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Abstract
In spite of their practical importance, the connections between technology and math-
ematics have not received much scholarly attention. This article begins by outlining
how the technology–mathematics relationship has developed, from the use of simple
aide-mémoires for counting and arithmetic, via the use of mathematics in weaving,
building and other trades, and the introduction of calculus to solve technological
problems, to the modern use of computers to solve both technological and mathe-
matical problems. Three important philosophical issues emerge from this historical
résumé: how mathematical knowledge depends on technology, the definition of the
hybrid concept of a (technological) computation, and the (perhaps surprising) useful-
ness of mathematics in technology. Each of these issues is briefly discussed, and it is
shown that in order to analyze them, we need to combine tools and ideas from both
the philosophy of technology and the philosophy of mathematics. In conclusion, it is
argued that much more of interest can be found in the historically and philosophically
unexplored terrains of the technology–mathematics relationship.

Keywords Mathematics · Technology · Geometrical building construction ·
Computer technology · Computability · Usefulness of mathematics

1 Introduction

There is a considerable literature on the relationship between technology and science,
but as yet not much has been written on that between technology and mathemat-
ics. Nevertheless, they are closely connected in several ways. Modern technology
would be unthinkable without mathematics. The relationship is reciprocal, since
mathematics also needs technology. Today, mathematicians use computers not only
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for calculations, but also for numerous other tasks, including the search for proofs,
validations, and counter-examples.

This introduction to the technology−mathematics relationship starts with four sec-
tions summarizing its historical development, from the early technological tools for
counting and arithmetic (Section 2), via the use of increasingly advanced mathemat-
ics in practical trades and in engineering (Section 3), to the development of computers
(Section 4), and their use to solve mathematical tasks that could never have been
solved without them (Section 5). Three major philosophical issues that emerge from
this historical outline are summarized (Section 6) and then presented in somewhat
more detail: how mathematical knowledge depends on technology (Section 7), the
concept of a (technological) computation (Section 8), and the reason why mathemat-
ics is so useful in technology (Section 9). Finally, some conclusions are drawn on the
need for further research (Section 10).

2 How it All Began

We usually see mathematics as concerned with concepts and arguments that are
totally independent of material reality. Mathematics should be equally accessible to
a “brain in a vat” as it is to our own embodied brains. But in practice, we rely heavily
on aide-mémoires in the form of notes on paper, blackboards, and computer screens.
It has been like that since the very beginning of mathematics.

The art of counting is arguably the most fundamental mathematical procedure. We
are not born with that ability. It had to be invented, and now it has to be passed on
from generation to generation. It is known in the vast majority of human communi-
ties, but not in all of them (Pica et al. 2004; Dehaene et al. 2008). When counting,
we often take the help of one-to-one correspondences with sets of small objects such
as stones, twigs, or pieces of wood. For instance, inhabitants of the Nggela Islands
(part of Solomon Islands) keep track of the number of guests at a feast by collecting
a small item from each of them as they arrive (Sizer 2000, p. 260).

If we want to keep numbers in memory over a long period of time, collections
of loose objects are not reliable enough. More durable notes are needed. Notches on
objects such as bones or pieces of wood have been used for that purpose in many parts
of the world (Sizer 2000, p. 260). A small bone about 11,000 years old that was found
in Congo has three columns with in total 167 tally marks (Huylebrouck 1996).1 Knots
on strings have been used in many cultures for the same purpose (Jacobsen 1983;
Sizer 2000). The Incas used sets of connected knotted strings (khipus) for bookkeep-
ing and taxation purposes (Urton and Brezine 2005; Gilsdorf 2010). In some cultures,
warriors made cuts on their own bodies, or those of their wives, to keep track of how
many enemies they had slain (Lagercrantz 1973).

Notches and knots provide more reliable and long-lasting records of numbers
than stones and sticks, but the latter have the advantage of being more suitable for

1Much older bones with notches have been found, but their interpretation is controversial (Vogelsang et al.
2010, p. 197; d’Errico et al. 2012, pp. 13216 and 13219; Cain 2006).
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supporting arithmetical operations such as addition and subtraction. The use of small
movable objects to perform arithmetic is well-known from preliterate societies (Sizer
1991, p. 54). In several cultures, this practice was developed into more sophisticated
devices, such as counting boards with a positional system. On a counting-board, a
single pebble could represent numbers higher than 1, such as 5, 10, or 50, depend-
ing on its place on the board. Such counting boards were used by the ancient
Greeks (Melville 2015) and, according to Herodotos, by the Egyptians as well (Lang
1957). The Romans used a hand-held abacus, the size of a modern pocket calcula-
tor or large smartphone (Menninger 1992, p. 305). The movable pebbles (calculi)
on the abacus gave rise to our word “calculation.” Similar devices are also known
from medieval Europe (Periton 2015) and from the major ancient Asian and Latin
American civilizations.

The philosophical lesson from the history of these devices is that from the very
beginnings of mathematics, the reliability of our mathematical operations depends
crucially on the stability and durability of the technological devices we use to sup-
port them. Ancient calculators assumed that the pebbles did not move around by
themselves on the counting board or abacus. Today, when performing pen and paper
calculations, we assume that the numbers we write stay the same when we do not
look at them. From a practical point of view, these are trivial assumptions, but from an
epistemological point of view they are worth paying attention to. They show that the
common conception of mathematical knowledge as independent of physical reality
is in these respects an idealization. As will be discussed in Sections 5 and 7, the use
of electronic computers has further exacerbated this age-old, but previously, mostly
ignored, problem in mathematical epistemology.

3 The Use of Mathematics in Technology

Already in preliterate societies, many technological activities required mathematical
thinking.2 A prime example is the concept of proportions. It is needed in cooking and
in the production of various mixed materials such as glue, mortar, ceramics, glass,
and not least alloys. For instance, several ancient civilizations were able to produce
bronze with a remarkably optimized and constant composition, something they could
hardly have achieved without mastering the arithmetic of proportionality (Malina
1983).

One of the foremost early uses of mathematics evolved in the craft of weaving.
Textiles about 12,000 years old have been found in northern Peru (Jolie et al. 2011),
and even older imprints of woven material have been found at other sites. Advanced
hand-weaving traditions have survived in all parts of the world. Women in many of
these cultures weave complex, often geometrical, patterns with intricate symmetries.
By combining geometric and arithmetic insights, they have devised the number series

2The notion of technology is of quite recent origin. In the nineteenth century, it gradually replaced the
older, somewhat wider, notion of practical arts (Hansson 2015). The term “technology” is used here also
in references to cultures and periods lacking the modern notion of technology.
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and other numerical relationships that give rise to the desired patterns. In many tra-
ditional cultures, the most advanced mathematical activities are performed by female
weavers (Karlslake 1987, p. 394; Gerdes 2000; Harris 1987; Gilsdorf 2014). Mathe-
matics is also involved in other textile-related activities such as braiding, beadwork,
basketry, and the traditionally male activity of rope-making (Chahine 2013; Albanese
2015; Albanese et al. 2014; Albanese and Perales 2014).

Geometrical knowledge is also highly needed in construction work. In several
indigenous cultures, builders have traditional knowledge of how to make a small
house rectangular (make the beams of each pair of opposite sides equally long, and
then make sure that the diagonals have equal length) (Sizer 1991, p. 56). More
advanced building work requires more advanced geometry. For instance, scribes in
ancient Egypt were trained to calculate the height of a pyramid, given its edge and
how much the side slanted. For this purpose, they used a method for angular measure-
ment that was based on the horizontal displacement projected from a sloped object
(Imhausen 2006, p. 21). Geometrical knowledge was also needed in surveying, an
activity that was much in demand due to the annual inundation of the Nile. Each
year, agricultural fields had to be reconstructed, and often redistributed. To do this,
surveyors had to calculate the areas of fields with different shapes (Barnard 2014).

One of the most important mathematical achievements of the ancients was the
rigorous use of ruler-and-compass construction, which was developed by Euclid (fl.
300 BCE) and other Greek geometers to an impressive level of mathematical sophis-
tication and refinement. The ruler and the compass were also used by craftsmen as
highly practical tools for building construction. The compass may have been a Greek
invention. At any rate, the Egyptians do not seem to have had it (Shelby 1965). We do
not know if ruler-and-compass construction was invented by learned geometers and
then adopted by craftsmen, or if it was the other way around.3 Irrespective of that, the
method is most useful for both purposes. Moroccan carpenters still construct complex
geometrical patterns with ruler-and-compass methods of ancient origin (Aboufadil
et al. 2013). In the Greek village Pyrgi, house façades are decorated with geometri-
cal patterns made by craftsmen who have learned the ruler-and-compass methods by
apprenticeship (Stathopoulou 2006).

In the Middle Ages, the study of ruler-and-compass constructions in learned math-
ematics did not go much beyond what had already been achieved in antiquity. In
contrast, its application in the building trades reached new heights. Master builders
used it to construct complex geometrical patterns on the walls and ceilings of Islamic
buildings (Hankin 1925; Thalal et al. 2011). One of the most impressive examples of
their geometric knowledge can be found in the shrine of Darb-i Imam in Isfahan, Iran,
which was constructed in 1453. Parts of its walls are covered by quasi-crystalline
tilings, i.e., tilings that fill the plane perfectly, but do not repeat themselves regularly
like the more common types of tiling (Lu and Steinhardt 2007). Such patterns were
not understood mathematically until five centuries later. Unfortunately, we do not
know the mathematical thinking behind this remarkable achievement.

3According to Plato, at least one Athenian stone mason, namely Socrates, was versed in the learned
geometry of his time. Cf (McLarty 2005).
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The great cathedrals of the High and Late Middle Ages contain many impres-
sive examples of ruler-and-compass constructions. Perhaps most conspicuous among
these are the large rose windows, i.e., round windows with symmetrically arranged
stone rib work. For instance, the Orvieto Cathedral has a monumental rose window
from the fourteenth century, formed as a regular 22-sided polygon (icosikaidigon).
We now know that this shape cannot be constructed exactly with a compass and a
straightedge. Detailed measurements indicate that it was created with the help of a
fairly advanced approximate ruler-and-compass method (Ginovart et al. 2016).

These advanced geometrical constructions were performed by master masons who
had no formal mathematical schooling. They learned geometry in the same way as
everything else that their trade required, namely through oral transmission from mas-
ter to apprentice. A few contacts between craftspeople and learned geometers have
been documented, but we do not know how common such contacts were.4 The social
distance between the learned and the laboring classes was certainly a hindrance.

In the sixteenth century, when Gothic building came to an end, much of the knowl-
edge accumulated by its master builders seems to have been lost. However, some
rudiments have been preserved in written form and, even more importantly, the out-
comes of their work have largely been preserved.5 We know much less about the use
of mathematics in most other medieval crafts.6

Beginning around the middle of the seventeenth century, scholars with a math-
ematical education published treatises in which they applied the advanced mathe-
matics of their time, in particular, mathematical analysis, to technological problems
(Klemm 1966). Some of these treatises dealt with what we would today call structural
mechanics (Heyman 2014). In the following century, the French military engi-
neer Bernard Forest de Bélidor (1698–1761) published a famous four-volume book,
L’architecture hydraulique (1737, 1739, 1750, and 1753), which marked a new level
in the systematic application of integral calculus to engineering problems. In 1773,
the physicist Charles-Augustin de Coulomb (1736–1806), who is now best known
for his work on electricity, published his Essai sur une application des règles de
maximis et de minimis à quelques problèmes de Statique relatifs à l’Architecture, in
which he applied mathematical analysis in innovative ways to problems in structural
mechanics. In 1775, the Swedish ship builder Fredrik Henrik af Chapman published

4The Syriac mathematician Ibrahim ibn Sinan (908–946) once taught an artisan how to construct a sundial
(Saliba 1999, pp. 641-642). The Persian mathematician and astronomer Abu al-Wafa’ Buzjani (940–c.998)
wrote a book for craftsmen on geometrical constructions, but it is not known what outreach it had among
its intended audience (Raynaud 2012). The Iranian polymath Al-Biruni (973–1048) wrote about the dif-
ference between the mathematical methods that scholars preferred and the (presumably less rigorous) ones
used by most craftsmen. However, he reported that some artisans, in particular, instrument makers, used
the methods preferred by scholars (Saliba 1999, p. 642). The Florentine polyhistor Filippo Brunelleschi
(1377–1446) reportedly taught masons and carpenters working on the Florence Cathedral the mathematical
principles of construction drawings (Knobloch 2004, p. 4). In the late fifteenth century, the master mason
Matthäus Roritzer, (c.1435–c.1495) reported that he had frequently discussed “the free art of geometry”
with the bishop Wilhelm von Reichenau (1426–1496), who had a great interest in these matters (Roriczer
[1486] 1845, p. 13).
5For references, see Hansson (2018a). See also Ackerman (1949).
6Surveying is an exception. Medieval surveyors seem to have used less mathematically advanced methods
than the master builders (Price 1955; Glick 1968; Skelton 1970; Friedman 2014).
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a treatise on naval architecture that made use of Thomas Simpson’s method for the
approximation of integrals (Harris 2001).

In 1794, the importance of these developments was confirmed through the foun-
dation of the first civilian school for engineering, the École polytechnique in Paris
(Grattan-Guinness 2005). It was led by Gaspard Monge (1746–1818), an able math-
ematician and a Jacobin politician. He was determined to use mathematics and the
natural sciences as the basis of engineering education. About a third of the curricu-
lum hours were devoted to mathematics (Purkert and Hensel 1986, pp. 27 and 30-35).
Monge also developed a new discipline, descriptive geometry, which provided a
mathematical basis for technical drawing (Lawrence 2003; Klemm 1966).

The École polytechnique was the model used when, beginning in the 1820s,
polytechnical schools were created throughout Europe and also in the USA (Purk-
ert 1990, p. 180); Schubring (1990, p. 273); Scharlau (1990). The new schools
all followed the French example in providing their students with a considerable
amount of mathematics and natural science. These educational efforts answered
to an increasing need in engineering practice. The use of mathematical methods
for various practical engineering tasks increased throughout the nineteenth century.
Treatises and textbooks were published on the application of mathematics to tech-
nological topics such as optics, structural mechanics, building construction, machine
construction, shipbuilding, and engineering thermodynamics (Klemm 1966). This
development has accelerated in the twentieth and twenty-first centuries. Present-day
technology is largely based on scientific theories such as solid and fluid mechanics,
electrodynamics, thermodynamics, and quantum mechanics, all of which require con-
siderable mathematical training. Engineers also need additional mathematical tools,
for instance for simulation, optimization, control theory, and statistical analysis. In
short, mathematical methods appear to be much more useful than in many other
knowledge areas.7

In this long history of ever-increasing mathematization of technology, there have
been a few pockets of resistance against the increased reliance on mathematics
(Dubourg Glatigny 2014; Hansson 2018c). However, such resistance has been short-
lived and does not seem to have had any lasting influence. The efficiency and
usefulness of mathematical methods seem to have been irresistible. From a philo-
sophical point of view, this raises the question how we can understand and explain
this efficiency, a topic to which we will return in Section 9.

4 The Use of Technology in Mathematics

During most of this long development, with a steadily increased use of mathematics
in technology, the converse relationship did not develop much. For many centuries,
the use of technology in mathematics did not develop beyond the abacus. In the

7Mathematical control theory is an interesting example of this. Its engineering applications in servomech-
anisms have been essential in many areas of technology. However, attempts to extend this engineering
approach to complex social phenomena have been much less successful (Kline 2018).
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seventeenth century, several calculating machines using rotating wheels were pre-
sented. Wilhelm Schickard (1592–1635) was probably the first inventor to propose
such a machine, and Blaise Pascal (1623–1662) and Gottfried Wilhelm Leibniz
(1646–1716) the most famous ones (Lenzen 2018). However, due to technical prob-
lems, these machines remained rarities without much practical usage. Commercial
production and widespread use of mechanical calculators only began in the second
half of the nineteenth century (Swade 2011, 2018). Several large calculation projects
were performed in the eighteenth and nineteenth centuries, mostly to produce mathe-
matical and astronomical tables, but they relied entirely on manual work. Calculation
tasks were divided into a large number of elementary operations (often just additions
and subtractions), which were then distributed among a large number of computists.
For instance, a large French computation project in the 1790s employed around
70 computists, many of whom were female hairdressers who had lost their previ-
ous employment when time-consuming Ancien Régime hairstyles were no longer in
demand (Grattan-Guinness 1990; Grier 2005).

The first serious attempts at automatic computations were made by the English
mathematician Charles Babbage (1791–1871). He invented two general-purpose
computational machines, the difference engine in the early 1820s and the pro-
grammable analytical engine in 1834. The analytical machine would be controlled
by instructions—what we now call programs—on punched cards. Neither of these
machines was completed in his lifetime, but they showed the way for future develop-
ments.8 They also exhibited what Doron Swade (2018) calls a “two-way relationship
between mathematics and machine.” On the one hand, the machine was based on
mathematical principles that had been developed previously to organize the work of
human computists. On the other hand, the technological principles inherent in the
machine inspired new mathematical ideas. In fact, they gave rise to an entirely new
vision of mathematical operations, perhaps best expressed by Babbage’s collaborator
Ada Lovelace (1815–1852):

“It may be desirable to explain, that by the word operation, we mean any pro-
cess which alters the mutual relation of two or more things, be this relation of
what kind it may. This is the most general definition, and would include all
subjects in the universe.” (Lovelace 1843, p. 117)

“The engine can arrange and combine its numerical quantities exactly as if they
were letters or any other general symbols; and in fact it might bring out its
results in algebraical notation, were provisions made accordingly... [I]t would
be a mistake to suppose that because its results are given in the notation of a
more restricted science, its processes are therefore restricted to those of that
science.” (Ibid., p. 144)

Interestingly, and again much ahead of her time, she ascribed this generality of the
analytical engine to logic:

8Gandy (1988, p. 57) showed that the functions computable with the analytical engine “are precisely those
which are Turing computable.”
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“[T]he processes used in analysis form a logical system of much higher
generality than the applications to number merely.” (Ibid., p. 152)

The first programmable computers were built in the 1940s, more than a century
after Babbage’s first proposal of such a machine. War time codebreaking provided
much of the impetus for their development (Zabell 2018). The Colossus, which
was used by British cryptanalysts from 1943 to 1945, was the first programmable
computer to be built. Two other important machines in the pioneering period were
the ENIAC and the EDVAC, both built in the USA in the 1940s. The ENIAC was
made for calculating missile trajectories, and the EDVAC for processing wind tun-
nel data. Both tasks require the solution of large systems of differential equations.
This involves multiple repetitions of small sequences of mathematical operations,
each of which employs numerical results from its predecessors. As Mark Priestley
(2018) has shown, these historical contingencies have “deeply affected the ways in
which computers could be deployed in areas outside of mathematics.” For instance,
swift retrieval of stored intermediate results was more important than fast input or
output operations. These computers solved complex computation tasks by dividing
them into a large number of very simple subtasks. This is the same method that was
used in large-scale manual calculation projects, and it was also the strategy employed
by Charles Babbage. In the 1950s, when computers began to be used for other tasks,
new programming methods had to be introduced for these new purposes.

As will be further discussed in what follows, electronic computers have had
a deep influence on mathematics. In addition to providing previously unthinkable
capacity for computation—in Ada Lovelace’s wide sense of computation—they have
inspired new ways of thinking about fundamental concepts in mathematics, such as
the notions of proof, computation, and mathematical knowledge. Furthermore, as in
other disciplines, computer-based information technology has revolutionized com-
munications between researchers. Instantaneous electronic communication among
mathematicians has made new forms of cooperation possible. For instance, “mas-
sively collaborative mathematics” (Gowers and Nielsen 2009) has been introduced in
open forums where everyone can contribute. This has resulted in a new style of math-
ematical research with rapid interchange, much like what happens when a couple of
mathematicians work together on a blackboard, but now with a much larger group of
participants (Martin and Pease 2013; Martin 2015).

5 A Philosopher’s Dream Come (Partly) True

Just as Ada Lovelace anticipated, digital computers are now used for automatic pro-
cessing of all kinds of symbols, not just numbers. Since mathematics consists largely
of symbol manipulation, computing has therefore had a considerable impact on math-
ematics. In a sense, it represents a partial fulfillment of a philosopher’s dream that
goes back at least to the thirteenth century when it was forcefully promoted by the
Majorcan philosopher Ramon Llull (c.1232–c.1315). He tried to put human reason-
ing on completely safe grounds by showing that all truths in any particular subject
area can be obtained by drawing conclusions from a limited set of axioms. In order
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to obtain all the truths one had to go through all combinations of axioms. To that pur-
pose, he invented devices consisting of rotating, concentrically arranged circles that
contained representations of all the basic concepts (Uckelman 2018). Today, these
ideas seem eccentric, to say the least, but they held sway in European intellectual life
for many centuries. Gottfried Leibniz (1646–1716) was much influenced by them.
He believed that it would be possible in principle to calculate infallibly the truth value
of any proposition (Lenzen 2018). This would require a universal language (charac-
teristica universalis), in which all concepts were expressed in a way that mirrored
their logical interrelations. Such a language would transform all forms of correct
argumentation into routine tasks:

“Thus I assert that all truths that can be demonstrated about things expressible
in this language with the addition of new concepts not yet expressed in it – all
such truths, I say, can be demonstrated solo calculo, or solely by manipulation
of characters according to a certain form, without any labour of the imagination
or effort of the mind, just as occurs in arithmetic and algebra.” (Leibniz, quoted
in Mates (1986), p. 185n.)

Neither Leibniz nor any of his many fellow believers in such a universal language
made any significant progress towards constructing it. However, the predicate logic
presented by Gottlob Frege (1848–1925) in his pathbreaking Begriffsschrift (1879)
provided what can be described as a universal language for mathematics.9 Predi-
cate logic differs from previous logical systems in its versatile notation for relations,
variables, and the notions “all” and “some.” Although it is insufficient for translat-
ing large parts of natural language, it is sufficient for expressing much—some would
say all—of the natural language that is needed in mathematics. The vast majority of
mathematical definitions and theorems can be expressed in predicate logic, and even
more importantly: If we perform mathematical proofs very carefully in the small-
est possible steps, then each step can be expressed as a statement in predicate logic,
and it can be seen to follow from its predecessors according to the rules of predicate
logic. Since these rules are simple and unambiguous, this means that each step in
such a proof follows from its predecessors through routine (“mechanical”) manipu-
lation of symbols. It can therefore also be checked in the same way that one checks
for instance an addition or multiplication.

Such proofs in small steps are usually not much liked by mathematicians—they
share some of the disadvantages of looking down at your feet all the time while trying
to find your way in an unknown terrain. However, predicate logic arrived at a time
when mathematics was in a crisis. Two of its core areas, geometry and calculus, had
turned out to have less secure foundations than what had previously been believed.
Precise axiomatizations and proofs in small, routinized, steps could be used to pro-
vide new and more secure foundations for mathematics. Predicate logic appeared
to be the “characteristica universalis” that Leibniz and many others had dreamt of,
making it possible to draw all conclusions one needed “solely by manipulation of
characters according to a certain form, without any labor of the imagination or effort

9Kluge (1980) argued that Frege was in fact influenced by Leibniz when developing his predicate logic.
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of the mind.” But, of course, there was an important caveat: It was a characteristica
universalis only for mathematics, not for human reasoning in general.

The increased precision obtained in this way led to important mathematical devel-
opments. Of particular interest for the technology–mathematics connection are two
seminal papers from the 1930s, by Alonzo Church (1936) and Alan Turing (1937a).
They both proposed characterizations of the operations on symbols that can be per-
formed routinely, i.e., without what Leibniz called “labour of the imagination or
effort of the mind.” A decade later, when electronic computers were constructed,
it became obvious that these routine operations were also the operations that com-
puters could perform. This has given rise to discussions whether computers can be
constructed that transcend the limits of mathematical routine set out by Church and
Turing.

The reduction of proofs to simple steps made it possible to use computers for
mathematical tasks that had previously always been performed by mathematicians.
Computers can be programmed to search systematically for longer and longer chains
of proof steps, based on a given set of axioms. In this way, it is possible to find all
conclusions that can be obtained from a given set of axioms with proofs up to a certain
length. Computers can also be used to generate and test a large number of cases.

These new developments gave rise to at least two important philosophical issues.
The first of these is essentially a computer-enhanced version of the problem of physi-
cal reliance that was mentioned at the end of Section 2: Can we rely on the outcomes
of computer calculations, even if they are so large that it is in practice impossible to
check them? This quandary came to the fore in the late 1970s when the four-color
problem, which had eluded mathematicians since the 1850s, was finally solved by
brute computer force (Appel and Haken 1976). The problem can be expressed as a
question: Is it possible to divide a Euclidean plane into regions (like a map) in such
way that more than four colors are needed to color all regions without assigning the
same color to two regions with a common border (other than a corner)? A proof that
this is impossible was published in 1977. It was based on an extensive computerized
search for proofs for each of 1482 cases. The proof was too long for a human to ver-
ify all its details. It triggered an extensive and still on-going philosophical discussion
on whether we can rely on such proofs in the same way that we rely on proofs that
are short enough for humans to go through in detail.

The second problem has already been alluded to: What types of symbol manipula-
tions can be performed routinely, i.e., with no need for imagination or mental effort?
And how do these operations relate to the mathematical operations that a computer
can perform? In particular, can a machine be constructed that transcends the limits of
what a human can perform routinely?

6 Summing up the Philosophical Problems

We can now summarize the philosophical problems that have emerged in our
historical account of the technology–mathematics relationship.

First, we have the technology-dependence of mathematical knowledge. We noted
in Section 2 that from its very beginnings, human knowledge of mathematics has
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depended on aide-mémoires such as notches on a stick, pebbles on a counting board,
or symbols on paper. We need notation not only to remember numbers but also to
keep track of the successive steps of a computation, derivation, or proof. As we saw
in Section 5, we now depend increasingly on more advanced technological devices,
namely computers, not only to record but also to perform the steps of mathematical
operations. Since mathematical knowledge is usually considered to be non-empirical,
this creates problems for mathematical epistemology.

Secondly, although the notion of a computation is defined mathematically, it has
implications for our understanding of operations performed on physical devices. For
instance, if we define computation as a process consisting of a particular type of ele-
mentary operations, then a machine performing a computation will have to do so by
executing suboperations that can reasonably be understood as representing such ele-
mentary operations. A technological device that arrives at the desired result by some
other means could not be said to have obtained it by computation. For this and other
reasons, we need to clarify the relationship between mathematical and technological
computability.

Thirdly, the usefulness of mathematics in technology poses a puzzle that is anal-
ogous, but perhaps not identical, to the much more widely discussed puzzle of the
usefulness of mathematics in science. How does it come that so many technological
problems have been solved with mathematical tools that were invented for purposes
unconnected with technology? Is there some underlying connection which we have
not grasped?

The purpose of the following three sections is to further introduce these three prob-
lems and to show that concepts from the philosophy of technology and the philosophy
of mathematics may have to be combined in order to solve them.

7 The Technology Dependence of Mathematical Knowledge

It is doubtful whether any mathematician has ever spent a sleepless night worrying
that her notes might in some way have been transformed by unknown forces, replac-
ing a correct proof by an incorrect one. The more common worry refers to mistakes
by oneself. This is also a most realistic concern. There is ample historical evidence
that published work, even by highly respected mathematicians, sometimes contains
serious mistakes (Grcar 2013).10 But even though the reliability of our technological
aide-mémoires is not a concern in mathematical practice, arguments that put it into
question can serve a useful purpose. We can use such arguments to explore mathe-
matical epistemology in much the same way that we use other skeptical arguments
in general epistemology. We do not expect philosophy students to leave a seminar on
Cartesian skepticism in serious doubt whether their friends and families exist or are
only figments of their minds. Instead, we expect them to have gained some insights
on different types of knowledge and on the problematic nature of epistemic certainty

10One example of this is a proof of the four-color theorem that was published in 1880 and shown to be
wrong only 10 years later (Ringel and Youngs 1968).
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(Hansson 2017). In the same way, deliberations on how our mathematical knowl-
edge depends on our technological means for preserving it can engender insights on
the nature of mathematical knowledge. For instance, we need to distinguish between,
on the one hand, the mathematical knowledge of a (hypothetical) ideal mathematical
reasoner with unlimited memory and, on the other hand, the mathematical knowledge
that humans can acquire. The ideal mathematical reasoner would presumably be in
no need of technological aide-mémoires, and her knowledge would reach a level of
certainty which we can never reach in empirical issues.11

With computers came the use of technology to perform mathematical operations,
rather than just to record the operations that we perform ourselves. As mentioned in
Section 5, the computer proof of the four-color theorem triggered an intense debate
among both mathematicians and philosophers on the implications of computer proofs
for mathematical knowledge. In one of the first philosophical articles on this proof,
Thomas Tymoczko (1979) questioned whether the computer operations had at all
established a theorem. He claimed that the computer performed “no traditional proof,
no a priori deduction of a statement from premises,” but instead an “empirical exper-
iment.” Accepting this as a proof would, he said, contradict the common assumption
that “mathematics, as opposed to natural science, has no empirical content” and that
its theorems “are certain to a degree that no theorem of natural science can match.”
(p. 63)

Other participants in this debate have claimed to the contrary that the risk of
errors is typically smaller in computer proofs than in similarly long proofs performed
by hand (Swart 1980, p. 700). In fact, mathematicians were less worried about the
accuracy of the many cases that the computer had proved for the four-color theo-
rem than about the correctness and exhaustiveness of the list of these cases, which
had been obtained by human mathematicians in the usual pen-on-paper way (Swart
1980, pp. 697-698). As a leading group theorist wrote in the preamble of a 157-page
long summary of major results in group theory, “it seems beyond human capacity to
present a closely reasoned several hundred page argument with absolute accuracy.”
(Gorenstein 1979, p. 52).

The traditional view that mathematical knowledge is non-empirical has also been
questioned in this debate. According to Detlefsen and Luker (1980), a mathemati-
cian’s belief that someone (herself or someone else) has made no blunder in a long
complex proof is in fact an empirical belief. Therefore, belief in the validity of
such a proof “ultimately rests on empirical considerations, whether the calculation is
performed by an IBM 370-160A or by a human mathematician.” (p. 808)

The following two stories can serve to clarify what is at issue:

1. Among the papers left behind by a deceased mathematician, her colleagues
found a huge, extremely well organized handwritten manuscript of about 18,000

11However, the ability even of an idealized reasoner to achieve full mathematical certainty can be ques-
tioned with standard skeptical maneuvers. A Cartesian demon capable of implanting false empirical
perceptions into my mind should not find it too difficult to implant a mathematical error into my mind,
or at least to disrupt my memory of some mathematical results that I have obtained. It is not immedi-
ately clear what it would take for our idealized mathematical reasoner to be immune against such demonic
influence, and to be itself certain of that immunity.
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pages. It is a proof of a famous conjecture, which she apparently worked with for
decades, and managed to finish just a few weeks before her death. It was accom-
panied by a 60-page summary that specifies exactly how she divided the proof
into more than 3,000 cases and what proof methods she used in proving all of
them. Experts judge this summary to be both ingenious and highly credible. She
was known for her meticulous way of working, and no errors were found in a
randomized sample of 10 cases. However, a reasonably careful checking of the
full proof would take about three hours per page, i.e., 30 years of full-time work,
for a highly qualified mathematician.

2. Two mathematicians and a computer programmer have made a computer pro-
gram that proved the famous conjecture. They have written a paper of 60 pages,
summarizing exactly how they divided the proof into more than 3,000 cases, and
what methods were used in the computerized search for proofs of all of these
cases. They have also presented a computer-produced document of 18,000 pages,
which contains the whole proof in a format suitable for mathematicians to check.
Experts consider the 60 page paper to be of excellent quality, and no errors were
found in a randomized sample of 10 cases. However, a reasonably careful check-
ing of the full proof would take about three hours per page, i.e., about 30 years
of full-time work for a highly qualified mathematician.

Which of these proofs could most easily be checked carefully enough for the
mathematical community to consider the famous conjecture to be proved? There can-
not be much doubt about this. Other mathematicians and programmers can check
the computer proof by writing another computer program, preferably in another
programming language, and implement it on another type of computer.12 After a
careful corroboration of this nature, the computer proof in case (2) would stand a
good chance of being accepted. For the manual proof in case (1), no other means of
corroboration than tedious line-by-line checking would seem to be available.13

It is important to recognize that the technology-dependence of mathematical
knowledge is an epistemic, not necessarily an ontological dependence. Even if
our knowledge of pure mathematics is technology-dependent, it does not follow
that the subject-matter of that knowledge refers to technology (or other empirical

12There are large differences between different computer-supported proofs in how easily this can be done.
This is exemplified by the verification of Kepler’s conjecture (from 1611) on the most efficient way to
pack balls of equal size in Euclidean space. The first proof of this conjecture was submitted to a journal
in 1998, but it was not published until 7 years later since reviewers were unable to fully verify the code
(Hales 2005; Szpiro 2003; Anon 2004). A much improved proof was published in 2017 (Hales et al. 2017).
It is to a large extent computer-generated, but contrary to the first proof, it is completely formalized, and
it can be checked with standard proof-checking software.
13The corroboration of proofs that have been performed by someone else or by a machine has some
similarities with the process involved in zero-knowledge proofs, which also involve two parties, a prover
and a verifier (Goldwasser et al. 1989; Bernhard 2014). A major difference is that the corroboration process
described here consists in checking the accuracy of an available proof, whereas in zero-knowledge proofs
“the prover can convince the verifier that a given statement is true, without conveying any additional
information apart from the fact that the statement is true.” (Artemov and Protopopescu 2016, p. 273). On
the epistemology of zero-knowledge proofs, see Bledin (2008), Halpern et al. (2009), and Protopopescu
(2015).
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matter). We can compare this to the use of technology in empirical observations.
Our knowledge of viruses depends heavily on electron microscopes, but this does
not make the viruses themselves in any way dependent on microscopes.14 Obvi-
ously, that the dependence of mathematics on technology is epistemic does not make
this dependence less important. The epistemology of mathematics is a central part
of its philosophy, and there are respectable views on mathematics that do not allow
for unknowable mathematical truths and therefore do not draw a line between the
epistemology and the ontology of mathematics (Williamson 1982; Hand 2010).

It should also be recognized that computer technology differs from other types of
technology in epistemically important ways. In a recent contribution to the philos-
ophy of computer-mediated proofs, Bringsjord and Govindarajulu (2018) proposed
that we put this question in the more general context of how human belief can be
justified by arguments that are mediated by a computer.

It may also be useful to connect this issue with discussions of other types
of computer-based knowledge. For instance, an interesting parallel can be drawn
with the philosophical discussion on whether a computer simulation of an empir-
ical phenomenon can be regarded as an experiment. The question is here whether
computer-based knowledge can have the status of an experiment, a status that is
usually only assigned to procedures based on empirical observations (Parker 2009;
Roush 2018).15

In mathematics, the controversy concerns whether computer-based knowledge can
have the status of a proof, which is normally assigned to procedures that are inde-
pendent of empirical observations. We seem to have a general problem with the
classification of computer-based knowledge, and perhaps we need to develop new
categories or distinctions to deal with them.

8 The Notion of a Computation16

A computation, such as adding or multiplying two numbers, is (an execution of) a
deterministic routine for the manipulation of symbols representing numbers. That
it is deterministic means that its performance is unambiguously specified, step by

14Cf. the comparison between computers and microscopes (in Humphreys 2004, pp. 116 ff). Philosophical
studies of the use of technology in making and recording empirical observations are relevant here. See
Boon (2015).
15As I see it, computer simulations are experiments on a model of the ultimate object of study. Such indi-
rect experimentation, or experimentation on proxies, is quite common in natural science, for instance,
when a rodent model or a cell culture model is used in experiments aiming at knowledge on human
metabolism, or when Arabidopsis thaliana is used as a model organism in plant physiology and genet-
ics. Unfortunately, much of the philosophical discussion on computer simulations has been based on the
misconception that “while in an experiment one is controlling the actual object of interest (for example,
in a chemistry experiment, the chemicals under investigation), in a simulation one is experimenting with
a model rather than the phenomenon itself.” Gilbert and Troitzsch (2005, p. 14) For another view, see
Peschard (in press). For an overview, see Winsberg (2018).
16For an extensive discussion of the relation between technology and computation, see Hansson (2018b).
For other recent work on the philosophy of computation, see also Davis (2006), Sieg (2009) and Piccinini
(2015).
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step, so that the outcome is predetermined. Mathematicians have long known that
there is a wide variety of such routines for symbol manipulation. The general term is
“algorithm” (Uckelman 2018). Whereas a computation has numbers as both inputs
and outputs, an algorithm can operate on any type of symbols. However, for the
modern mathematician, the difference between making a computation and executing
an algorithm is inconsequential, since all symbols can be represented by a sequence
of numbers. Therefore, “computation” is used as a general term for the performance
of any algorithm, and “computable” means “obtainable by performing an algorithm.”

As mentioned in Section 5, the concept of a computation (or performance of an
algorithm) became important in early twentieth century mathematics when efforts
were made to base mathematics on systems of axioms and proofs. To make sure that a
proof is correct, one had to make sure that it was decomposable into small steps, each
of which could be performed as a routine manipulation of symbols. Alan Turing’s
(1937a, b) definition of computability was based on an analysis of what we humans
do when we compute. “Computing is normally done,” he said, “by writing certain
symbols on paper.” (p. 249). He went on to further simplify the operations performed
by a human computist.17 We can perform operations on sheets of checked paper. The
width of the paper is not essential. The pages of a typical math exercise book has
a width of about 30 to 40 squares, but we can do with much less. Indeed, we can
work with a squared tape, a paper that has the width of only one square. It would be
awkward and time-consuming, but from a mathematical point of view, it would be
a simplification. Several other such simplifications are possible: We only need two
symbols, since any finite number of symbols can be encoded in sequences of only
two symbols. We only need to move one step at a time on the tape, as long as we keep
track of how many times we have to make such a one-step move. We only need to look
at one square at a time, since we can move around and look at the relevant squares
in sequence, etc. (For details, see Hansson 2018b.) The result of these deliberations
was a highly simplified structure for computations. It has a squared tape and a head
that moves step-wise over the tape, reading one square at a time. Depending on the
symbol that it reads upon arriving at a square, and the state it was in before, it enters a
state. The new state instructs it what to do next among a small collection of possible
actions (write 0, write 1, move one step to the left, move one step to the right, stop).

Turing claimed that such a simple “machine” can perform any symbol manipula-
tion that can be performed routinely by a human. However, it is important to observe
that in spite of its extremely simple and limited construction, a Turing machine is
more powerful than any existing or possible computer or computist. The reason for
this is that the tape is assumed to be infinitely long. This means that the machine
can perform operations of any length. For instance, it can determine the nth digit of
π for any number n, even if it is larger than the number of particles in the universe.
The reason why Turing put no limit on the length of the tape is that from a mathe-
matical point of view, any such limit would be arbitrary. Turing’s analysis does not

17Turing used the term “computer” to refer to human computists. This has often been misunderstood by
latter-day readers as referring to what we today mean by a computer.
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concern actual computability, which depends on our resources and physical limita-
tions. Instead, he was interested in effective computability.18 A mathematical entity
is effectively computable if it would be computable if we had unlimited resources.
(The established term “effective” may be a bit confusing; the term “potential” might
have been better.)

The notion of a computation has two important features that make it to a consider-
able extent a technological concept. First, a computation is an intentional operation in
the usual sense of being “done on purpose, resulting from intention” (Oxford English
Dictionary).19 Just as in technology, but contrary to physics, agency and intention are
indispensable. Therefore, the so-called pancomputationalist standpoint, according to
which every physical system implements every computation, is untenable (Shagrir
2012). For instance, the cup coaster on my table does not embody a calculation of
π , although the ratio of its circumference to its diameter is a reasonable approxima-
tion of that number. And if I put a pile of three such coasters on top of a pile of five
coasters, I do not thereby perform the addition 3 + 5 (unless, of course, that is my
intention, perhaps as part of an effort to teach a young child some arithmetic). Sec-
ondly, a computation is an input–output operation. The instruction “write the number
5 five times in a row” does not specify how to compute 205 times 271, although
205×271 is indeed 55555. A computation has to be an execution in a particular case
of an instruction (an algorithm) that provides the correct answer also in other cases.20

These “technological” properties of computations are extremely useful for the
evaluation of various proposals for physical constructions claimed to perform com-
putations that go beyond the capacity of a Turing machine. It has often been assumed
that if we can find a physical phenomenon that cannot be adequately described with
Turing computable functions, then we have also found a phenomenon that goes
beyond Turing computability.21 However, that is a non-sequitur. If we lack means
for simulating a natural process, it does not follow that we can use that process

18This term was apparently introduced by Alonzo Church (1936).
19Consequently, the various specifications of intentional action apply to computations. For instance, we
can distinguish between types and tokens of computations. Tokens (i.e., actual single performances) can
be failed. There can be different forms of collective computations, for instance, when different parts of an
input are entered by different persons. Further developments of these aspects of computations can draw
from work in action theory (Davidson 1980; Dancy and Sandis 2015) and the theory of technological
function (Houkes and Vermaas 2010; Kroes 2012).
20In the terms of Piccinini (2015, p. 253), a computation has to be settable, i.e., such that “a user sets
the system to its initial state and feeds it different arguments of the function being computed,” and then
receives the appropriate outputs.
21One example of this is Mark Hogarth’s (1994) proposal, which is based on the observation that general
relativity is compatible with the existence of two trajectories from one point in space-time to another,
such that one of the trajectories takes infinitely long time, whereas the other only takes finitely long time.
No credible proposal has been made for basing a computation of this putative phenomenon (Cf. Button
2009). Another example is the proposal that since some many-body problems in Newtonian mechanics
may lack a Turing computable solution, they could potentially transcend Turing computability (Kreisel
1974, p. 24; Smith 2006). Again, no proposal has been made for how this feature of Newtonian mechanics
could be used to construct input-output computations (Cf. Cotogno 2003, p. 186). — Claims that quantum
computation can transcend Turing computability can largely be set aside for similar reasons. Quantum
computation has a potential to speed up some computations, but it is not expected to transcend Turing
computability (Hagar and Korolev 2007; Dorato and Felline 2018; Cuffaro 2018).
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for making a computation. Computation is essentially a technological, not a natural,
process.

9 The Technological Usefulness of Mathematics

The third problem for the technology–mathematics relation that we identified above
is the technological usefulness of mathematics. In a famous speech in 1959, Eugene
Wigner voiced his bafflement over the “unreasonable effectiveness of mathematics
in the natural sciences.” (Wigner 1960). Again and again, theories from pure mathe-
matics have turned out to be eminently useful in natural science. How can that be, if
pure mathematics is void of empirical content? Wigner found no explanation of this,
as he said, wondrous, phenomenon.

“The miracle of the appropriateness of the language of mathematics for the for-
mulation of the laws of physics is a wonderful gift which we neither understand
nor deserve.” (Wigner 1960, p. 14)

Again and again, also after Wigner made these remarks, pure mathematics has
turned out to be eminently useful not only in science but also in technology. If tech-
nology is taken to be applied natural science, then the applicability of mathematics
in technology can be seen as a corollary to its applicability in science. However,
in the last few decades, philosophical arguments have been amassed that discredit
such a view of technology. Today it is a consensus view that technology includes
practices and methods that are its own, rather than applications of ideas from nat-
ural science (Kroes 1989; Hansson 2007; Mitcham and Schatzberg 2009). These
insights have clear implications for the “unreasonable effectiveness.” In order to
understand the usefulness of mathematics in technology, it is not sufficient to look
for explanations of its usefulness in the natural sciences. We also have to consider its
usefulness in those technological practices that cannot be construed as applied natu-
ral science, such as engineeering design, optimization, control theory, and reasoning
about technological function, human-machine interaction, and ethical acceptability.
Philosophical studies of these technological practices can provide useful inputs to
our understanding of the usefulness of mathematics in technology.22

The discussion of this problem has scarcely begun, but two interesting standpoints
should be mentioned. On of them is represented by Tor Sandqvist (2018), who main-
tains that what is truly amazing and possibly inexplicable in this context is the fact
that the universe exhibits regularities that allow us to predict the future on the basis
of the past. This applies both to predictions of natural phenomena and to predictions
relating to our (technological) interventions and interactions with nature. However,
the fact that we can use mathematics to describe these regularities does not in his
view necessarily add to the amazement. The mathematical formulations of successful
physical theories need not be “an essential feature of the world they are describing,”

22As an anonymous referee for this journal pointed out, just like the application of mathematics
to science—and arguably to an even higher degree—its application to technology will have ethical
implications that mathematicians need to pay attention to.
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but could instead be “a (possibly humanly unavoidable) artifact of the conceptual
lens through which that world is being studied.” (p. 343)

The other viewpoint is represented by Phillip Wilson (2018), who proposes that
the existence of successful applications of mathematics in technology and elsewhere
teaches us something about the nature of mathematics. There are four dominant
traditions in the philosophy of mathematics: Platonism, logicism, formalism, and
intuitionism. They have all mostly been discussed in relation to pure mathematics.
By considering them from the perspective of the various applications of mathematics
we can gain new insights on their ontological and epistemological implications. In
Wilson’s view, such a broadened focus should help us to better understand the nature
of mathematics.

10 Conclusion

I hope to have shown that technology and mathematics are interconnected in many
ways, and that these interconnections cannot be adequately understood from studies
of how each of them is connected with natural science (or science in general). There
is a need for direct studies of the technology–mathematics relationship. Historical
studies of that relationship have been sporadic, and we lack much of the information
needed to write a coherent history of how the two have influenced each other in
different phases of their development. The philosophical aspects of the relationship
have been even less studied. This article has identified some issues and topics that
can serve as inroads into the philosophically unexplored terrains of the technology–
mathematics relationship. There is much more to be found.
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