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Abstract
In recent years, the biomedical field has witnessed the emergence of novel tools and 
modelling techniques driven by the rise of the so-called Big Data. In this paper, we 
address the issue of predictability in biomedical Big Data models of cancer patients, 
with the aim of determining the extent to which computationally driven predictions 
can be implemented by medical doctors in their clinical practice. We show that for 
a specific class of approaches, called k-Nearest Neighbour algorithms, the ability to 
draw predictive inferences relies on a geometrical, or topological, notion of similar-
ity encoded in a well-defined metric, which determines how close the characteristics 
of distinct patients are on average. We then discuss the conditions under which the 
relevant models can yield reliable and trustworthy predictive outcomes.

Keywords Biomedical Big Data · Cancer · Prediction · Models · Similarity · 
Distance

1 Introduction

The philosophical discussion on what models are is as old as philosophy. If we con-
sider, for instance, the debates about the epistemological status of the mathemati-
cal representations constructed to capture the celestial bodies’ motions in ancient 
Greece, since then, this topic has been a sort of Carsic River that, from time to time, 
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has reappeared at the surface of the philosophers’ attention (for an introduction, see 
Frigg & Hartmann, 2020). Nowadays, the unprecedented trust in formal modelling 
has been accelerated by the appearance of new computational approaches and new 
“objects” to model, the so-called Big Data1. The term Big Data modelling gener-
ally refers to a class of techniques designed to extract useful information from large 
datasets in a fully automated way. These modelling approaches, whose basic con-
cepts were already introduced in the first half of the twentieth century, found fertile 
ground in different fields mainly thanks to the recent advancements in computational 
power (e.g. graphics processing units (GPUs), tensor processing units (TPU)), stor-
age solutions, and analytical techniques. Particularly relevant for the scope of this 
paper, these methods have proven to be of paramount importance for the advance-
ment of biomedicine, in part due to the amount of biomedical data being generated 
by new sequencing and imaging technologies, alongside the ever-growing collec-
tions of populational and individual clinical records.

This is a contemporary chapter of a long research tradition, which assumes par-
ticular importance considering the amount of money, resources, institutions, and 
researchers allocated to it, as well as of its positive results and fruitful prospects at 
both the theoretical and practical levels. As such, it provides philosophers of science 
and philosophers of technology an opportunity to contribute to current scientific 
practice by applying conceptual and analytical tools to concrete research problems, 
which have direct practical implications. In the biomedical field, the unprecedented 
computational ability of biomedical Big Data models to treat and classify huge 
amounts of clinical and molecular data enables scientists to infer important informa-
tion about individual patients, which can then be offered to doctors for the sake of 
making actual clinical decisions about diagnosis, prognosis, and therapy for specific 
diseases. So, inasmuch as the predictions of such models are shown to be reliable, 
their use opens the prospect of creating interdisciplinary teams of medical doctors 
and data scientists, like the molecular tumour boards, that can design collaborative 
strategies for the effective treatment of cancer patients (Kato et al., 2020). The prob-
lem of evaluating the predictive power of biomedical Big Data models thus acquires 
an important ethical dimension too, as it has been emphasized by several authors 
(cfr. Vayena, Blasimme & Cohen, 2018; Basu, Engel-Wolf & Menzer, 2020; Heyen 
& Salloch, 2021;, Heilinger, 2022; Mittelstadt, 2019). In this paper, we take up the 
epistemological issue of whether, and to what extent, one can draw reliable clinical 
predictions about individual patients by means of computational techniques treat-
ing large amounts of biomedical data, with a specific focus on the application of a 
machine learning technique called k-Nearest Neighbours (kNN) to the classification 
of cancer patients.

Rather than surveying the nature and interpretation of the huge collection of data 
treated by such newly developed computational techniques, which one can already 

1 A review on the existing definitions of the term Big Data can be found in Chapter 6 of Durán (2018). 
Here, we are interested in biomedical Big Data and we adopt the definition proposed by Luo et  al. 
(2016), according to which they are characterized by (i) high volumes, (ii) high dimensionality, (iii) high 
variety of types and structures, and (iv) high velocity of production.
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find in Leonelli’s recent account of biomedical Big Data models (2016, 2019, 2020), 
we provide a methodological and epistemological analysis of the structural com-
ponents of the models that determine the predictive outcomes. As we are going to 
explain, a key aspect of the prediction process is the stratification of the large popu-
lation of patients included in the initial dataset into well-defined groups, referred to 
as clusters, on the basis of a similarity relation to be intended, for reasons that we 
will discuss in detail, in terms of metric distance and not in terms of resemblance. 
In order to formulate predictions, the model assigns any individual target patient to 
the cluster of most similar patients, so that the typical properties of the latter can 
then be ascribed to the target patient too. Clearly, whether or not the thus-produced 
inferences can lead one to reliable biomedical predictions depends on the alleged 
similarities between the target patient and her relevant cluster. So, for the models to 
exhibit predictive power, it is of utmost importance to introduce an appropriate and 
well-defined measure of similarity. In fact, following the similarity conception of 
scientific representation (cfr. Weisberg, 2013, 2015), it is even tempting to ground 
predictability on the fact that a model adequately represents its target system by vir-
tue of the similarities between their respective properties. But is that the case for the 
biomedical Big Data models under investigation here? That is, is there a sense in 
which an individual target patient is adequately represented by her similarity clus-
ter? And how does it assure that computationally driven predictions may be trusted 
by medical doctors when it comes to formulating actual diagnoses, prognoses, and 
therapy in clinical practice?

In order to answer the questions at stake, we will proceed as follows. We begin 
in Section 2 by recalling some basic aspects of biomedical models, taking compu-
tational oncology as a case study. In particular, when reviewing the components of 
the models’ formal structure that leads to the predictive outcomes, we stress that 
the relevant measure of similarity is intended to quantify the distance between sets 
of biomedical data associated with distinct patients. In the subsequent Section  3, 
we illustrate the use of the kNN technique by constructing a concrete example of 
a machine learning model for the classification of cancer subtypes. Our numerical 
analysis showcases how the methodological choice of different parameters, such as 
the number of clusters and the similarity metric, can yield rather different results. 
Moreover, we discuss internal statistical criteria that are standardly adopted to eval-
uate the worth of the resulting classifications of patients and the predictive perfor-
mances of the model over the population of patients in the initial dataset. In Sec-
tion  4, we address the issue of the predictability of biomedical Big Data models 
from a philosophical perspective. Specifically, we connect the question of whether, 
and how, the prediction process promises to yield empirically successful results for 
individual patients with the Problem of Surrogative Reasoning, namely the problem 
of determining to what extent a model enables one to make valid inferences about 
its target system. We then argue that the similarity conception of scientific repre-
sentation, at least in its most elaborated version, namely the contrast approach a là 
Weisberg, does not really apply to the class of computational models we consider 
here. Indeed, in the contrast approach, the overall degree of similarity reflects how 
much the model resembles the target with respect to relevant properties; instead, the 
similarity metric adopted in our biomedical Big Data models is simply an index of 
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the statistical correlations found between the properties of the target and the proper-
ties of the cluster she is assigned to. As a consequence, such a metric does not tell 
us whether the selected cluster resembles the target patient with respect to any single 
property regarded as relevant, but it only measures how close the values of all the 
properties of the target are on average to the values of the properties of the cluster 
she is assigned to. As we claim, this means that there is just a rather weak sense in 
which a similarity cluster may represent an individual patient about whom computa-
tionally driven clinical predictions are made. The upshot of our analysis is thus that 
predictability in biomedical Big Data models is mostly grounded on statistical cor-
relations, and as such, it depends on the methodological choice of a specific similar-
ity metric, which determines a classification of the population of patients satisfying 
internal statistical criteria for high performances of the model.

On this point, it should also be stressed that, even if one grants that biomedi-
cal Big Data models enable one to make valid inferences about the target patient, 
thereby offering medical doctors reliable and trustworthy predictions to implement 
in actual clinical practice, there remains the fact that we can only know a poste-
riori whether a certain prediction is correct, that is, whether what is predicted by the 
model is actually valid for a given patient. In fact, in the last analysis, the success or 
failure of a computationally driven clinical decision about diagnosis, prognosis, or 
therapy for a certain disease is adjudicated empirically on the basis of the follow-up 
of each individual patient.

2  Biomedical Modelling and Big Data

Modelling can take different forms in biology and medicine (see Benzekry, 2020). 
White-box models, typically referred to as mechanistic or hypothesis-driven, are 
based on a priori knowledge of the system under analysis and built from first princi-
ples. Systems of differential equations are a typical example, where most parameters 
have a purely physical and/or physiological significance, as in the case of models 
describing tumour growth (see Benzekry et al., 2014). On the other side of the spec-
trum, black-box models, typically referred to as data-driven, are purely determined 
by operational connections between system inputs and outputs and do not require 
a full understanding of the model’s internal functioning. In this case, parameters 
do not necessarily have any physical or biological meaning. Approaches such as 
machine learning and deep learning are a good illustration of data-driven methods 
and are typically categorized as “black boxes”, despite recent efforts to make them 
more interpretable by integrating prior knowledge (p. 3) (see Kelly et  al., 2019; 
AlQuraishi & Sorger, 2021). In this paper, we focus on black-box models that handle 
cancer Big Data.

Cancer is an extremely complex and deadly disease characterized by high inter-
patient and inter-tissue heterogeneity in terms of molecular and pathological fea-
tures, treatment response levels, and overall survival times (see Boniolo, 2017). 
Despite its complexity, recent progress in the understanding of the multistep pro-
cesses that transform healthy cells into neoplastic ones via the progressive accumu-
lation of genetic alterations made it possible to identify well-defined characteristics 
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of cancer biology (Hanahan & Weinberg, 2011). In parallel to these discoveries, 
advancements in sequencing technologies allowed for the molecular profiling of 
patients down to the level of the genome, transcriptome, epigenome, proteome, etc. 
(i.e. omics). As a result, there are now available large-scale molecular datasets 
spanning different human cancer types, e.g., the Cancer Genome Atlas (Tomczak, 
Czerwińska & Wiznerowicz, 2015) or the Pan-Cancer Analysis of Whole Genomes 
(Gerstung et  al., 2020), as well as experimental models, as in the Genomics of 
Drugs Sensitivity in Cancer (Iorio et  al., 2016), and the Cancer Cell Line Ency-
clopedia (Ghandi et al., 2019). Machine learning techniques can leverage the grow-
ing availability of biomedical data at different resolution scales (e.g., bulk tissue or 
single cell level), so as to disentangle the intrinsic complexity of cancer (Eraslan 
et al., 2019). The integration of these computational methods with wet-lab experi-
ments and clinical information now offers the possibility of designing new medical 
approaches, such as precision medicine (Boniolo et al., 2021a).

Despite this, biomedical Big Data models are seldomly implemented in current 
medical practice. This is in part due to the long validation procedure that is required 
to regularly deploy them in the pre-clinical and clinical protocols (Bekisz & Geris, 
2020), but it also reflects the reluctance of many physicians to adopt formal meth-
ods at the patient’s bedside. In addition, crucial issues regarding the interpretabil-
ity, fairness, and security of these tools are nowadays subject to discussion both at 
the technical and regulatory levels. The development of models that are explainable 
(Holzinger et al., 2017), bias-free (Chen et al., 2020), and privacy preserving (Kai-
ssis et al., 2020) has the potential to pave the way for the systematic use of computa-
tionally driven diagnoses, prognoses, and treatment decision in new formulations of 
molecular tumour boards, where interdisciplinary teams of medical doctors and wet 
and dry-lab scientists work together to evaluate patients’ molecular profiles (Kato 
et al., 2020). In light of the growing importance of biomedical Big Data models, it 
thus seems that a philosophical analysis of their predictive processes is in order.

2.1  Classification of Patients into Similarity Clusters

Let us review the formal structure of Big Data models to begin with. In this work, 
we address examples of supervised learning, a modelling strategy that tries to define 
a relation between measurements of patients’ features (inputs) and patients’ out-
comes (outputs), as opposed to unsupervised learning, which attempts to uncover 
patterns of interest only by relying on patients’ features. In particular, we describe 
classifier models, algorithms able to define associations between a set of omics and/
or clinical data and a categorical outcome label (e.g. health status or disease group) 
for group of patients under analysis. To put it technically, let us suppose there is a 
population of N patients characterized by M numerical data, belonging to a discrete 
set of classes C = {0,1, …, R}. Throughout the paper, we will adopt the following 
notation: each of the N patients is indicated by xi (with i = 1, …, N), whereas the 
N × M feature matrix is denoted by Z and the N × 1 output matrix by Y. Specifically, 
each element zj

i
 of the matrix Z is written with a subscript indicating the patient i 

(column) and a superscript j indicating the measured feature (row). In this form, any 
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patient xi is characterized by a pair (zi, yi), where zi ∈ RM is the M-dimensional fea-
ture vector whose components are the real-valued elements zj

i
 for each feature j and 

yi ∈ C is the class label associated to patient xi.
The set of N pairs (zi, yi), called training set, is used to build a function map-

ping each patient xi to the corresponding class, that is, f : RM → C. The process of 
defining such a function f, namely the model, is referred to as learning step and 
typically consists in finding the function that leads to the optimal division of the 
input (or feature) space. In general, the goal of the learning step is to maximize or 
minimize predefined criteria, typically a cost function, evaluated on the training set2. 
Once the optimal model is trained, it is possible to use it to classify a new patient 
xN+1 that does not belong to the original training set. Based on the corresponding 
M-dimensional feature vector zN+1, the classifier will output a hypothesis about 
which one of the available classes the patient xN+1 might belong to. The assignment 
of new patients to one of these classes via the trained model is called prediction 
step. Figure 1 here below exemplifies the learning and prediction steps we have just 
described.

Let us stress that the computational process leading to a clinical prediction is 
highly dependent on how one defines the relevant classes, from here on referred to 
as similarity clusters, into which the patient population is partitioned. Indeed, these 
are determined by the total number of available clusters, defined a priori, as well as 
by the specific similarity metric one adopts in order to group the patients. We offer 
an overview of a class of routinely adopted similarity metrics in the next section.

Fig. 1  Schematic view of the steps involved in building a machine learning classification model. Top 
layer: the training set, composed of an input matrix Z and an outcome vector Y, is used to learn a classi-
fication model able to associate each patient with the corresponding class or outcome. Bottom layer: new 
patients are predicted to belong to one of the existing classes by the trained model

2 In classification, the learning process may consist in repeatedly modifying the model to reduce the 
number of times a patient xi is associated with the wrong class (also referred to as mis-classification 
error).
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2.2  Similarity as Distance Between Points

Formally, the notion of similarity adopted in biomedical Big Data models can be 
expressed in terms of the distance d of two M-dimensional feature vectors �

�
 and �

�′
 , 

associated to the i-th and i′-th patients, respectively: that is:

where L is a distance function, which can be further specified by introducing dif-
ferent metrics. One of the most common metrics is the Minkowski distance, defined 
as:

This formula encodes the idea that, in order to compute the distance between the 
two M-dimensional vectors associated to patients’ sets of data xi and xi′, respectively, 
one first calculates the difference between the values of the generic j-th component of 
the vectors (namely the generic j-th feature of each patient); then, one elevates it to the 
exponent 1/p; and finally one sums over all the j = 1, …, M components. Note that the 
exponent 1/p can be set to define different types of distances depending on the value of 
p. Typical values given to p are 1, 2, or p → ∞, resulting in formulations of Manhattan 
distance, Euclidean distance, and Chebyshev distance, respectively.

Below we give an intuitive depiction of how the distance between two 2-dimen-
sional points associated with patient 1, i.e. ( z1

1
, z2

1
 ), and patient 2, i.e. ( z1

2
, z2

2
 ), varies 

when taking p = 1 and p = 2 (Fig. 2A) or p → ∞ (Fig. 2B).
Let us stress that this is a geometric, or topological, notion of similarity, whereby 

the chosen metric quantifies how close the biomedical properties of different patients 
are. As such, it measures the degrees of statistical correlations between the patients’ 

d
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)

= L
(

zi − zi�

)

.

d
(

zi, zi�
)

=

∑m

j=1

(

|

|

|

z
j

i
− z

j

i�

|

|

|

)1∕p

.

Fig. 2  Schematic representation of the three distance metrics mentioned and used to calculate similarities 
between patients. A The solid line represents the Euclidean distance and the dashed line the Manhattan 
distance between two patients. B Representation of the Chebyshev distance, also known as “Chessboard 
distance”
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data, described as elements of a metrical space3. The geometrical notion of similarity 
has been widely adopted in statistics, in particular cluster theory, where it is defined 
in terms of measurement, distance, and metric, and it is now at the core of basic clas-
sification techniques in biomedical Big Data modelling (see Boniolo, Campaner & 
Carrara, 2021b for a more detailed discussion). To illustrate how cluster analysis 
works, let us consider an example, taken from Brown (2016), which can help one 
grasp the sense in which two sets of biomedical data can be regarded as being similar. 
In the proposed formalization, any patient is associated to a vector defined in a mul-
tidimensional metric space, where each dimension is in turn associated, e.g. to a spe-
cific biomedical datum. Given two vectors expressing the sets of data relative to two 
distinct patients, their degree of similarity (i.e. their distance in the statistical space) 
can be given, for example, by the so-called cosine similarity:

where a and b are the two vectors, a ∙ b is their scalar product, ‖a‖ is the module of the vec-
tor a, and ai its i-component (representing a molecular or clinical datum). Hence, the distance, 
that is, the similarity, is given in terms of the cosine of the angle between the two vectors. This 
means that, if the two sets of data are completely dissimilar, their vectors are opposite; thus, the 
angle is 180°, and the cos 180 °  =  − 1 . Instead, if the two sets of data are totally similar, they 
are associated to two equal vectors; thus, the angle between them is 0° and cos 0 °  = 1 . In gen-
eral, given a benchmark set of data a associated with a patient, one captures its similarity with 
any set b associated with another patient by calculating d(a, b). What is important to note is that 
the resulting degrees of similarity are evaluated just in terms of how close the respective sets of 
clinical features of the two patients are when they are taken on average.

When the comparison class grows, namely the number of patients is much higher 
than two, as in the models of biomedical Big Data under consideration, the cosine 
distance measure used in Brown’s example becomes less adequate, and hence, one 
ought to adopt the variants of the Minkowski distance we listed above for the sake 
of enacting a partition of the patient’s population into similarity clusters. As we will 
show by way of a concrete cancer model in the next section, the choice of one simi-
larity measure over the others can determine rather different outcome predictions.

3  A Machine Learning Classification Model: Predicting Cancer 
Subtypes

Given the complexity reached nowadays by computational models (especially in 
the machine learning and artificial intelligence space), whose description is out of 
the scope of the present paper, we focus on a basic classification technique called 

d(a, b) =
a ∙ b

‖a‖‖b‖
=

∑n

i=1
aibi

�

∑n

i=1
a2
i

�

∑n

i=1
b2
i

.

3 Historically, this concept emerged in geometry around 1906, thanks to the work of the French math-
ematicians René Fréchet (even though the name “metrical space” is due to Felix Hausdorff), who intro-
duced the notion of distance between two points in a topological space.
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k-Nearest Neighbours (kNN). Nevertheless, we expect the concepts discussed here 
to hold for any supervised technique based on a well-defined similarity metric. In 
kNN, the training phase simply consists in storing the input matrix Z and the output 
vector Y in memory (lazy learning). In the prediction step, the unseen data, associ-
ated with the N + 1-th patient, are used to identify the “closest”, or “most similar”, 
patients in the input matrix Z based on a predefined similarity metric d. Once the 
population of patients has been subdivided into similarity clusters, the class relevant 
for the new observation is selected through a majority vote, that is, as a function of 
the most frequent cluster label. In this framework, k is a parameter indicating the 
number of patients in the training set, i.e. the size of the neighbourhood, that con-
tributes to assigning the new patient to one of the clusters (in the simplest, trivial 
case in which k = 1, each new patient is assigned to the cluster of its closest neigh-
bour). In concrete applications, determining the optimal combination of parameters, 
namely the value of k together with the similarity metric d, is one of the main com-
putational challenges that have been shown to heavily drive the prediction perfor-
mances of the learning algorithm. In order to better illustrate this, we illustrate the 
implementation of a kNN model for the classification of different cancer types based 
on a specific type of omics data, i.e., gene expression measured via RNA-sequenc-
ing (RNA-seq)4.

Omics data are commonly represented in tabular format, having genes, tran-
scripts, or genomic locations as rows and patients as columns, so that each element 
is an integer representing the number of RNA fragments measured for each gene 
in each patient at the time of the sampling. We used data from three different can-
cer types: lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), 
and oesophageal carcinoma (ESCA). The datasets, already normalized and log-
transformed and containing data from 576, 553, and 196 patients, respectively, were 
obtained from the Cancer Genome Atlas (TCGA, see Tomczak, 2015) via the Xena 
Browser (Goldman et al., 2020). The data from the three cancer types were down-
sampled to have comparable numbers of patients and subsequently concatenated 
after finding the common genes in the three datasets. The final matrix, used as input 
for the analysis, had dimensions 20.530 genes × 588 samples. The response vector 
was created by concatenating the cancer type labels, i.e. LUAD, LUSC, and ESCA, 
corresponding to the 588 patients.

As routine in machine learning applications, the dataset was further divided into 
a training set (containing 80% of the samples) and a validation set (containing the 
remaining 20%). This step, referred to as data splitting, enables one to consider the 
validation set as an external dataset and thus to test the generalization capabilities of 
the model calibrated on the training set. After splitting, genes (i.e. variables) in the 
training set showing zero variance across samples were removed, and the remain-
ing ones were standardized using z-score normalization (i.e. all the features were 

4 RNA-seq is part of the so-called next-generation sequencing technologies, which allows for the quan-
tification of the amount of RNA in a sample, or in a cell, at a given moment. Typical applications exploit 
RNA-seq data to study phenomena such as alternative splicing, changes in gene expression in different 
groups or treatment cohorts, and biomarker identification.
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brought to a common scale with mean zero and standard deviation one). Principal 
component analysis (PCA), a linear dimensionality reduction technique typically 
used in these applications (see Huong & Holmes, 2019), was then performed to 
transform the original ~20k-dimensional dataset into a lower-dimensional dataset 
while retaining the original information content. The validation set was preproc-
essed by first removing the zero-variance features identified in the training set, fol-
lowed by standardization and dimensionality reduction (using the model fitted on 
the training data).

The kNN model was implemented using the Scikit-learn python module (see 
Pedregosa et al., 2011). In order to evaluate the effect of the choice of the param-
eters on the final prediction, we selected three values for the size of the neighbour-
hood, that is, k = 2, k = 22, and k = 200, and three different distance metrics, namely 
the Euclidean, Manhattan, and Chebyshev ones. As a result, we obtained 9 different 
combinations that we could compare. The whole process, comprising splitting, pre-
processing, model calibration, and prediction, was repeated 100 times to obtain ran-
dom samples for training and testing, thereby extracting robust estimates of model 
performance. The ability of the models to predict the correct tumour types in the test 
set was then evaluated based on internal statistical criteria, namely accuracy, preci-
sion, and recall, calculated as the average of the 100 model instances obtained for 
each combination of parameters. Let us describe the results we obtained in greater 
detail.

Accuracy is used to evaluate the overall performance of the model. In the 
3-class classification problem described above, this results in calculating the pro-
portion of samples correctly assigned to the corresponding cancer type. As rep-
resented in Fig. 3, the choice of different values of k and of distance metrics may 
heavily influence the overall performance of the models (with extremes that go 
from 0.9 down to 0.64) that reaches particularly disappointing results when Man-
hattan distance is combined with high values of k.

While accuracy is an indicator of the general performance of a model, precision 
and recall are more sensitive to the performances of the models for the individual 
cancer types. In a multi-class setting, precision (also defined as positive predictive 
value) is calculated for each class and represents the proportion of samples correctly 
assigned to a cancer type out of all the samples predicted to be part of that cancer 
type (Fig. 4A). On the other hand, recall (also referred to as sensitivity) is the pro-
portion of samples correctly predicted to belong to a class out of the actual number 
of samples belonging to that type (Fig. 4B). Once again, different combinations lead 
to different performances of the models when predicting patients belonging to dif-
ferent cancer types. In particular, models based on Manhattan distance and medium/
high values of k appear to reach low values (0.62) of precision for lung squamous 
cell carcinoma (LUSC) and low values of recall (0.21). When analysed together, the 
three scores highlight the generally low performances of the models based on Man-
hattan distance, especially when being in combination with high values of k.

To summarize our findings, we have shown how the choice of the relevant 
parameters, especially the size of closest neighbours and the similarity metric, can 
influence the final performance of computational techniques in terms of accuracy, 
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precision, and recall, even in the framework of a simple classification problem5. As 
we will see in the next section, while the fact that the stratification of the population 
of patients into similarity clusters is sensitive to such parameters is a well-known 

Fig. 3  Average accuracy values 
and standard deviations of the 9 
classification models. Average 
accuracy for different distance 
metrics is represented as a func-
tion of the parameter k, defining 
the size of the neighbourhood 
in kNN

Fig. 4  Precision and recall for the 9 classification models. A Average precision values and standard devi-
ations calculated for the 3 different classes as a function of the k parameter. Models based on the Manhat-
tan metric tend to reach low values of precision for LUSC samples. B Average recall values and standard 
deviations visualized as for the precision ones. The lowest recall values are measured for ESCA samples 
when models are based on the Manhattan distance

5 In a typical setting, the choice of parameters is highly dataset-dependent and might vary based on the 
overall goals behind the calibration of a model (see Prasath et al., 2017).

Page 11 of 20    8Prediction via Similarity: Biomedical Big Data and the Case… 



1 3

fact in the field, it assumes high relevance for the issue of predictability in biomedi-
cal Big Data models, at least for the class of models under investigation here.

4  Prediction via Similarity

In order to set the stage for our analysis of predictability in biomedical Big Data 
models, let us begin by offering a schematic reconstruction of the modelling and 
predictive process under consideration, which is illustrated in Fig. 5. In doing so, we 
will also fix the terminology we adopt in the ensuing philosophical analysis.

Before the training step, the cohort of N patients under analysis, namely the initial 
target system, is constituted by the results of numerous measurements of the relevant 
clinical/molecular features for each patient, displayed in the matrix Z. In the first step 
of the process, the adjustments of a set of parameters leads to the division of the origi-
nal data space into different regions, which discriminate clusters of patients based on 
their mutual similarity and dissimilarity (first outcome). There are two crucial aspects 
worth highlighting in the process leading to the first outcome. For one, the definition 
of the clusters is highly sensitive to the methodological choice of a particular similarity 
metric. Moreover, the assessment of the validity of the first outcome, permitted by the 
machine learning model, is given in terms of internal statistical criteria, specifically 
accuracy, precision, and sensitivity, which we discussed in the previous section. Maxi-
mizing such criteria assures that the model has high predictive performances. Arguably, 
when the resulting clusterisation of the dataset is validated, the model is expected to 
give an adequate representation of the initial target system, in that it shows how the 
population of patients can be subdivided into actual groups based on their relevant 
features.

In the second step, the model is used to make predictions, such as diagnosis, course 
of the pathology, or optimal treatment strategies, about an individual patient, what we 
refer to as the main target system. In order to produce the intended predictions, the new 
patient xN + 1 is assigned to one of the clusters partitioning the population of N patients 
in the initial dataset, based again on the similarity metric adopted in the partition in 
the previous step. One can thereby formulate conjectures about the pathological status 
of the target patient, make estimations of the future course of the pathology, or gather 
indications for a possible therapeutical pathway, on the grounds of the typical behaviour 

Initial target system

Step 1

First outcome Main outcome

Main target
system

Step 2

Fig. 5  The modelling and prediction process in the case of Big Data models
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of the patients grouped in the relevant cluster. That is the main outcome of the process, 
which completes the prediction step. In terms of the technical terminology introduced 
in Section 2.1, a clinical prediction enabled by the kNN modelling technique thus takes 
the following form: the target patient xN + 1 is predicted to have a certain value in the 
output set Y, which corresponds to the most frequent value of the model function f 
occurring for the cluster of k patients that are most similar to xN + 1 among all the N 
patients in the initial dataset.

The philosophical issue at stake is to establish whether, and to what extent, the pre-
dictions of biomedical Big Data models can be taken seriously enough to be imple-
mented by clinicians in medical practice. On this point, there are two important 
questions that are relevant. That is: To what extent are such computationally driven 
biomedical predictions reliable? And are they actually valid for the target patient?

The answer to the second question is entirely empirical. In fact, whether or not the 
decision on the prognosis, diagnosis, and treatment of a patient turns out to be cor-
rect can only be verified a posteriori by checking the effects it produced on the actual 
patient. Crudely put, given a cancer patient, if her physiological conditions do not 
improve, then we know that the prescribed therapy has failed, meaning that the bio-
medical prediction upon which the therapy relied was wrong or not good enough; else, 
if the patient’s physiological conditions improve, then one has reasons to think that the 
prediction was empirically compatible with the outcome. The first question, instead, 
has to do with the theoretical structure of the model. Surely, it also has an empirical 
component, in that the prediction is made by comparing the clinical data of the target 
patient with those of the other patients in the initial dataset. However, such a prediction 
strongly depends on the formal mechanism by which the new patient is assigned to the 
relevant cluster. In particular, it is determined by the choice of the similarity metric, 
which selects the patients that are most similar to the target patient. So, the driver of the 
predictive inference is supposed to be the similarity between the new patient xN + 1 and 
her relevant cluster. What one would like to know, then, is in what sense, if any, posit-
ing a well-defined similarity metric is sufficient to assure the trustworthiness of compu-
tationally driven clinical decisions.

4.1  Surrogative Reasoning and Representation via Geometrical Similarity

To begin with, let us stress that the issue of predictability in biomedical Big Data 
models is closely related to the outstanding Problem of Surrogative Reasoning, 
which philosophers of science have discussed for quite some time, often in con-
nection with the ongoing debate on Scientific Representation. In the literature on 
scientific models, surrogative reasoning enables one to draw inferences about the 
target system based on some features of the model, which thus plays the role of the 
“surrogate system”, as Swoyer (1991) pointed out. As such, it is a tool to generate 
hypotheses, as well as to formulate predictions, about the target. In the context of 
biomedical Big Data models, predictability relies on a form of surrogative reason-
ing, whereby one draws predictive inferences about the individual target patient on 
the basis of her similarity with a selected cluster of other patients. Arguably, an ade-
quate model would entitle clinicians to ascribe to the new patient the typical features 
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of the similarity cluster she is assigned to. Whether or not surrogative inferences 
of this kind are licensed is an epistemological issue that has practical implications 
in medical practice: for one would like to properly understand in what sense bio-
medical Big Data models can aid physicians to decide about diagnosis, prognosis, 
and treatment of individual patients. The Problem of Surrogative Reasoning thus 
becomes particularly pressing in a clinical context.

Resolving the Problem of Surrogative Reasoning requires one to establish under 
what conditions surrogative inferences are licensed. Let us refer to such inferences 
as valid surrogative inferences, by adopting a terminology proposed by Contessa 
(2007) that echoes our own remarks on the two above questions concerning bio-
medical predictions: more to the point, valid inferences further prove sound if their 
alleged conclusions about the target system turn out to be empirically valid. It seems 
reasonable to hold that a sufficient condition for the validity of surrogative inference 
is that the model gives an adequate representation of the target system6: indeed, one 
may then expect that features of the former are also shared by the latter. Although 
there are various different theories of scientific representation, the so-called similar-
ity conception deserves particular attention in the connection with the models we are 
dealing with here. The underlying idea is that a model adequately represents a tar-
get just in case they are similar to each other in relevant respects to the appropriate 
degrees. Frigg and Nguyen (2020) review the main points of criticism raised against 
this view. Besides the fact that judging what properties count as relevant and the 
extent to which they should be similar across the model and the target is a context-
dependent matter (Teller, 2001), one major problem already mentioned by Good-
man (1972) concerns the logical structure of the similarity relation. In particular, 
the relation of being similar in relevant respects appears to be symmetrical (indeed, 
the model is similar to the target just as the target is similar to the model), whereas 
the notion of representation is not symmetrical at all: for it is only the model that 
is supposed to represent the target and not vice versa. On the positive side, though, 
Frigg and Nguyen concede that the similarity conception of scientific representation 
promises to offer an elegant account of surrogative reasoning, at least as long as the 
validity of surrogative inferences is grounded on a well-defined measure of similar-
ity between the model and the target.

Contrast approaches to the similarity conception are designed to avoid the above 
objections. In fact, they rely on a similarity measure that is not symmetrical. In par-
ticular, in Weisberg’s (2013, 2015) weighted feature matching account of model-
world similarity, similarity is a measure of the relevant properties that are shared by 
the model and the target, which can be even assigned different weights depending 

6 Note that for Contessa, it is also a necessary condition: in fact, he claims that the model enables one to 
make valid surrogative inferences if and only if it gives an “epistemic representation” of the target. How-
ever, other authors disagree on this point. For instance, according to Suarez (2004) inferential conception 
of scientific representation, the ability to draw surrogative inferences does not presuppose that the model 
adequately represents the target (in fact, not even if one insists on the additional condition of denotation, 
that is, that the model’s representational force points to the target).
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on the context7. So, if computationally-driven predictions in biomedical Big Data 
models could be shown to fit into Weisberg’s account, we would have an instance 
of valid surrogative inferences grounded on representation by similarity. However, 
we contend that there are cogent reasons why in the models we consider here the 
similarity measure cannot possibly correspond to Weisberg’s measure. In fact, the 
relevant notion of similarity is rooted in the alternative geometrical, or topological, 
approach we described in Section 2.2.

Let us note that Frigg and Nguyen (2020) identified two ways in which a model 
M and a target T can be related by similarity: “[i]f the similarity between M and 
T is based on shared properties, then a property found in M would also have to be 
present in T ; and if the similarity holds between properties themselves, then T 
would have to instantiate properties similar to M.”. In the first case, it is the fact 
that the model and target have a common set of properties that make them similar, 
whereas in the second case, some of the properties of the model are regarded as sim-
ilar, rather than identical, to the corresponding properties of the target8. Weisberg’s 
weighted feature-matching account of model-world similarity is an instance of the 
first case since it relies on the fact that the model and target share a set of identical 
properties. However, as objected by Parker (2015) and Khosrowi (2020), in scien-
tific modelling, it is customary to assume that models have properties that are just 
similar to those of the target system, as prescribed in the second case. That is clearly 
what happens in biomedical Big Data models, wherein one does not presuppose that 
the target patient has exactly the same properties as the other patients in her clus-
ter. Rather, similarity metrics, like the ones based on the Manhattan, the Euclidean, 
and the Chebyshev distance, just measure the distance between the values of a large 
number M of biomedical features of distinct patients: the target patient can thus be 
assigned to the group comprising the closest, i.e. most similar, patients in the initial 
dataset, but in general, the values of their respective features are different. It follows 
that Weisberg’s account of representation via similarity cannot apply to the class of 
biomedical Big Data models under investigation here, such as the k-Nearest Neigh-
bours model.

More to the point, underlying the contrast approach, there is a notion of repre-
sentation as “resemblance”, whereby the model is supposed to resemble its target 
system in the sense that it is similar or just like the latter with respect to the relevant 
properties they share. Instead, the geometric approach to similarity aims only to 
quantify the degrees of statistical correlations observed between the respective prop-
erties of distinct patients. Specifically, the kNN algorithm associates any new target 

7 For completeness, let us state Weisberg’s measure of similarity here below:

 Accordingly, as he explains, “m and t correspond to the model and target, M and T the sets of features 
possessed by the model and target that are members of the feature set D, f a weighting function, and the 
additional Greek letters correspond to weights on each term” (2015, 300).

S(m, t) =
�f
(

Ma ∩ Ta

)
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Mm ∩ Tm

)

�f
(
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)
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8 The difference between these two ways of relating model and target by similarity actually traces back 
to Niiniluoto’s (1988) distinction between “Partial Identity” and “Likeliness”.
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patient xN + 1with the cluster of patients xi whose features are the closest on average 
to the features of xN + 1. By adopting a given two-place similarity measure d(∙,  ∙), 
one can rank the patients’ data in the dataset on the basis of how similar they are to 
xN + 1, depending on the comparative values d(zN + 1, zi), for all M-dimensional feature 
vectors zi with i = 1, …, N. Once the parameter k is fixed, one can then determine 
the similarity cluster for xN + 1, which includes the k patients’ data with the lowest 
values for the metric d. Differently from Weisberg’s contrast approach, the metric 
does not take into account the extent to which a similarity cluster may resemble 
the target with respect to any specific feature. Indeed, even small values of the dis-
tance d(zN + 1, zi) do not indicate that the empirical value of some particular omics 
feature (e.g. the j-th component of the corresponding feature vector) for patient xN + 1 
is close to the empirical value of the same omics feature (e.g. the j-th component 
of the corresponding feature vector) for patient xi. In the geometrical approach, one 
just measures the average difference in values over all components of the respective 
M-dimensional feature vectors zN + 1 and zi.

Since Weisberg’s weighted feature matching account of model-world similarity 
does not apply here, one is left with a more impoverished sense in which there is 
representation via similarity. For one, the similarity distance d(zN + 1, zi) is clearly 
symmetrical with respect to patient xN + 1 and patient xi, thereby lending itself to one 
of the standard objections to the similarity conception of scientific representation. 
Moreover, in the case of the kNN, how exactly the model partitions the dataset into 
clusters depends on the choice of methodological parameters, most notably the num-
ber k of patients in the relevant cluster as well as a particular similarity measure 
d(∙, ∙). As we showed in Section 3, changes in such parameters will result in different 
classifications into clusters, which may as well yield different biomedical predic-
tions about the target patient. That is, even by keeping k fixed, the target patient may 
as well be represented by a different cluster depending on whether one chooses the 
Manhattan distance, or the Euclidean distance, or the Chebyshev distance (or any 
other admissible measure of similarity).

The only way to constrain the choice of similarity metric seems to be by impos-
ing internal statistical criteria, in the first step of the prediction process, namely 
accuracy, precision, and sensitivity, so as to determine the optimal combination of 
parameters. The sense in which the target patient xN + 1 is adequately represented by 
the similarity cluster she is assigned thus bears on how well the resulting classifica-
tion into clusters represents the population of N patients in the initial dataset.

To underscore the weaker sense of representation retained by biomedical Big 
Data models, let us point out a curious aspect of the prediction process that can 
occur in the basic kNN models. There, the criterion to draw surrogative inferences 
depends on the majority vote rule. So, if the model function f defined over the 
M-dimensional real space RM of the omics features of the patients maps the majority 
of the patients in the cluster onto a certain predictive outcome y in the output class 
Y, then one can infer that the target patient xN + 1 has the same predictive outcome y, 
possibly with a probability given by the proportion of members of the cluster having 
this outcome. For the sake of simplicity, let us suppose that k = 3, so that the cluster 
comprises the three patients in the dataset that are most similar to xn + 1 according to 
a given metric d, say x1, x5, and x10, to which the model assigns the outcome values 
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f(Z1) = y1, f(z5) = y2, and f(z10) = y2, respectively. Now, if it turns out that d(zN + 1,  z1) 
< d(zN + 1,  z5) < d(zN + 1,  z10), then x1 should be identified as the most similar patient 
to xN + 1. Yet, based on the majority vote procedure, one ascribes the predictive out-
come y2 to xN + 1 assigned to the other patients x5 and x10, instead of the outcome y1 
assigned to patient x1. This shows that, perhaps counter-intuitively, the biomedical 
prediction about the target system is not even made on the basis of the patient that 
best represents her.

In the last analysis, we have shown that predictability in biomedical Big Data 
models is grounded on a geometrical account of similarity as distance between the 
clinical data of distinct patients. Surrogative inferences about the target patient are 
drawn on the basis of her similarity to a cluster of other patients in the initial dataset. 
In kNN models, such predictive inferences are supposed to be valid if the similarity 
metric (together with the number of patients in the cluster) determines a partition of 
the dataset into clusters that satisfy internal statistical criteria for the optimal perfor-
mances of the model, thereby giving an adequate representation of the population 
of patients. In the face of such a weak notion of representation driving surrogative 
inferences about the target patient, one may thus wonder whether computationally 
driven biomedical predictions based on statistical correlations are effectively reli-
able and trustworthy for medical doctors to be implemented in clinical practice. 
Given that the empirical validation of clinical decisions on diagnosis, prognosis, and 
therapy of individual patients can only be made a posteriori by checking the fol-
low-up of each patient, we suggest that a strategy to evaluate the trustworthiness of 
computationally driven biomedical predictions is to collect and examine future clini-
cal data about the target patients themselves: accordingly, the modelling processes 
yielding trustworthy predictions are those permitting successful predictive outcomes 
that turn out to be robust under empirical validations.

5  Conclusions: Statistical Correlations as a Basis for Predictions

In this paper, we addressed the issue of predictability in biomedical Big Data mod-
els. That is an epistemological issue with direct practical and ethical implications: in 
fact, if computationally driven biomedical predictions prove to be reliable and trust-
worthy, they could be effectively implemented by medical doctors in actual clinical 
practice, so as to formulate diagnosis, prognosis, and therapy for individual patients. 
We argued that for the class of Big Data models, we considered, i.e. kNN classi-
fication models, predictability relies on the choice of a similarity measure, which 
determines a partition into clusters of the population of patients in the initial dataset: 
biomedical inferences about a new target patient are then drawn on the basis of the 
typical features of the cluster she is assigned to, namely the one comprising the most 
similar patients to her. Importantly, the relevant notion of similarity has a topologi-
cal meaning, since it is introduced by a metric establishing the distance between the 
biomedical features of distinct patients taken on average.

We then contrasted this geometric account of similarity with Weisberg’s similarity 
conception of scientific representation, wherein the similarity relation is intended to 
have a different meaning, that is, that a model resembles its target system in relevant 

Page 17 of 20    8Prediction via Similarity: Biomedical Big Data and the Case… 



1 3

respects. The upshot is that, in biomedical Big Data models, a target patient may be 
represented by her similarity cluster only in a weak sense, that is, merely on the basis 
of observed statistical correlations between omics features. To be sure, the empha-
sis on the role of statistical correlations in Big Data models is not new: in particu-
lar, Pietsch (2016, 2021) suggested that predictions should be made just when the 
observed correlations retain causal significance. However, in our view, causality is not 
even a necessary condition for predictability, as is demonstrated by the fact that it plays 
no role in the cancer model we constructed. Instead, computationally driven biomedi-
cal predictions can be regarded as reliable inasmuch as the clusterisation determined 
by the model satisfies internal statistical criteria, thereby giving an adequate represen-
tation of how the population in the initial dataset is classified into well-defined groups 
of patients. Whether clinical predictions are empirically valid or not, though, can be 
decided only a posteriori by evaluating the follow-up of each individual patient about 
whom one formulates diagnosis, prognosis, and therapy for specific diseases.
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