Skip to main content

Advertisement

Log in

Cardamonin-loaded liposomal formulation for improving percutaneous penetration and follicular delivery for androgenetic alopecia

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Androgenic alopecia (AGA) has a considerable impact on the physical and mental health of patients. Nano preparations have apparent advantages and high feasibility in the treatment of AGA. Cardamonin (CAR) has a wide range of pharmacological activities, but it has the problems of poor solubility in water and low bioavailability. There are few, if any, researches on the use of nano-loaded CAR to improve topical skin delivery of AGA. In this study, a CAR-loaded liposomal formulation (CAR@Lip and CAR@Lip Gel) was developed and characterized. The prepared CAR@Lip exhibited a uniform and rounded vesicle in size. CAR@Lip and CAR@Lip Gel can significantly improve the cumulative release of CAR. Additionally, CAR@Lip can obviously promote the proliferation and migration of human dermal papilla cells (hDPCs). Cell uptake revealed that the uptake of CAR@Lip significantly increased compared with the free drug. Furthermore, both CAR@Lip and CAR@Lip Gel groups could markedly improve the transdermal performance of CAR, and increase the topical content of the drug in the hair follicle compared with CAR. The ratchet effect of hair follicles could improve the skin penetration depth of nanoformulations. Notably, Anti-AGA tests in the mice showed that CAR@Lip and CAR@Lip Gel groups could promote hair growth, and accelerate the transition of hair follicles to the growth stage. The anti-androgen effect was revealed by regulating the expression of IGF-1, VEGF, KGF, and TGF-β, participating in SHH/Gli and Wnt/β-catenin pathways. Importantly, the nanoformulations had no obvious skin irritation. Thus, our study showed that CAR-loaded liposomal formulation has potential application in the treatment of AGA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available upon reasonable request.

References

  1. Piraccini BM, Alessandrini A. Androgenetic alopecia. G Ital Dermatol Venereol. 2014;149:15–24.

    CAS  PubMed  Google Scholar 

  2. Nestor MS, Ablon G, Gade A, Han H, Fischer DL. Treatment options for androgenetic alopecia: Efficacy, side effects, compliance, financial considerations, and ethics. J Cosmet Dermatol. 2021;20:3759–81.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lolli F, Pallotti F, Rossi A, Fortuna MC, Caro G, Lenzi A, Sansone A, Lombardo F. Androgenetic alopecia: a review. Endocrine. 2017;57:9–17.

    Article  CAS  PubMed  Google Scholar 

  4. Kwack MH, Sung YK, Chung EJ, Im SU, Ahn JS, Kim MK, Kim JC. Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J Invest Dermatol. 2008;128:262–9.

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Yang S, Liao M, Zheng Z, Li M, Wei X, Liu M, Yang L. Association between genetically predicted leukocyte telomere length and non-scarring alopecia: a two-sample Mendelian randomization study. Front Immunol. 2013;13:1072573.

    Article  Google Scholar 

  6. Yang M, Weng T, Zhang W, Zhang M, He X, Han C, Wang X. The Roles of non-coding RNA in the development and regeneration of hair follicles: Current status and further perspectives. Front Cell Dev Biol. 2021;9:720879.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  7. Jain R, De-Eknamkul W. Potential targets in the discovery of new hair growth promoters for androgenic alopecia. Expert Opin Ther Targets. 2014;18:787–806.

    Article  CAS  PubMed  Google Scholar 

  8. Vasserot AP, Geyfman M, Poloso NJ. Androgenetic alopecia: combing the hair follicle signaling pathways for new therapeutic targets and more effective treatment options. Expert Opin Ther Targets. 2019;23:755–71.

    Article  CAS  PubMed  Google Scholar 

  9. Hu XM, Li ZX, Zhang DY, Yang YC, Fu SA, Zhang ZQ, Yang RH, Xiong K. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther. 2021;12:453.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kaufman KD. Androgens and alopecia. Mol Cell Endocrinol. 2002;198:89–95.

    Article  CAS  PubMed  Google Scholar 

  11. Cardoso CO, Tolentino S, Gratieri T, Cunha-Filho M, Lopez RFV, Gelfuso GM. Topical treatment for scarring and non-scarring alopecia: an overview of the current evidence. Clin Cosmet Investig Dermatol. 2021;14:485–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kelly Y, Blanco A, Tosti A. Androgenetic alopecia: an update of treatment options. Drugs. 2016;76:1349–64.

    Article  CAS  PubMed  Google Scholar 

  13. Buhl AE, Waldon DJ, Kawabe TT, Holland JM. Minoxidil stimulates mouse vibrissae follicles in organ culture. J Invest Dermatol. 1989;92:315–20.

    Article  CAS  PubMed  Google Scholar 

  14. Nawaz J, Rasul A, Shah MA, Hussain G, Riaz A, Sarfraz I, Zafar S, Adnan M, Khan AH, Selamoglu Z. Cardamonin: A new player to fight cancer via multiple cancer signaling pathways. Life Sci. 2020;250:117591.

    Article  CAS  PubMed  Google Scholar 

  15. Shrivastava S, Jeengar MK, Thummuri D, Koval A, Katanaev VL, Marepally S, Naidu VGM. Cardamonin, a chalcone, inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/beta-catenin signaling cascades and reversal of epithelial-mesenchymal transition. BioFactors. 2017;43:152–69.

    Article  CAS  PubMed  Google Scholar 

  16. Jia D, Tan Y, Liu H, Ooi S, Li L, Wright K, Bennett S, Addison CL, Wang L. Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo. Oncotarget. 2016;7:771–85.

    Article  PubMed  Google Scholar 

  17. Wang Z, Xu G, Gao Y, Zhan X, Qin N, Fu S, Li R, Niu M, Wang J, Liu Y, Xiao X, Bai Z. Cardamonin from a medicinal herb protects against LPS-induced septic shock by suppressing NLRP3 inflammasome. Acta Pharm Sin B. 2019;9:734–44.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Takahashi A, Yamamoto N, Murakami A. Cardamonin suppresses nitric oxide production via blocking the IFN-gamma/STAT pathway in endotoxin-challenged peritoneal macrophages of ICR mice. Life Sci. 2011;89:337–42.

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto N, Kawabata K, Sawada K, Ueda M, Fukuda I, Kawasaki K, Murakami A, Ashida H. Cardamonin stimulates glucose uptake through translocation of glucose transporter-4 in L6 myotubes. Phytother Res. 2011;25:1218–24.

    Article  CAS  PubMed  Google Scholar 

  20. Wei D, Zhilun Y, Zhengtao W, Bei Y, Yijing R, Xiaoping L. Application of cardamonin to preparing medicine used for preventing and curing baldness. 2018. CN 108272781 A.

    Google Scholar 

  21. Lademann J, Knorr F, Richter H, Blume-Peytavi U, Vogt A, Antoniou C, Sterry W, Patzelt A. Hair follicles–an efficient storage and penetration pathway for topically applied substances. Summary of recent results obtained at the Center of Experimental and Applied Cutaneous Physiology, Charite - Universitatsmediz in Berlin, Germany. Skin Pharmacol Physiol. 2008;21:150–5.

    Article  CAS  PubMed  Google Scholar 

  22. Wilson V, Siram K, Rajendran S, Sankar V. Development and evaluation of finasteride loaded ethosomes for targeting to the pilosebaceous unit. Artif Cells Nanomed Biotechnol. 2018;46:1892–901.

    CAS  PubMed  Google Scholar 

  23. Gupta M, Agrawal U, Vyas SP. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin Drug Deliv. 2012;9:783–804.

    Article  CAS  PubMed  Google Scholar 

  24. Lohani A, Verma A, Joshi H, Yadav N, Karki N. Nanotechnology-based cosmeceuticals. ISRN Dermatol. 2014;2014:843687.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tripathi PK, Gorain B, Choudhury H, Srivastava A, Kesharwani P. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment. Heliyon. 2019;5:e01343.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lopedota A, Denora N, Laquintana V, Cutrignelli A, Lopalco A, Tricarico D, Maqoud F, Curci A, Mastrodonato M, la Forgia F, Fontana S, Franco M. Alginate-based hydrogel containing minoxidil/hydroxypropyl-beta-cyclodextrin inclusion complex for topical alopecia treatment. J Pharm Sci. 2018;107:1046–54.

    Article  CAS  PubMed  Google Scholar 

  27. Ke X, Wang C, Yan F. Filtration by microspore film for determination of the entrapment efficiency of Docetaxel liposomes. Chin J Mod Appl Pharm. 2008;25:314–5.

    CAS  Google Scholar 

  28. Guan Y, Han B, Tian Y, Jia Y, Sun Y. Preparation and quality evaluation of curcumin liposomes. J Chin Med Mater. 2019;42:385–9.

    Google Scholar 

  29. Abd E, Benson HAE, Roberts MS, Grice JE. Minoxidil skin delivery from nanoemulsion formulations containing eucalyptol or oleic acid: enhanced diffusivity and follicular targeting. Pharmaceutics. 2018;10:19.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Angelo T, El-Sayed N, Jurisic M, Koenneke A, Gelfuso GM, Cunha-Filho M, Taveira SF, Lemor R, Schneider M, Gratieri T. Effect of physical stimuli on hair follicle deposition of clobetasol-loaded Lipid Nanocarriers. Sci Rep. 2020;10:176.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Menezes PD, Frank LA, Lima BD, de Carvalho YM, Serafini MR, Quintans-Junior LJ, Pohlmann AR, Guterres SS, Araujo AA. Hesperetin-loaded lipid-core nanocapsules in polyamide: a new textile formulation for topical drug delivery. Int J Nanomedicine. 2017;12:2069–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruan X, Hu J, Lu L, Wang Y, Tang C, Liu F, Gao X, Zhang L, Wu H, Huang X, Wei Q. Poloxamer 407/188 Binary thermosensitive gel as a moxidectin delivery system: in vitro release and in vivo evaluation. Molecules. 2022;27:3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang WY, Cao YX, Zhou X, Wei B. Delivery of folic acid-modified liposomal curcumin for targeted cervical carcinoma therapy. Drug Des Devel Ther. 2019;13:2205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kang M, Lee B, Leal C. Three-dimensional microphase separation and synergistic permeability in stacked lipid-polymer hybrid membranes. Chem Mater. 2017;29:9120–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barbalata CI, Porfire AS, Casian T, Muntean D, Rus I, Tertis M, Cristea C, Pop A, Cherfan J, Loghin F, Tomuta I. The use of the QbD approach to optimize the co-loading of simvastatin and doxorubicin in liposomes for a synergistic anticancer effect. Pharmaceuticals (Basel). 2022;15:1211.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang CX, Cheng Y, Liu DZ, Liu M, Cui H, Zhang BL, Mei QB, Zhou SY. Mitochondria-targeted cyclosporin. A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnology. 2019;17:18.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cho H, Kwon GS. Thermosensitive poly-(d, l-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(d, l-lactide-co-glycolide) hydrogels for multi-drug delivery. J Drug Target. 2014;22:669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao BX, Zhao Y, Huang Y, Luo LM, Song P, Wang X, Chen S, Yu KF, Zhang X, Zhang Q. The efficiency of tumor-specific pH-responsive peptide-modified polymeric micelles containing paclitaxel. Biomaterials. 2012;33:2508–20.

    Article  CAS  PubMed  Google Scholar 

  39. Keswani RK, Lazebnik M, Pack DW. Intracellular trafficking of hybrid gene delivery vectors. J Control Release. 2015;207:120–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Szymanowski F, Hugo AA, Alves P, Simoes PN, Gomez-Zavaglia A, Perez PF. Endocytosis and intracellular traffic of cholesterol-PDMAEMA liposome complexes in human epithelial-like cells. Colloids Surf B Biointerfaces. 2017;156:38–43.

    Article  CAS  PubMed  Google Scholar 

  41. Quan G, Pan X, Wang Z, Wu Q, Li G, Dian L, Chen B, Wu C. Lactosaminated mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery. J Nanobiotechnology. 2015;13:7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu Q, Zhang J, Xia W, Gu H. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles. Nanoscale. 2012;4:3415–21.

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Francia V, Reker-Smit C, Boel G, Salvati A. Limits and challenges in using transport inhibitors to characterize how nano-sized drug carriers enter cells. Nanomedicine (UK). 2019;14:1533–49.

    Article  CAS  Google Scholar 

  44. Gao R, Yu Z, Lv C, Geng X, Ren Y, Ren J, Wang H, Ai F, Zhang B, Yue B, Wang Z, Dou W. Medicinal and edible plant Allium macrostemon Bunge for the treatment of testosterone-induced androgenetic alopecia in mice. J Ethnopharmacol. 2023;315:116657.

    Article  CAS  PubMed  Google Scholar 

  45. Fu H, Li W, Weng Z, Huang Z, Liu J, Mao Q, Ding B. Water extract of cacumen platycladi promotes hair growth through the Akt/GSK3beta/beta-catenin signaling pathway. Front Pharmacol. 2023;14:1038039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim MJ, Seong KY, Kim DS, Jeong JS, Kim SY, Lee S, Yang SY, An BS. Minoxidil-loaded hyaluronic acid dissolving microneedles to alleviate hair loss in an alopecia animal model. Acta Biomater. 2022;143:189–202.

    Article  CAS  PubMed  Google Scholar 

  47. Raber AS, Mittal A, Schafer J, Bakowsky U, Reichrath J, Vogt T, Schaefer UF, Hansen S, Lehr CM. Quantification of nanoparticle uptake into hair follicles in pig ear and human forearm. J Control Release. 2014;179:25–32.

    Article  CAS  PubMed  Google Scholar 

  48. Manian M, Madrasi K, Chaturvedula A, Banga AK. Investigation of the dermal absorption and irritation potential of sertaconazole nitrate anhydrous gel. Pharmaceutics. 2016;8:21.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yu H, He W, Guo X. Comparative study of liposomes and liposomes-in-hydrogel for transdermal absorption of Nimesulide. China Pharmacy. 2022;25:59–63.

    Google Scholar 

  50. Su R, Fan W, Yu Q, Dong X, Qi J, Zhu Q, Zhao W, Wu W, Chen Z, Li Y, Lu Y. Size-dependent penetration of nanoemulsions into epidermis and hair follicles: implications for transdermal delivery and immunization. Oncotarget. 2017;8:38214–26.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shi T, Lv Y, Huang W, Fang Z, Qi J, Chen Z, Zhao W, Wu W, Lu Y. Enhanced transdermal delivery of curcumin nanosuspensions: A mechanistic study based on co-localization of particle and drug signals. Int J Pharm. 2020;588:119737.

    Article  CAS  PubMed  Google Scholar 

  52. Patzelt A, Lademann J. Recent advances in follicular drug delivery of nanoparticles. Expert Opin Drug Deliv. 2020;17:49–60.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou H, Luo D, Chen D, Tan X, Bai X, Liu Z, Yang X, Liu W. Current advances of nanocarrier technology-based active cosmetic ingredients for beauty applications. Clin Cosmet Investig Dermatol. 2021;14:867–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shen YL, Li XQ, Pan RR, Yue W, Zhang LJ, Zhang H. Medicinal plants for the treatment of hair loss and the suggested mechanisms. Curr Pharm Des. 2018;24:3090–100.

    Article  CAS  PubMed  Google Scholar 

  55. Junlatat J, Sripanidkulchai B. Hair growth-promoting effect of Carthamus tinctorius floret extract. Phytother Res. 2014;28:1030–6.

    Article  PubMed  Google Scholar 

  56. Bak SS, Ahn BN, Kim JA, Shin SH, Kim JC, Kim MK, Sung YK, Kim SK. Ecklonia cava promotes hair growth. Clin Exp Dermatol. 2013;38:904–10.

    Article  CAS  PubMed  Google Scholar 

  57. Chung MS, Bae WJ, Choi SW, Lee KW, Jeong HC, Bashraheel F, Jeon SH, Jung JW, Yoon BI, Kwon EB, Oh HA, Hwang SY, Kim SW. An asian traditional herbal complex containing Houttuynia cordata Thunb, Perilla frutescens Var. acuta and green tea stimulates hair growth in mice. BMC Complement Altern Med. 2017;17:515.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fu J, Hsu W. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis. J Invest Dermatol. 2013;133:890–8.

    Article  CAS  PubMed  Google Scholar 

  59. Wang X, Liu Y, He J, Wang J, Chen X, Yang R. Regulation of signaling pathways in hair follicle stem cells. Burns Trauma. 2022;10:tkac022.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zheng L, Rui C, Zhang H, Chen J, Jia X, Xiao Y. Sonic hedgehog signaling in epithelial tissue development. Regen Med Res. 2019;7:3.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lu GQ, Wu ZB, Chu XY, Bi ZG, Fan WX. An investigation of crosstalk between Wnt/beta-catenin and transforming growth factor-beta signaling in androgenetic alopecia. Medicine. 2016;95:e4297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed. 2015;10:975–99.

    Article  CAS  Google Scholar 

  63. Weiying G, Di W. Relationship of solubility characteristics of ginsenoside and LBP with liposome entrapment efficiency. China Pharmacy. 2011;22:3300–2.

    Google Scholar 

  64. Bhowmick M, Sengodan T. Mechanisms, kinetics and mathematical modelling of transdermal permeation- an updated review. Int J Res Dev Pharm Life Sci. 2013;06:1–4.

    Google Scholar 

  65. Gu Y, Bian Q, Zhou Y, Huang Q, Gao J. Hair follicle-targeting drug delivery strategies for the management of hair follicle-associated disorders, Asian. J Pharm Sci. 2022;17:333–52.

    Google Scholar 

  66. Su YS, Fan ZX, Xiao SE, Lin BJ, Miao Y, Hu ZQ, Liu H. Icariin promotes mouse hair follicle growth by increasing insulin-like growth factor 1 expression in dermal papillary cells. Clin Exp Dermatol. 2017;42:287–94.

    Article  PubMed  Google Scholar 

  67. Lee EY, Choi EJ, Kim JA, Hwang YL, Kim CD, Lee MH, Roh SS, Kim YH, Han I, Kang S. Malva verticillata seed extracts upregulate the Wnt pathway in human dermal papilla cells. Int J Cosmet Sci. 2016;38:148–54.

    Article  CAS  PubMed  Google Scholar 

  68. Park S, Shin WS, Ho J. Fructus panax ginseng extract promotes hair regeneration in C57BL/6 mice. J Ethnopharmacol. 2011;138:340–4.

    Article  CAS  PubMed  Google Scholar 

  69. Lee H, Kim NH, Yang H, Bae SK, Heo Y, Choudhary I, Kwon YC, Byun JK, Yim HJ, Noh BS, Heo JD, Kim E, Kang C. The hair growth-promoting effect of rumex japonicus houtt. extract. Evid Based Complement Alternat Med. 2016;2016:1873746.

    PubMed  Google Scholar 

  70. Shin SH, Bak SS, Kim MK, Sung YK, Kim JC. Baicalin, a flavonoid, affects the activity of human dermal papilla cells and promotes anagen induction in mice. Naunyn Schmiedebergs Arch Pharmacol. 2015;388:583–6.

    Article  CAS  PubMed  Google Scholar 

  71. Sakaguchi I, Ishimoto H, Matsuo M, Ikeda N, Minamino M, Kato Y. The water-soluble extract of Illicium anisatum stimulates mouse vibrissae follicles in organ culture. Exp Dermatol. 2004;13:499–504.

    Article  PubMed  Google Scholar 

  72. Jeong GH, Boisvert WA, Xi MZ, Zhang YL, Choi YB, Cho S, Lee S, Choi C, Lee BH. Effect of miscanthus sinensis var. purpurascens flower extract on proliferation and molecular regulation in human dermal papilla cells and stressed C57BL/6 Mice. Chin J Integr Med. 2018;24:591–9.

    Article  PubMed  Google Scholar 

  73. Yang Y, Wang P, Gong Y, Yu Z, Gan Y, Li P, Liu W, Wang X. Curcumin-zinc framework encapsulated microneedle patch for promoting hair growth. Theranostics. 2023;13:3675–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank prof. Wei Wu from the School of Pharmacy, Fudan University, for providing P4 fluorescence probe.

Funding

This work was sponsored by Program for Shanghai High-Level Local University Innovation Team [SZY20220315].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of this manuscript. The original draft of the manuscript, investigation, and formal analysis were performed by Zhenda Liu. The data was collected, processed, interpreted, and drafted by Zehui He and Xinyi Ai. Teng Guo wrote, reviewed, and edited the study. Nianping Feng supervised the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Teng Guo or Nianping Feng.

Ethics declarations

Ethical statement

The study was reviewed and approved by the Experimental Animal Ethics Committee of Shanghai University of Traditional Chinese Medicine with registration numbers PZSHUTCM210723001 and PZSHUTCM210926005.

Consent for publication

All the authors approve the publication.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 371 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., He, Z., Ai, X. et al. Cardamonin-loaded liposomal formulation for improving percutaneous penetration and follicular delivery for androgenetic alopecia. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01519-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01519-8

Keywords

Navigation