness hacking. The second category of fairness hacking is inter-metric fairness
hacking. Inter-metric fairness hacking is the search for a specific fair metric with given
attributes. We argue that countermeasures to prevent or reduce inter-metric fairness
hacking are still in their infancy. Finally, we demonstrate both types of fairness hacking
using real datasets. Our paper intends to serve as a guidance for discussions within
the fair ML community to prevent or reduce the misuse of fairness metrics, and thus
reduce overall harm from ML applications.
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1 Introduction

Machine learning (ML) algorithms that influence decision-making are being increas-
ingly used within high-stakes fields such as employment, health, policing, trust score
assessment, and lending. The trend in ML algorithms used within these fields has ren-
dered the problem of algorithmic discrimination an important emerging issue (Caton
and Haas, 2020). Discrimination, legally defined as the unfavorable treatment of
individuals due to their belonging to certain demographic groups, is prohibited by
international law. In order to establish ethical and trustworthy artificial intelligence
(AI) as the field moves forward, it is paramount that new algorithm development pri-
oritizes fairness-aware learning algorithms as well as the avoidance of machine bias
(Jobin et al., 2019). While a vast portion of current publications in the field describes
how to define and generate approximations of fairness in Al (Madaio et al., 2020),
an equal proportion of the current literature describes shortcomings in Al fairness
performances or shortcomings of the fairness concepts themselves (Weinberg, 2022).

The current study aims to provide a comprehensive and conclusive summary of the
shortcomings of current fairness-aware learning algorithms. We describe the adver-
sarial practice of fairness hacking. Fairness hacking describes the adding or removing
of (sensitive) attributes from the analysis to lead outsiders to believe that fairness is
ensured. Fairness hacking also facilitates the illegitimate exploitation of the plural-
ity of fairness definitions. This occurs when tests are performed using an array of
different fairness metrics, but only metrics that produce positive results are reported.
During the process of fairness hacking, the fairness shortcomings in ML algorithms are
cloaked by reporting that these algorithms have been deemed fair by certain metrics,
while any metrics that have produced negative results are suppressed. Fairness hacking
often hinges on using the fulfillment of a very specific or intentionally downscaled
dimension of fairness to comprehensively report that an algorithm is fair.

Arguably, the most famous case of fairness hacking unfolded in 2016 when
Northpointe-the company that developed COMPAS, a tool for assisting in decisions on
whether defendants awaiting trial are too dangerous to be released-defended against
allegations from ProPublica. ProPublica published an article claiming that COMPAS
is biased against black individuals (Angwin et al., 2016). COMPAS uses more than
100 factors to calculate a risk factor for defendants, but race is not included in these
factors. Nevertheless, Angwin et al. (2016) claim that for individuals who did not
re-offend, black individuals were more likely to receive a medium or high score than
white individuals. However, Northpointe claimed that when picking a score between
0 and 10, the calculated chance of recidivism is approximately equal for black and
white defendants. In this case, we see the impossibility theorem at work because it is
impossible to fulfill Angwin et al.’s as well as Northpointe’s fairness criteria at once
(Corbett-Davies et al., 2016). Since the overall recidivism rate for black defendants
is higher, and the proportion of individuals who re-offend is roughly equal for black
and white individuals given an arbitrary risk score, it is inevitable that black people
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who do not re-offend are assigned a higher risk score than white people who do not
re-offend. If COMPAS would fulfill the fairness criteria that Angwin et al. propose,
the software could still be viewed as unfair because one would have to systematically
assign white individuals higher risk scores than black individuals. This approach is
problematic as well. In this instance, we certainly cannot assert that ProPublica or
Northpointe intentionally engaged in fairness hacking. However, the ensuing discus-
sion about the appropriate use of fairness metrics perfectly illustrates the problem that
at least inter-metric fairness hacking presents.

In this study, we will begin by describing analogies between fairness and p-hacking,
since both practices work by selecting and reporting only specific results for data
analysis. Next, we will describe intra-metric as well as inter-metric fairness hacking.
The former stands for the misuse of particular fairness metrics by adding or removing
attributes in the analysis. The latter involves the search for a specific fair metric with
given attributes, inverting the impossibility theorem. To conclude the current study,
we perform both types of fairness hacking using real datasets. This demonstration
provides insight into how fairness hacking may work in real-world scenarios. We
hope that this study in its totality will spark discussions on adversarial practices in
ML within the fairness, accountability, and transparency (FAT) community. We hope
that this will prevent or reduce the misuse of fairness metrics when applied to ML
algorithms.

2 Related Work

Recent work on fairness in ML has demonstrated that fairness targets can be thwarted
via technical means. By corrupting data, markedly adversarial attacks against fairness-
aware learners can, for example (Jo etal., 2022), thwart efforts to render Al systems fair.
In particular, gradient-based poisoning attacks can cause fairness-relevant classifica-
tion disparities across specific groups (Solans et al., 2020). While this field of research
investigates the adversarial introduction of algorithmic discrimination, fairness hack-
ing, in contrast, is about the adversarial introduction of algorithmic fairness. Other
adjacent studies have recently compared different fairness metrics without looking at
confidence intervals (Zliobaité, 2017). This research would benefit from the addition
of confidence intervals, as calculating confidence intervals for group-based metrics
directly works against fairness hacking. Despite this benefit, very few research studies
include confidence or credible intervals (Besse et al., 2018; Ji et al., 2020; Ding et
al., 2021; Cherian and Candes, 2023; Roy and Mohapatra, 2023). In addition to the
previously mentioned work, other researchers have investigated the performance, as
well as techniques used to remove bias, of different datasets and metrics (Biswas and
Rajan, 2020).

Many different fairness definitions have led theoretical researchers to stipulate var-
ious “fairness traps” (Selbst et al., 2018) or “fairness limitations” (Buyl and De Bie,
2022). Both fairness traps and fairness limitations can prevent fairness targets from
being achieved (Hoffmann, 2019; Green and Viljoen, 2020). Fairness traps include the
failure to define fairness when applied to a wider sociotechnical system (John-Mathews
etal., 2023), the problem of re-purposing algorithmic solutions within different social
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contexts where these solutions are inappropriate, and the failure to formalize fairness
in purely mathematical terms (Weinberg, 2022; Castelnovo et al., 2022; Mitchell et al.,
2021). The existence of these fairness traps supports the idea of a non-ideal approach
to fairness (Fazelpour and Lipton, 2020). This non-ideal approach dismisses the idea
that the gap between the status quo and conditions of perfect fairness can be closed
at all. Metrics for quantifying deviations from fairness are imperfect, and therefore
fairness should be framed as a non-ideal methodology that does not include possessing
ideal standards and norms. Moreover, one of the critical aspects of fair machine learn-
ing is the a priori definition of sensitive categories. As highlighted by John-Mathews
et al. (2023), these categories are often grounded in social constructs and should be
carefully selected based on ethical principles and legal guidelines. This aligns with
the “realist” approach to fairness, as discussed by John-Mathews et al. (2023), where
fairness is grounded in existing demographic categories produced by institutions. The
choice of fairness metrics should not be arbitrary but guided by underlying philoso-
phies of justice. By adopting such a comprehensive approach, investigators can ensure
that the machine learning algorithms they develop are not only technically sound but
also ethically robust.

Additionally, the impossibility theorem indirectly supports the idea of a non-ideal
approach to fairness by showing that no existing method of algorithmic fairness can
satisfy different fairness conditions all at once (Kleinberg et al., 2016; Saravanakumar,
2021). Thus, the impossibility theorem renders fairness into an unachievable ideal. This
insight can easily be misused for political reasons. For example, it may be invoked
to serve the political motives of those who aim to eliminate efforts to ensure fairness
in ML models entirely. However, even for those who seek to ensure fairness within
ML models, fairness does not achieve perfect standardization or meet metrics that
model perfection (Xivuri and Twinomurinzi, 2021; Hanna et al., 2020; Beutel et al.,
2019). Phenomena such as Simpson’s paradox (Sharma et al., 2022) and fairness
gerrymandering disadvantaging subgroups despite group fairness,(Kearns et al., 2018)
further underpin this insight and are similar to fairness hacking. Even in light of these
caveats, efforts to increase fairness should still be attempted (Holstein et al., 2019;
Lum etal., 2022). However, measures to increase fairness are always overshadowed by
the aforementioned shortcomings. Furthermore, these shortcomings can be harnessed
to purport an unfair algorithm to be fair. One way of doing this is through fairness
hacking.

2.1 P-hacking in the Sciences

The term “fairness hacking” as well as its underlying definition were inspired by the
concept of p-hacking. Here, we will give a brief introduction to p-hacking before dis-
cussing fairness hacking. Essentially, p-hacking is the practice of rendering results that
are not statistically significant to appear statistically significant. This is achieved by
searching through different combinations of data and statistical approaches until set-
tling on the approach and data input that render the results statistically significant. In the
sciences, p-hacking causes an inflation of false positive results (Ioannidis, 2005). This
is particularly harmful because false scientific findings circulate. These findings can, in
turn, influence other researchers who base follow-up studies on the false positive results
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of these studies. Researchers have an incentive to manipulate research results because
established scientific publication practices mostly reward positive results (Fanelli,
2012). Negative results are seldom published, and it can be challenging to repro-
duce positive results (Open Science Collaboration, 2015). Moreover, there is strong
pressure within the scientific community to produce novel, significant results. For
some researchers, this can outweigh the pressure to adhere to sound, rigorous method-
ology when conducting experiments. These factors coalesce in a way that makes
p-hacking tempting for researchers and data analysts of all disciplines. In response,
countermeasures to p-hacking have already been developed.

There are two main categories of measures to counteract p-hacking, which will be
referred to as non-technical and technical countermeasures. The use of non-technical
countermeasures refers to changing entrenched publication practices. One example
of a non-technical countermeasure is the practice of registering studies and experi-
ments before performing them with a neutral party (Van’t Veer and Giner-Sorolla,
2016; Simmons et al., 2021). Another example of a non-technical measure to coun-
teract p-hacking is the publication of negative results (Mehta, 2019). If both of these
countermeasure examples were combined, researchers could present their experimen-
tal project plan in detail before performing the experiment. Then, the experimental
results could be published regardless of the experimental outcome, with both positive
and negative results considered worthy of publication. In this example, the pressure
on the researcher to publish positive results is reduced. In contrast, technical mea-
sures to reduce or prevent p-hacking are directed against specific problems such as the
multiple comparison problem (Westfall and Young, 1993). The multiple comparison
problem describes a situation in which variables are added to an analysis until a signif-
icant result is found. In this example, any non-significant variables are ignored. In an
example of a multiple comparison problem, an analysis is being performed wherein
researchers examine the influence of different variables on high blood pressure. For
this analysis, the researchers hypothesize that one variable, out of a potentially unlim-
ited number of variables, has an influence on high blood pressure. In this example,
an alpha level of 5% is set for the statistical tests performed as part of this analysis.
In this context, a simplified explanation of the alpha level determines how likely it is
that a variable is found to influence high blood pressure, although the variable does
not truly influence blood pressure. This describes the likelihood of a false positive
result. When the analysis is performed, the researchers find that sleep duration has a
significant effect on hypertension, but the researchers do not correct the alpha level to
account for various multiple comparisons with other variables. When the researchers
test an infinite number of measurement variables without accounting for the number
of variables, they will certainly find a variable that has a significant influence on blood
pressure, even if this variable’s influence is not actually true. To prevent such random
findings when testing multiple variables, corrections have been proposed (Shaffer,
1995). A very simple correction is the unweighted Bonferroni correction (Bonferroni,
1936). The unweighted Bonferroni correction states that the original alpha level in the
analysis must be divided by the number (n) of variables tested oy = % Thus, the
alpha level is corrected and adjusted according to the number of tested variables. In
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this review, we will discuss the Bonferroni correction as it applies to fairness hacking
(see Section 5) 1.

2.2 From P-hacking to Fairness Hacking

The problem of p-hacking has a long and sad tradition in science. We argue that
it is important to build on the work done on p-hacking since fairness hacking is
an extended version of p-hacking. In classic p-hacking, researchers are interested in
producing statistically significant results. In fairness hacking, however, it depends on
the investigator’s point of view whether the desired result is the significant or the
non-significant one. For example, a company may be interested in a result that is
not significant and therefore does not indicate discrimination. Therefore, the goal can
be-in contrast to p-hacking-to influence the results in the significant as well as in the
non-significant direction.

Furthermore, fairness hacking can occur in at least two variants: intra-metric or
inter-metric fairness hacking. Suppose we test the model for discrimination against
different attributes (race, sex, age, etc.) within one specific metric. In analogy to
medicine and p-hacking, where one would examine the influence of different groups
on hypertension by means of a single test (e.g., a t-test), we run into the the multi-
comparison problem since we test different groups. We will refer to this type of fairness
hacking as intra-metric fairness hacking.

Another big difference in fairness hacking when compared to p-hacking is that there
are many different definitions of what fairness entails. Therefore, there are different
concepts of how fairness should be measured. This is exploited in inter-metric fairness
hacking. A metric is searched until the desired result (discrimination against or not
against a group, depending on the desired result) is shown. Then only this single metric,
and not all other tested metrics, is reported.

Are intra-metric and inter-metric fairness hacking related? Both practices describe
the process of hacking fairness. However, while the former is more related to classical
p-hacking, the latter is only possible when multiple metrics are used. Due to the nature
of the fairness metrics, they do not necessarily overlap in their outcomes - as implied
by the impossibility theorem. Therefore, we argue that both intra- and inter-metric
fairness hacking can be used to render an algorithm fair or unfair, even though both
practices depict different procedures and involve different methods.

In the following, we will discuss intra- and inter-metric fairness hacking in detail.

3 Methods

Before we start to describe our methods, we would like to clarify our terminology,
which is borrowed from Barocas et al. (2019). With the features, we describe (random)
variables used as input for a machine learning algorithm. With (sensitive) attributes,

' Please note that the Bonferroni correcting in our examples is used because of the simple implementation
and for the sake of the argument. However, there are concerns regarding the reliability (White et al., 2019)
and methods such as Bayesian statistics or bootstrapping approaches could be used for mitigation (Ji et al.,
2020; Dimitrakakis et al., 2019; Foulds et al., 2020; Cherian and Candes, 2023).
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we describe (random) variables on which the fairness of the outcome of a machine
learning algorithm is analyzed. Typical sensitive attributes are race, age, or gender.
Within one attribute-such as age-we have different groups such as young and old.

Our main results are grounded in the use of different fairness metrics. We focus

primarily on group-based metrics because we believe that they are the most commonly
used in applications. The following group-based metrics, or specifically the difference
between the metrics, are used: average odds, base rates, equal opportunity, error rate,
false omission, false positives, predictive parity, statistical parity, and true negatives;
see Bellamy et al. (2018) for definitions. Furthermore, we use the Theil index (Spe-
icher et al., 2018) and consistency (Zemel et al., 2013) as an in-between measure of
individual and group-based metrics.
First, we use synthetic data for our investigation. In this investigation, we assume
that there were 100 participants in our dataset. Every participant has 1,000 randomly
Bernoulli (binary) distributed attributes.” These attributes could be, for example, an
age variable (young vs. elderly or villager vs. townspeople). In our theoretical analysis,
the accuracy of our algorithm does not influence the analysis since all attributes share
the same accuracy. The accuracy of our hypothetical algorithm is 75%. One might ask
why we used a simulation-based approach for the comparison of group metrics since
here one could also calculate analytical solutions. We used a sampling-based approach
on purpose because with a sampling approach, we were easily able to compare the
group-based metrics to two individual-based metrics.

Individual fairness metrics rely on the assumption that similar individuals should

be treated similarly. For the comparison of individuals, therefore, every hypothetical
member has one continuous Gaussian distributed (M (u = 0, % = 1)) feature.
The calculation of confidence intervals is important. The group-based metrics are
essential differences in binomial distribution except for the average odds metrics. For
the average odds metric, one averages the true- and false positive ratio between the
groups. It is possible to calculate the confidence intervals of differences for the ratio
A p of two binomial distributions with various methods (Newcombe, 1998). We used
the Wald method, basically a normal approximation

Apiza\/m(l — p0) p2(1— p) 0
ni ny

where n denotes the number of samples in group one and group two respectively,
and z, denotes the standard 1 — 5 quantile of the standard normal distribution with
confidence level o. We check numerically that the Wald confidence interval method
yields a good coverage in our setting.

Besides using synthetic data, we use real data from the Medical Expenditure Panel
Survey included in the ”AIF360” package provided by (Bellamy et al., 2018) to assess
fairness issues in machine learning. We include each binary attribute (134 in total) in
our analysis. We train a linear logistic regression classifier provided by AIF360 to pre-
dict utilization. The training and test split percentages are 90% to 10%. Additionally,
data and the introductory example from (Ding et al., 2021) are used in the appendix.

2 The binary setting here is for illustration purposes only. Our results hold equally for non-binary settings.
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We use the python package ”AIF360” (v. 0.4.0) to compute different metrics and then
include Medical Expenditure Panel Survey data for our analysis, matplotlib (v. 3.5.2)
for plotting, and the statsmodels package (v. 0.13.2) for calculation of confidence
intervals. The folktables dataset is used in v. 0.0.11.

4 Results

In the following chapter, we will present our results. First, we discuss intra-metric
fairness hacking. We will argue that this is a variant of p-hacking. Second, we discuss
inter-metric fairness hacking. Here we will argue that inter-metric fairness hacking is
a specific misuse of fairness metrics inherent to these methods. Finally, we show that
fairness hacking is possible on real datasets.

4.1 Intra-metric Fairness Hacking as a Variant of P-Hacking

Assume that two of our favorite computer scientists, Alice and Bob, participate in
a credit scoring study, e.g., similar to the German credit card dataset.> Alice and
Bob have a number of attributes (age, race, gender, etc.). For simplicity, we argue
here that Alice and Bob do not share any group across the attributes-thus, we assume
mutually exclusive group membership for all attributes. For the sake of our argument,
we next assume an ideal-world scenario. There is no intentional bias on any attribute
in the dataset with respect to Alice’s and Bob’s groups. An algorithm now decides
whether a loan is given or not. After one year, the performance of the algorithm is
evaluated. Alice and Bob want to investigate whether the algorithm is biased against
their respective groups. They agree on a common group-based fairness metric such as
equal opportunity. After carefully inspecting the data, both Alice and Bob argue that
the algorithm is biased against them for some attributes. How can this happen?

Let us have a look at our data in Fig. 1 (left). Here, we plot a histogram of the
equal-opportunity difference of the algorithm between all 1,000 attributes. By chance,
and inherent to random nature, some group membership identifier will indicate a bias
against Alice’s or Bob’s group. By cherry-picking their favorite group, Alice and Bob
can argue that the algorithm is biased against them. Furthermore, an outsider can even
argue that the algorithm is not biased since some groups yield zero difference in the
metrics. It is important to note that values to the right and to the left both indicate
biases of the algorithm since the sign of the value depends on the arbitrary choice of
whether the protected group within the attributes is coded zero or one.

Of course, this implies severe problems. In our case, we introduced by design no bias
against attributes in the synthetic dataset. Simultaneously, one can find arguments for
and against an arbitrary bias. Let us say that this result is obvious. Datasets do always
contain biases against certain groups, but maybe only regarding irrelevant attributes.
Relevant for fairness discussions are always attributes that include groups that are
protected or sensitive. However, we want to highlight the following point: We used

3 For more information, please refer to https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+
data).
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Fig. 1 Intra-metric fairness hacking for error rate and statistical parity. Distribution (in percent) of the error
rate (left) or statistical parity (center) difference between 1,000 randomly assigned attributes (with binary
values) for the outcomes of our hypothetical ML algorithm. A value of zero corresponds to no bias against
a group. Values to the left or to the right indicate a bias against groups. Upper horizontal lines indicate
confidence intervals with different alpha levels. Right: Scatter plot of statistical parity against error rate.
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1,000 attributes for illustration purposes. However-and very important-the issue of
intra-metric fairness hacking is still present if one uses fewer attributes and/or datasets
with a smaller number of participants since smaller datasets tend to have more extreme
average values (Wainer, 2007). We will discuss inter-metric fairness hacking in real
datasets that have attributes (sex, age, race, geographical location, etc.) in Section 4.3.

We argue that when intra-metric fairness hacking happens within one fairness met-
ric, it is a form of traditional p-hacking. Group-based fairness metrics are, in essence,
a form of signal detection theory within confusion matrices. Thus, intra-metric fair-
ness hacking is a form of the multiple comparisons problem. Luckily, it follows that
the designer of our credit score study can use a well-known mechanism of protection
against p-hacking to similarly protect against fairness hacking. Here, it is important to
highlight that properly adapted confidence intervals, indicated in Fig. 1 by the vertical
lines, are one method to avoid intra-metric fairness hacking (also see the Discussion
section for different approaches).

Does intra-metric fairness hacking depend on the chosen metric? This is not the
case. We want to highlight that intra-metric fairness hacking is inherent to fairness
metrics. For showing this, we once more plotted Fig. 1 with equal opportunity and
statistical parity in the appendix; see Fig. 4. Furthermore, intra-metric fairness hacking
is not only possible in group-based methods but also in individual fairness metrics-the
Theil index (Speicher et al., 2018) and Consistency (Zemel et al., 2013)-as shown in
Fig. 6 and 7 in the appendix.

4.2 Inter-metric fairness hacking: inverse of the impossibility theorem
From now on, we assume that Alice and Bob agree to analyze one single attribute.

This single attribute is used to evaluate the fairness of the algorithm. In Fig. 2a), we
plot the difference between Alice’s (group 0) and Bob’s (group 1) groups across a
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Fig. 2 Inter-metric fairness hacking as the inverse of the impossible fairness theorem. a) Plotted is the
difference between group 1 and group 0 of one binary attribute. The binary attribute is randomly distributed

across groups. The hypothetical algorithm has 75% accuracy for both groups. Vertical lines indicate a

Bonferroni-corrected confidence interval: alpha level = % Figure a) has the same plot conventions as b),

but the accuracy difference is set to 0.7

broad range of metrics. It is important to note that plotting fairness metrics without
proper confidence intervals would be misleading. For some metrics, group 1 would
be seen as unfairly treated; and for other metrics, group 0 would be seen as the one
that is unfairly treated. Plotting confidence intervals shows that there is no significant
effect for differences across metrics.

How does the situation change if we intentionally insert a bias in our dataset? To
highlight our argument, we inserted a very strong accuracy difference in our algorithm.
For Fig. 2a), we assumed an accuracy difference of 0.7 between group 0 and group 1
for our hypothetical algorithm. Here, we now see that several algorithms show a sig-
nificant bias against group 1. However, and that is very important to note, three metrics
do not indicate a bias: average odds, base rates, and statistical parity. Depending on
the metrics, Alice and Bob can argue for or against discrimination in group 1. Please
note that this effect is not an effect of classic p-hacking since there is a significant
effect caused by the accuracy difference. We also used Bonferroni-corrected confi-
dence intervals. Here, choosing the metric instead of the sensitive attribute makes the
difference between inter-metric and intra-metric fairness hacking.

Inter-metric fairness hacking has a relation to the well-known impossibility theorem
(Kleinberg et al., 2016). The impossibility theorem claims that it is not possible to
satisfy the three metrics of demographic parity, equalized odds, and (positive/negative)
predictive parity at the same time. The theorem focuses on the consensus of fairness
metrics. However, we have a different focus. We focus on the non-consensus of fairness
metrics. The impossibility theorem also implies that at most, two of the three metrics
can be fulfilled simultaneously. Therefore, at least one metric does not agree with the
other two metrics. This disagreement of metrics is what we define in a more general
approach-beyond demographic parity, equalized odds, and positive/negative predictive
parity-as inter-metric fairness hacking.
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Inter-metric fairness hacking is different from classic p-hacking. It is also different
from the problem of choosing the right test statistic in classic hypothesis testing. The
correct test statistic depends on the data distribution and assumptions about it. In
contrast, from a purely statistical viewpoint, using demographic parity or predictive
parity is equally valid.

Next, we demonstrate fairness hacking scenarios using real data.

4.3 Fairness Hacking in Real-World Datasets

We demonstrate intra- and inter-metric fairness hacking using real data in Fig. 3. Here
we used the Medical Expenditure Panel Survey (MEPS) dataset. The goal is to forecast
the utilization of patients based on different attributes. We used 138 features to predict
utilization, 134 of which are binary attributes used in the fairness analysis. Accuracy
on the test split was 86.4%. Figure 3a shows the distribution of the difference between
the error rate and statistical parity for all 134 binary attributes. For a comparison of
the equal opportunity metric and statistical parity, see Fig. 5 in the appendix.

We will use the race attribute from the MEPS dataset for intra-metric fairness
hacking. Table 1 shows the result for corrected and uncorrected confidence inter-
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Fig.3 Fairness hacking in the wild for the Medical Expenditure Panel Survey data
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Table 1 Intra-metric fairness hacking for the race attribute in the MEPS dataset

Avg. A Unc. alpha level Corrected alpha level
Equal Opportunity —12.1% [-23.8%,-0.3%] [-33.4%,9.3%]
Error Rate —6.4% [-10.1%,-2.7%] [-13.1%,0.4%]
Statistical Parity —8.4% [-11.8%,-5.0%] [-14.6%,-2.2%]

Comparison of the uncorrected @ = 0.05 and corrected «¢orr = % levels. Bold font indicates a metric
changing from significant to non-significant results (including zero) by using the Bonferroni correction

vals for all three metrics (statistical parity, equal opportunity, and error rate) from
Fig. 3a. The adjusted confidence intervals are calculated with the Bonferroni cor-
rection. Intra-metric fairness hacking could occur for the first two metrics since the
corrected confidence intervals include the zero-value and thus a significant result
change toward a non-significant result. This indicates the importance of adjusting
confidence intervals. For the error rate metric, uncorrected and corrected confidence
intervals yield significant results.

In addition to intra-metric fairness hacking, inter-metric fairness hacking is likewise
a serious risk. We show inter-metric fairness hacking for two attributes (race and
widowed) in Fig. 3b and c. When we look at the race attribute, we see that 4 out
of 12 metrics indicate a bias against white people, while the remaining 8 metrics
indicate a bias against black people. For the widowed attribute, we see that 2 out of 12
metrics indicate a bias against widowed people while the remaining metrics indicate a
bias against the group of non-widowed people. A malicious machine learning engineer
could use a selected metric to argue for a bias against one or the other group, depending
on the chosen metric while neglecting all other metrics.

Taken together, both inter- and intra-metric fairness hacking pose a risk during the
development and monitoring of machine learning models.

5 Recommendations to Avoid Fairness Hacking

Fairness hacking can be (possibly) avoided to a certain degree. Hence, having pointed
out the problems, we also suggest potential solutions for fairness hacking, both in its
intra- as well as inter-metric form. We would like to differentiate between measures
that can be implemented easily and immediately as well as measures that require
time and concerted effort. We will borrow these ideas and measures developed in
the context of p-hacking here, see insofar Head et al. (2015); Stefan and Schonbrodt
(2023) as a good overview. Although complete guidelines on how to avoid fairness
hacking are beyond the scope of our paper, we would like to give recommendations.
These recommendations are not intended to be generally binding for the future, but
rather to form guidelines from our point of view today.
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5.1 Immediate Recommendations

As a malicious practice, fairness hacking cannot be aligned with the claims of good
scientific practice. However, recommendations stemming from the field of p-hacking
avoidance can help to avoid inter- and intra-metric fairness hacking as well.

Based on the results presented above, we recommend to always calculate uncer-
tainty intervals. Reporting single values without reporting the significance of the result
can be misleading. Choosing p-values for confidence intervals then needs critical
thinking in advance (Wasserstein and Lazar, 2016). However, just because results are
significant, this does not necessarily mean that the results have an impact on the real
world, too. There can be small effects that are highly significant (Cumming, 2014;
Sullivan and Feinn, 2012). For example, measuring the height of two groups of adults
can give a highly statistical difference of | mm. However, this effect may have negligi-
ble consequences in practice. To prevent this style of reporting statistically significant
but otherwise hardly relevant results, the concept of effect size has been developed
(Cohen, 1969; Sullivan and Feinn, 2012). Only effects with a sufficient magnitude
should be considered statistically sound. This also applies for fairness metrics in the
context of significance testing. In machine learning studies, only significant fairness
effects with sufficient effect size should be considered.

Intra-metric fairness hacking is kind of similar to p-hacking. Hence, excluding
variables in post-analysis is problematic Nosek et al. (2012); John et al. (2012), as
well as building the hypothesis after the results are known (also called Harking, Kerr
(1998)). These practices are problematic due to them allowing to find significant results
through hypothesis testing easily. Similarly, in fairness hacking, some individuals
might have an interest in finding a significant discrimination while others might have
the opposite interest. To avoid these pitfalls, we recommend two methods based on
the p-hacking literature (Head et al., 2015; Ioannidis, 2005). First, one builds a clear
hypothesis of which fairness attributes should be included in the analysis before one
analyses the data. This becomes even more important since the sensitive attributes
are grounded on social categories (John-Mathews and Cardon, 2022). Here, defining
a priori sensitive categories based on hypothesis, principles, and regulations before
applying fairness metrics is a preventive measure for fairness hacking. In this context, it
is also imperative to recognize that sensitive categories are not mere attributes available
for arbitrary selection, but are deeply rooted in social constructs. Traditional statistical
methods, which have been foundational in shaping our understanding of the social
world, are now being re-evaluated in the face of evolving Al models that seek to
capture the intricate nuances of social life. This involves grounding the definition
of sensitive categories in established ethical principles and sociological theories. In
addition to defining sensitive categories a priori, one can label studies as explanatory
research (Tukey, 1977; Cumming, 2014) —which is valuable on its own— without a
predefined hypothesis. Here, researchers might also include variables after collecting
data. By labeling studies as explanatory research, recipients can treat the result with
caution (Head et al., 2015). Furthermore, when testing multiple variables —be it
hypothesis-driven or in exploratory research—, confidence intervals need to be adapted
accordingly. When not following these recommendations, it becomes difficult to detect
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intra-metric fairness hacking since one simply cannot know the study’s confidence and
whether multiple testing issues were considered.

Inter-metric fairness hacking shares challenges that another type of studies, namely
meta-analyses, are facing. In meta-analyses, separate studies with different methods
are compared and summarized, see (Borenstein et al., 2021). To avoid problematic
outcomes due to the different statistical methods used in different studies, it was
recommended to consider potential failures of test designs (Carter et al., 2019).%.
Similarly, in inter-metric fairness hacking scenarios, different statistical tests need
to be compared. It is highly important to think in advance about which metric is
appropriate to apply, e.g. practitioners can choose a metric based on a theory of justice
(John-Mathews et al., 2023). The decision about which metric to use needs to be
adequately justified. Contrary to intra-metric fairness hacking, exploratory research
may not hold as much value in terms of inter-metric fairness hacking. It may not
be appropriate to report every fairness metrics as different metrics suggest distinct
perspectives on fairness, which can lead to contradictions. Only methodologically
justified metrics should be taken into consideration and reported. Conversely, one
could argue that individuals who are affected by algorithmic decisions should be
given priority, favoring participatory approaches. If all fairness metrics are displayed,
it must be clarified why the results of some metrics have been dismissed. Besides,
presenting all metrics aids in uncovering hidden morally relevant assumptions.

All the above-described recommendations can in principle be applied immediately.

5.2 Recommendations in the Long run

We would like to discuss four future directions to prevent fairness hacking which are
again largely borrowed from the statistics literature: pre-registration, new datasets,
checklists, and building good scientific practices.

A way to prevent p-hacking in the context of studies is pre-registration (Wagen-
makers et al., 2012; Chambers, 2013). Here, studies and methods are defined and
pre-registered in journals before collecting and analyzing data. This ensures that
researchers have to deal with potential problems with their methodology, experi-
mental designs, or metrics before constructing, training, and testing a model. The
process could then include a discussion about which metrics should be used, including
their advantages and disadvantages. Here, Gundersen (2021) discusses pre-registered
reports in the context of ML research which could be adapted to fairness issues.

In addition to registered reports, new datasets or methods can also help mitigate
the issues. In our synthetic data, we have shown that fairness hacking can occur from
purely statistical noise alone. Through the MEPS data, we show that fairness hacking
also occurs in real data, which may have an imbalance in accuracy between groups.
Nevertheless, we think that approaches such as those from Ding et al. (2021), which
provide a balanced dataset of the known UCI adult dataset, are a reasonable approach.
As in the example, we show in the appendix that intra-fairness hacking possibilities
are reduced; see Fig. 8.

4 For example, if studies use t-tests one should check when these methods fail (such as small non-normal
distributed samples, Lumley et al. (2002))
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In the context of p-hacking, checklists and guidelines for the prevention have been
presented Wicherts et al. (2016). These guidelines should help researchers to avoid
p-hacking and facilitate good statically reporting. In the context of machine learning,
among others, datasheets for datasets (Gebru et al., 2021) and model cards for model
reporting (Mitchell et al., 2019) have been introduced. These checklists focus on
the whole life-cycle of machine learning models and their datasets. Also, checklists
for fairness were already developed (Madaio et al., 2020; Agarwal and Agarwal,
2023). We want to stress that these checklists and guidelines are a first good step
in the right direction. However, we hope that the machine learning community will
bring up further checklists, especially with regard to the problem of inter- and intra-
metric fairness hacking. For this purpose, the calculation of confidence intervals and
comparing metrics should, next to becoming good scientific practice, be included
in the software packages for the calculation of metrics. Furthermore and so far, we
know that none of the standard fairness packages have implementations of confidence
intervals by default.

For both types of fairness hacking discussed in this paper, the awareness in the
machine learning community has to be raised. Both Al ethics and technical fairness
research should include reflections on the potential dangers of fairness hacking into
their considerations (Mehrabi et al., 2021). Often, journals do require solid statistical
tests to prevent p-hacking. Otherwise, papers are desk-rejected. This procedure is
missing with respect to fairness metrics, although they are statistical tests, too. Here
it might make sense that journals need to take fairness issues more into account to
prevent the practices described in this study.

In summary, care must be taken during the full life-cycle of development, applica-
tion and reporting of a machine learning algorithm to justify the choice of a metric
whose aptitude for a specific purpose should be critically reflected using not just moral
intuitions, but at best sound ethical considerations that take into account all affected
individuals. In addition to that, the proprietary nature of many algorithms makes it
difficult to detect, let alone rectify, instances of fairness hacking. When algorithms are
closed off from public scrutiny, they may mask inherent biases or intentional manipu-
lations that distort the true fairness of the system. Furthermore, the incentives driving
fairness hacking are distinct from those behind p-hacking. While p-hacking arises
from the pressure to produce statistically significant results, often leading researchers
to manipulate or cherry-pick data to achieve this, fairness hacking may stem from com-
mercial or social pressures to showcase unbiased Al models, prompting developers to
superficially adjust outputs without addressing underlying biases.

6 Summary and Outlook

Bias reduction efforts require a mix of technical and non-technical solutions. At least
when looking at technical solutions, interventions to increase fairness tend to cluster
into associated modes, meaning that different fairness preservation measures strongly
correlate with one another (Friedler et al., 2018). Nevertheless, our paper demonstrates
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that fairness interventions can be brittle when engaging in intentional fairness hacking.
In this context, one has to stress that several phenomena resemble fairness hacking
practices, but are not explicitly called fairness hacking. These range from inversion
of the impossibility theorem to phenomena such as Simpson’s paradox or fairness
gerrymandering. For utility-based approaches, one must also keep in mind that the
choice of approach depends on the specific problem and the desired trade-off between
accuracy and fairness, although this trade-off cannot be considered fairness hacking in
the sense proposed in our paper. Ultimately, actual fairness hacking causes a twofold
burden. If one picks a single fairness metric and claims that a particular algorithm
is unfair without shedding light on the outcomes of alternative metrics, a distorted
image of an algorithm’s performance is created. On the other hand, if one lets sev-
eral metrics compete with each other, fairness issues become relative. Both burdens
should be avoided. To do this, one must always consider fairness metrics in a given
sociotechnical context. One must consider when human judgment and moral intuitions
are necessary when weighing different metrics against each other in a given situation.
In fact, each fairness metric has an underlying moral assumption that can be explicitly
defined (Heidari et al., 2018). Whereas the term “impossibility theorem” suggest that
fairness metrics have the same status and can hence be played off against each other-a
circumstance that is inversely exploited by fairness hacking practices-this does not
hold on closer examination and when taking into account the normative presupposi-
tions embedded in each fairness metric as well as the suitability of particular fairness
metrics in a given context (Ruf and Detyniecki, 2021; Friedler et al., 2016; Gajane and
Pechenizkiy, 2017). Thus, our results do not just underpin the importance of being
aware of the ease of claiming a machine learning model to be fair; they also stress the
importance of reflecting on the normative values embedded in fairness metrics.

Appendix

A.1 Figure 1 with equal opportunity and statistical parity
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Fig.4 Intra-metric fairness hacking for equal opportunity and statistical parity. Plot conventions as in Fig. 1
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A.2 Equal opportunity and statistical parity in the wild
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Fig. 5 Equal opportunity and statistical parity for all 134 binary attributes. Plot conventions as in Fig. 1.
The number of items belonging to the protected or unprotected group differs between actual attributes in
the MEPS dataset (race, sex, etc.). Thus, we cannot calculate a single null hypothesis confidence interval

A.3 Individual fairness metrics
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Fig.6 Equal opportunity and the Theil index for our hypothetical data. Plot conventions as in Fig. 1
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Fig.7 Equal opportunity and consistency for our hypothetical data. Plot conventions as in Fig. 1

A.4 Inter-metric fairness hacking for the Folktables dataset
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Fig. 8 Data from the Folktables dataset. The provided logistic regression example model had an accuracy
of 77.2%. Only the race attribute is used. Plot conventions as in Fig. 2
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