Skip to main content
Log in

Imatinib@glycymicelles entrapped in hydrogel: preparation, characterization, and therapeutic effect on corneal alkali burn in mice

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Imatinib (IMB) is a type of tyrosine kinase inhibitor with great application potential for inhibiting corneal neovascularization (CNV), but its poor water solubility limits its application in eye disease treatment. In this study, novel IMB@glycymicelles entrapped in hydrogel (called IMB@glycymicelle-hydrogel) were prepared, characterized, and evaluated for their therapeutic effects on corneal alkali burn in mice. Imatinib could be successfully loaded in glycymicelles using glycyrrhizin as a nanocarrier with an optimized weight ratio of IMB:nanocarrier. The apparent solubility of IMB was significantly improved from 61.69 ± 5.55 μg/mL to bare IMB to 359,967.62 ± 20,059.42 μg/mL to IMB@glycymicelles. Then, the IMB@glycymicelles were entrapped in hydrogel fabricated with hydroxypropyl methylcellulose and sodium hyaluronate (HA) to prolong retention time on the ocular surface. Rabbit eye tolerance tests showed that IMB@glycymicelle-hydrogel possessed good ocular safety profiles. In a mouse model of corneal alkali burns, the topical administration of IMB@glycymicelle-hydrogel showed strong efficacy by prompting corneal wound healing, recovering corneal sensitivity, relieving corneal opacities, and inhibiting CNV, and these efficacy evaluation parameters were better than those of the positive drug HA. Overall, these results demonstrated that IMB@glycymicelle-hydrogel may be a promising candidate for the effective treatment of alkali ocular damage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and materials of this study are available on reasonable request.

References

  1. Wagoner MD. Chemical injuries of the eye: Current concepts in pathophysiology and therapy. Surv Ophthalmol. 1997;41(4):275–313. https://doi.org/10.1016/s0039-6257(96)00007-0.

    Article  PubMed  CAS  Google Scholar 

  2. Morgan SJ. Chemical burns of the eye: causes and management. Br J Ophthalmol. 1987;71(11):854–7. https://doi.org/10.1136/bjo.71.11.854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Mekonnen T, Lin X, Zevallos-Delgado C, et al. Longitudinal assessment of the effect of alkali burns on corneal biomechanical properties using optical coherence elastography. J Biophotonics. 2022;15(8):e202200022. https://doi.org/10.1002/jbio.202200022.

    Article  PubMed  CAS  Google Scholar 

  4. Shi S, Peng F, Zheng Q, et al. Micelle-solubilized axitinib for ocular administration in anti-neovascularization. Int J Pharm. 2019;560:19–26. https://doi.org/10.1016/j.ijpharm.2019.01.051.

    Article  PubMed  CAS  Google Scholar 

  5. Azizi G, Mirshafiey A. Imatinib mesylate: an innovation in treatment of autoimmune diseases. Recent Pat Inflamm Allergy Drug Discov. 2013;7(3):259–67. https://doi.org/10.2174/1872213x113079990021.

    Article  PubMed  CAS  Google Scholar 

  6. Na JY, Huh KY, Yu KS, et al. Safety, tolerability, and pharmacokinetics of single and multiple topical ophthalmic administration of imatinib mesylate in healthy subjects. Clin Transl Sci. 2022;15(5):1123–30. https://doi.org/10.1111/cts.13226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Baek YY, Sung B, Choi JS, et al. In vivo efficacy of imatinib mesylate, a tyrosine kinase inhibitor, in the treatment of chemically induced dry eye in animal models. Transl Vis Sci Technol. 2021;10(11):14. https://doi.org/10.1167/tvst.10.11.14.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bongiovì F, Fiorica C, Palumbo FS, et al. Imatinib-loaded micelles of hyaluronic acid derivatives for potential treatment of neovascular ocular diseases. Mol Pharm. 2018;15(11):5031–45. https://doi.org/10.1021/acs.molpharmaceut.8b00620.

    Article  PubMed  CAS  Google Scholar 

  9. Chennell P, Delaborde L, Wasiak M, et al. Stability of an ophthalmic micellar formulation of cyclosporine A in unopened multidose eyedroppers and in simulated use conditions. Eur J Pharm Sci. 2017;100(1879–0720 (Electronic)):230–7. https://doi.org/10.1016/j.ejps.2017.01.024.

    Article  PubMed  CAS  Google Scholar 

  10. Song K, Zhou L, Wang C, et al. Novel luteolin@pro-phytomicelles: In vitro characterization and in vivo evaluation of protection against drug-induced hepatotoxicity. Chem-Biol Interact. 2022;365(1872–7786 (Electronic)). https://doi.org/10.1016/j.cbi.2022.110095.

  11. Cui Q, Wang C, Zhou L, et al. Simple and novel icariin-loaded pro-glycymicelles as a functional food: physicochemical characteristics, in vitro biological activities, and in vivo experimental hyperlipidemia prevention evaluations. Food Funct. 2023;14(21):9907–19. https://doi.org/10.1039/d3fo02838k.

    Article  PubMed  CAS  Google Scholar 

  12. Yang H, Cao Q, Yuan Z, Wu X, Li M. Enhanced therapeutic efficacy of a novel self-micellizing nanoformulation-loading fisetin against acetaminophen-induced liver injury. Nanomedicine. 2021;16(27):2431–48. https://doi.org/10.2217/nnm-2021-0232.

    Article  PubMed  CAS  Google Scholar 

  13. Li Y, Zhou L, Zhang M, et al. Micelles based on polyvinylpyrrolidone VA64: A potential nanoplatform for the ocular delivery of apocynin. Int J Pharm. 2022;615(1873–3476 (Electronic)). https://doi.org/10.1016/j.ijpharm.2022.121451.

  14. Deng L, Liu Y, Yang L, et al. Injectable and bioactive methylcellulose hydrogel carrying bone mesenchymal stem cells as a filler for critical-size defects with enhanced bone regeneration. Colloids Surf B: Biointerfaces. 2020;194(1873–4367 (Electronic)). https://doi.org/10.1016/j.colsurfb.2020.111159.

  15. Lafuente-Merchan M, Ruiz-Alonso S, Espona-Noguera A, et al. Development, characterization and sterilisation of Nanocellulose-alginate-(hyaluronic acid)- bioinks and 3D bioprinted scaffolds for tissue engineering. Mater Sci Eng, C. 2021;126: 112160. https://doi.org/10.1016/j.msec.2021.112160.

    Article  CAS  Google Scholar 

  16. Bankhede HK, Ganguly A. Pharmaceutical polymer-based hydrogel formulations as prospective bioinks for 3D bioprinting applications: A step towards clean bioprinting. Ann 3D Printed Med. 2022;6:100056. https://doi.org/10.1016/j.stlm.2022.100056.

    Article  Google Scholar 

  17. Zhang Z, He Z, Liang R, et al. Fabrication of a micellar supramolecular hydrogel for ocular drug delivery. Biomacromol. 2016;17(3):798–807. https://doi.org/10.1021/acs.biomac.5b01526.

    Article  CAS  Google Scholar 

  18. Zheng J, Fan R, Wu H, et al. Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation. Nat Commun. 2019;10(1). https://doi.org/10.1038/s41467-019-09601-3.

  19. Makwana SB, Patel VA, Parmar SJ. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharm Sci. 2016;6(2211–2863 (Print)):1–6. https://doi.org/10.1016/j.rinphs.2015.06.001.

    Article  CAS  Google Scholar 

  20. Li X, Zhang Z, Chen H. Development and evaluation of fast forming nano-composite hydrogel for ocular delivery of diclofenac. Int J Pharm. 2013;448(1):96–100. https://doi.org/10.1016/j.ijpharm.2013.03.024.

    Article  PubMed  CAS  Google Scholar 

  21. Li Z, Cui L, Yang JM, et al. The Wound Healing Effects of Adiponectin Eye Drops after Corneal Alkali Burn. Curr Eye Res. 2016;41(11):1424–32. https://doi.org/10.3109/02713683.2015.1133834.

    Article  PubMed  CAS  Google Scholar 

  22. Gregory-Ksander M, Perez VL, Marshak-Rothstein A, Ksander BR. Soluble Fas ligand blocks destructive corneal inflammation in mouse models of corneal epithelial debridement and LPS induced keratitis. Exp Eye Res. 2019;179(1096–0007 (Electronic)):47–54. https://doi.org/10.1016/j.exer.2018.10.013.

    Article  PubMed  CAS  Google Scholar 

  23. Schmidt J, Klingler F-M, Proschak E, et al. NSAIDs ibuprofen, indometacin and diclofenac do not interact with farnesoid x receptor. Sci Rep. 2015;5(1). https://doi.org/10.1038/srep14782.

  24. Sun Z, Zhang M, Wei Y, et al. A simple but novel glycymicelle ophthalmic solution based on two approved drugs empagliflozin and glycyrrhizin: in vitro/in vivo experimental evaluation for the treatment of corneal alkali burns. Biomater Sci. 2023;11(7):2531–42. https://doi.org/10.1039/d2bm01957d.

    Article  PubMed  CAS  Google Scholar 

  25. Liu X, Wu Z, Guo C, et al. Hypoxia responsive nano-drug delivery system based on angelica polysaccharide for liver cancer therapy. Drug Deliv. 2021;29(1):138–48. https://doi.org/10.1080/10717544.2021.2021324.

    Article  PubMed Central  CAS  Google Scholar 

  26. Roos NJ, Mancuso RV, Sanvee GM, Bouitbir J, Krähenbühl S. Imatinib disturbs lysosomal function and morphology and impairs the activity of mTORC1 in human hepatocyte cell lines. Food Chem Toxicol. 2022;162(1873–6351 (Electronic)). https://doi.org/10.1016/j.fct.2022.112869.

  27. Condon PI, McEwen CG, Wright M, et al. Double blind, randomised, placebo controlled, crossover, multicentre study to determine the efficacy of a 0.1% (w/v) sodium hyaluronate solution (Fermavisc) in the treatment of dry eye syndrome. Br J Ophthalmol. 1999;83(10):1121–4. https://doi.org/10.1136/bjo.83.10.1121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Yokoi N, Komuro A, Nishida K, Kinoshita S. Effectiveness of hyaluronan on corneal epithelial barrier function in dry eye. Br J Ophthalmol. 1997;81(7):533–6. https://doi.org/10.1136/bjo.81.7.533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chung J-H, Fagerholm P, Lindström B. Hyaluronate in healing of corneal alkali wound in the rabbit. Exp Eye Res. 1989;48(4):569–76. https://doi.org/10.1016/0014-4835(89)90039-0.

    Article  PubMed  CAS  Google Scholar 

  30. Lin T, Gong L. Sodium hyaluronate eye drops treatment for superficial corneal abrasion caused by mechanical damage: a randomized clinical trial in the People’s Republic of China. Drug Des Devel Ther. 2015(1177–8881 (Electronic)). https://doi.org/10.2147/dddt.S77270.

  31. Kılıç Müftüoğlu İ, Aydın Akova Y, Çetinkaya A. Clinical spectrum and treatment approaches in corneal burns. Türk Oftalmoloji Dergisi. 2015;45(5):182–7. https://doi.org/10.4274/tjo.99267.

    Article  Google Scholar 

  32. Smith FWK, Buoen LC, Weber AF, et al. X-chromosomal monosomy (77, XO) in a doberman pinscher with gonadal dysgenesis. J Vet Intern Med. 2008;3(2):90–5. https://doi.org/10.1111/j.1939-1676.1989.tb03085.x.

    Article  Google Scholar 

  33. Prabhasawat P, Ruangvaravate N, Tesavibul N, Thewthong M. Effect of 0.3% hydroxypropyl methylcellulose/dextran versus 0.18% sodium hyaluronate in the treatment of ocular surface disease in glaucoma patients: a randomized, double-blind, and controlled study. J Ocul Pharmacol Ther. 2015;31(6):323–9. https://doi.org/10.1089/jop.2014.0115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Brignole F, Pisella P-J, Dupas B, Baeyens V, Baudouin C. Efficacy and safety of 0.18% sodium hyaluronate in patients with moderate dry eye syndrome and superficial keratitis. Graefe’s Arch Clin Exp Ophthalmol. 2004;243(6):531–8. https://doi.org/10.1007/s00417-004-1040-6.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2023MH343), and the Medicine Science and Technology Development Program of Shandong Province (Grant No. 202107020108).

Author information

Authors and Affiliations

Authors

Contributions

Yanan Wang: Investigation, Methodology, Validation, Writing—original draft. Shaohua Shi: Investigation, Methodology. Ling Zhang: Investigation, Methodology. Songtao Wang: Investigation, Methodology. Hongqing Qin: Investigation, Methodology. Yanjun Wei: Investigation, Methodology. Xianggen Wu: Conceptualization, Funding acquisition. Mengmeng Zhang: Conceptualization, Funding acquisition, Project administration, Resources, Writing—review & editing.

Corresponding authors

Correspondence to Xianggen Wu or Mengmeng Zhang.

Ethics declarations

Ethics approval and consent to participate

Male C57BL/6 mice (eight weeks old) were taken from Jinan Pengyue Experimental Animal Breeding Co., Ltd. (Jinan, China), and New Zealand white rabbits were procured from Qingdao Kangda Foodstuffs Co., Ltd. (Qingdao, China). Animal care and the procedures used were in accordance with the Guide for the Care and Use of Laboratory Animals. This animal experiment was conducted under a protocol approved by the Ethics Committee for Animal Experimentation of Qingdao University of Science and Technology (approval document No. 2022–1116, Qingdao, China).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shi, S., Zhang, L. et al. Imatinib@glycymicelles entrapped in hydrogel: preparation, characterization, and therapeutic effect on corneal alkali burn in mice. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01570-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01570-5

Keywords

Navigation