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Abstract
Osteoarthritis is a bone and joint condition characterized pathologically by articular cartilage degenerative damage and can 
develop into a devastating and permanently disabling disorder. This investigation aimed to formulate the anti-inflammatory 
drug lornoxicam (LOR) into bile salt–enriched vesicles loaded in an in situ forming hydrogel as a potential local treatment 
of osteoarthritis. This was achieved by formulating LOR-loaded bilosomes that are also loaded with superparamagnetic 
iron oxide nanoparticles (SPIONs) for intra-muscular (IM) administration to improve joint targeting and localization by 
applying an external magnet to the joint. A  31.22 full factorial design was employed to develop the bilosomal dispersions 
and the optimized formula including SPION (LSB) was loaded into a thermosensitive hydrogel. Moreover, in vivo evalua-
tion revealed that the IM administration of LSB combined with the application of an external magnet to the joint reversed 
carrageen-induced suppression in motor activity and osteoprotegerin by significantly reducing the elevations in mitogen-
activated protein kinases, extracellular signal-regulated kinase, and receptor activator of nuclear factor kappa beta/osteopro-
tegerin expressions. In addition, the histopathological evaluation of knee joint tissues showed a remarkable improvement 
in the injured joint tissues. The results proved that the developed LSB could be a promising IM drug delivery system for 
osteoarthritis management.
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Introduction

Osteoarthritis (OA), also denominated as degenerative 
arthritis or hypertrophic arthritis, is a common, inflamma-
tory, degenerative, and debilitant joint disorder. It mostly 
affects moveable joints, such as the hip and knee, devel-
oping structural alterations such as osteophyte creation, 

subchondral bone remodeling, synovial inflammation, and 
progressive articular cartilage deterioration [1, 2]. Car-
tilage is devoid of nutritional paths such as blood vessels 
and nerves, and it is constructed from only one cell type 
with minimal proliferative capacity so it is extremely dif-
ficult to restore itself once destroyed [3]. The most common 
complaints are chronic pain, crepitus, stiffness-restricted 
mobility caused by the eruption, and loss of cartilage elas-
ticity that secures easy movement of the knee joint. These 
symptoms severely impair the patient’s quality of life and 
physical function [4, 5]. In order to assess the severity of 
the illness as well as to evaluate the effectiveness and safety 
of medications that treat osteoarthritis, different biomarkers 
that submit useful diagnostic and prognostic techniques can 
be used. Such biomarkers include cytokines like interleukin 
(IL)-6, IL-15, and IL-1β, tumor necrosis factor-α (TNF-α), 
NF-κβ, and vascular endothelial growth factor [6] in addi-
tion to mitogen-activated protein kinases (MAPKs) and 
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extracellular signal-regulated kinase (ERK). Furthermore, 
it is reported that receptor activator of nuclear factor kappa 
beta (RANKL) plays an important role in bone resorption, 
while osteoprotegerin (OPG) inhibits the reduction of this 
bone resorption [7].

Non-steroidal anti-inflammatory drugs (NSAIDs) are the 
first-choice therapy option for controlling both inflamma-
tion and symptomatic pain since inflammatory mediators 
strongly influence the progress of OA [8–10]. Lornoxicam 
(LOR) belongs to the oxicam family of NSAIDs and is com-
monly indicated in the management of osteoarthritis, owing 
to its extremely potent anti-inflammatory action, pain relief 
effect, prevention of bone devastation in polyarthritic disor-
der, and promotion of cartilage formation [11–13]. LOR is 
classified as BCS category II, as a result of its poor aque-
ous solubility (18 mg/L) along with high permeability [14]. 
Its maximum plasma concentration is accomplished within 
2.5 h, while the short half-life fluctuates between 3 and 5 h 
necessitating frequent dosing [15].

For the management of osteoarthritis, the anti-inflammatory  
drug is usually administered by intra-articular injection. 
Intra-articular administration has the potential to offer local-
ized drug delivery to afflicted tissues, consequently enhanc-
ing local drug bioavailability, and minimizing joint pain and 
inflammation [9, 16, 17]. However, this route is limited by 
rapid decay and clearance of injected therapeutic agents 
resulting in the increased need for frequent injection and also 
increases the risk of complications such as joint infection [2, 
18], besides being a painful injection that needs a profes-
sional for its administration [16, 19]. Therefore, avoiding the 
intra-articular administration and at the same time targeting 
the dug to the joints seem to be a very interesting approach 
to manage OA.

Nanocarriers are recently used to deliver the drug effi-
ciently to target site by various techniques. Among the prom-
ising nanocarriers are bilosomes. Bilosomes are colloidal 
bilayer structures comprised of lipid similar to liposomes 
with integrated bile salts [20, 21]. In drug delivery, bile salts 
are natural permeability enhancers by increasing the solu-
bility of lipophilic molecules and the fluidity of biological 
barriers, which allows bilosomes to pass through biological 
membranes and furnish the bilosomes with an extremely 
flexible and deformable character in contrast to liposomes 
[22, 23]. Such permeability enhancement results in the max-
imization of drug bioavailability. Remarkably, bilosomes 
have been capable of overcoming multiple challenges expe-
rienced by traditional liposomes as leakage of capsulated 
agent on storage and limited stability [24]. Bilosomes func-
tion not only as drug transporters but also as drug localizers 
resulting in increasing the local concentration and activity 
of the therapeutic agent [25].

In order to reduce the frequency of drug administration, 
the nanocarrier dispersion is preferably administered in a 

dosage form of higher viscosity to slow the rate of transpor-
tation of the nanoparticles. In situ forming hydrogels com-
bine the profits of a solution in terms of dosage precision 
and convenience of administration with those of a gel in 
terms of extending the drug retention period [26]. One of 
the most widely used stimuli-sensitive hydrogels is a ther-
mosensitive hydrogel, which may be made by combining 
the hydrogel with medications and does not need the addi-
tion of crosslinking agents, organic solvents, or complicated 
techniques like chemical synthesis [27]. Magnetic targeting 
is one of the interesting techniques to target the nanocarriers 
to site of action. Superparamagnetic iron oxide nanoparticles 
(SPIONs) can enhance the targeting of nanocarrier loaded 
with the drug by guiding it to the site of action with the aid 
of an external magnetic field [28]. SPIONs provide a number 
of benefits, including ease of fabrication, biocompatibility, 
possibility of surface functionalization, and the capacity for 
accurate remote control without leaving a residual magnetic 
impact after the elimination of the external magnetic field 
[29]. Drug-SPION coupling for magnetic drug delivery can 
be accomplished either by binding the drug directly to the 
iron oxide surface or by encasing drugs as well as SPIONs 
within nanocarriers [30].

The present study aimed to target and localize LOR deliv-
ery in the joints after intra-muscular administration in the 
thigh muscle instead of the intra-articular administration of 
the drug for enhancing the patient’s compliance, overcoming 
the drawbacks of intra-articular administration, and facilitat-
ing the administration without the need for a specialist. To 
achieve this, target bilosomes loaded with LOR and SPIONs 
were prepared and characterized. The optimized formula was 
incorporated into a thermosensitive in situ forming hydrogel 
and was tested in vivo by injecting the formula into the thigh 
muscle of rats with carrageenan-induced osteoarthritis com-
bined with the application of an external magnet directed to 
the knee to direct the particles to the joint. The anti-arthritic 
effect of the formula was evaluated in comparison to the free 
unencapsulated drug by several techniques including testing 
the modulation of RANKL/OPG pathway. According to our 
knowledge, this pathway was not tested before for LOR.

Materials and methods

Materials

Lornoxicam (LOR) was kindly gifted by Delta Pharma, 
10th of Ramadan City, Egypt. Sodium taurocholate hydrate 
(STC) was purchased from Sigma-Aldrich, Taufkirchen, 
Germany. Sodium deoxycholate (SDC) and sodium cholate 
hydrate (SC) were purchased from Alfa Aesar, Karlsruhe, 
Germany. Sorbitan monostearate  (Span® 60) was provided 
from Merck Schuchardt OHG, Hohenbrunn, Germany. 
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Hyaluronic acid (HA) was supplied by DSM personal care 
and Beauty (Basel, Switzerland). Synperonic™ PE/F 127 
(PE/F127), cholesterol (CHL), carrageenan, polyoxyeth-
ylene sorbitan monostearate  (Tween® 60), and cellulose 
dialysis membrane (12,000–14,000 molecular weight cut-
off) were purchased from Sigma-Aldrich Corp., St. Louis, 
MO, USA. Other used chemicals were as follows: chlo-
roform, HPLC grade (Fisher Scientific, UK), ammonium 
hydroxide (El Salam for Chemical Industries, Egypt), 
and methanol (Lopa, Mumbai, India), potassium dihy-
drogen phosphate, dipotassium hydrogen phosphate, and 
sodium chloride (El-Gomhoria for Chemistry Industrial, 
Giza, Egypt). Ferrous sulfate tetrahydrate and ferric chlo-
ride hexahydrate were purchased from Alpha Chemika.
com, Mumbai, India. Mitogen-activated protein kinase 
(MAPK), extracellular signal-regulated kinase (ERK1), 
receptor activator of nuclear factor kappa beta (RANKL), 
and osteoprotegerin (OPG) were assessed by Sunlong Bio-
tech Co., Ltd, China, ELISA (enzyme-linked immunosorb-
ent assay) kit.

Methods

Preparation of LOR‑loaded bilosomes

The fabrication of LOR-loaded bilosomes was accom-
plished using the thin film hydration approach by alter-
ing both the type and amount of bile salt and the type 
of surfactant [31]. Briefly, LOR (16 mg), 125 mg of the 
surfactant (Tween 60 or Span 60), and 25 mg of CHL 
were precisely weighed and dissolved in 10 mL of chloro-
form with various amounts of the employed bile salt (SC, 
SDC, or STC) utilizing an ultrasonic bath sonicator for 
10 min [32]. The resultant clear organic solution was then 
transferred to a 250-mL round bottom flask and slowly 
evaporated at 60 °C under reduced pressure using a rotary 
evaporator (rotatory evaporator, Model Heidolph rotavapor 
vv 2000/WB 2000, Germany) for 30 min at 120 rpm until 
a thin, fully dry film was created [33].

Using the same equipment and normal pressure, the 
dry film was then hydrated with 10 mL PBS (pH = 7.4) by 
spinning the flask in a water bath maintained at 60 °C for 
30 min at 150 rpm. Glass beads were utilized in the hydra-
tion stage to maximize the yield of the created nanovesi-
cles [34]. The resulting large vesicle dispersion was then 
smashed up into smaller ones by sonication for 3 min in 
a bath sonicator (Ultra-Sonicator, Model LC 60/H; Elma, 
Germany) at 25 °C [35]. Finally, to ensure full annealing 
of vesicles and partitioning of the drug between the aque-
ous core and bilayer, the resulting fine-tuned dispersion 
was allowed to equilibrate overnight at 4 °C [36].

Evaluation and optimization of the prepared  
LOR‑loaded bilosomes

Determination of LOR entrapment efficiency percent The 
percentage of entrapped LOR was calculated indirectly by 
measuring the unentrapped LOR in the dispersion medium. 
One milliliter of the dispersion medium was centrifuged via 
a cooling centrifuge (refrigerated centrifuge, Model 3 K 
30, Sigma, Germany) at 15,000 rpm for 1 h at 4 °C [33]. 
The supernatant was withdrawn, and the residue was then 
washed with 10 mL PBS and re-centrifuged. The superna-
tant was separated, and then, the unentrapped drug content 
in the supernatant was examined spectrophotometrically 
at λmax 376 nm [37] using Shimadzu UV spectrophotometer 
(Model UV - 1650 P.C., Japan). Each result was the mean of 
three determinations ± standard deviation (SD).

The entrapment efficiency (EE%) was calculated by subtract-
ing the free LOR in the supernatant from the total drug incor-
porated using the following equation:

Determination of particle size and zeta potential of LOR‑loaded 
bilosomes The average particle size and zeta potential of the 
prepared LOR-loaded bilosomes were estimated by dynamic 
light scattering process at 25 ± 2 °C employing a helium–neon 
laser using a Zetasizer (Malvern Instrument Ltd., Worcester-
shire, UK). Before every measurement, the bilosomal disper-
sions were adequately diluted by deionized water to ensure 
that the light scattering amplitude was within the instrument’s 
sensitivity range. The same equipment was used to measure 
zeta potential to detect the particles’ electrophoretic motion 
in an electric field. Analysis time was maintained at 70 s and 
three replicates were taken for every sample. The data are 
displayed as the average value ± SD.

Studying the effect of different formulation variables using 
 31.22 full factorial design Using Design-Expert® software 
version 13 (Sat-Ease, Inc., Minneapolis, MN), a 31.22 full 
factorial design was exploited to assess the impact of vari-
ous parameters in formulating LOR-loaded bilosomes. In 
this design, three independent variables were analyzed: 
X1: the type of surfactant with two levels, X2: the type of 
bile salt with three levels, and X3: the quantity of bile salt 
with two levels. Their influence on entrapment efficiency 
(%, Y1), particle size (nm, Y2), and zeta potential (mV, Y3) 
as a dependent parameter was observed (Table 1). All con-
ceivable combinations for preparing LOR-loaded bilosomes 
are displayed in Table 2. The design illustrates the influence 
of the independent factors individually (X1 or X2 or X3) and 

EE% =
Total amount of LOR − Unentrapped LOR

Total amount of LOR
× 100
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their interaction effect (X1X2, X1X3, X2X3) on the particle 
size, entrapment efficiency percent, and zeta potential.

Optimization of LOR‑loaded bilosomes The desirability 
function in Design-Expert® software was used to choose the 
optimum bilosomes. The goal of the optimization procedure 
was to select a system for LOR-loaded bilosomes with max-
imum entrapment efficiency percent as well as minimum 
particle size. The response with a desirability factor near 
1 was adopted. The recommended LOR-loaded bilosomes 
were developed, evaluated, and compared to the anticipated 
responses to validate the model [37, 38].

Preparation of superparamagnetic iron oxide nanoparticle

The SPION was synthesized using the coprecipitation tech-
nique, as previously described by Abbas et al. [30]. In brief, 
ferrous sulfate tetrahydrate (0.6 g) and ferric chloride hexa-
hydrate (1.17 g) were dissolved independently in 50 mL of 
deionized water within a nitrogen atmosphere in a molar 
ratio of 1:1.75, respectively, by vigorous agitation. Both 
solutions were mixed together at 70 °C for 1 h. The mixture 
was infused with ammonium hydroxide (32%), stirred for 
an additional hour, and then chilled to room temperature. 
The solution’s color transformed from yellow to black, sug-
gesting the development of magnetite nanoparticles. Lastly, 

Table 1  The levels of independent variables and the model summary statistics of  31.22 full factorial design used for the optimization of LOR-
loaded BLs

BS bile salt, Surf surfactant, EE% entrapment efficiency percent, BLs bilosomes, PS particle size, SDC sodium deoxycholate, SC sodium cho-
late, STC sodium taurocholate, ZP zeta potential

Factors (independent 
variables)

Levels of variables

X1: Surf type S60 T60
X2: BS type SDC SC STC
X3: BS amount (mg) 5 15

Responses (dependent 
variables)

R2 Adjusted R2 Predicted R2 Constraints p-value F value Adequate 
precision

Significant factors

Y1: EE% 0.9893 0.9852 0.9753 Maximize  < 0.0001 286.59 49.6 x1, x2, x3

Y2: PS (nm) 0.9711 0.9611 0.9445 Minimize  < 0.0001 96.97 31.3 x1, x2, x3

Y3: ZP (mV) 0.9739 0.9649 0.9500 Maximize 
(absolute 
value)

 < 0.0001 107.96 28.68 x1, x2, x3

Table 2  (A) Experimental runs, 
independent variables, and 
measured responses of the  31.22 
full factorial experimental design 
of LBs and (B) the observed, 
predicted values, and bias 
percent of the optimum LB4

Data are presented as mean ± SD (n= 3)
X1 surf type, X2 BS type, X3 BS amount, Y1 (EE%) entrapment efficiency percent (%), Y2(PS) particle size 
(nm), Y3(ZP) zeta potential (mV), LBsLOR-loaded bilosomes

Formulations X1 X2 X3 Y1 (EE%) Y2 PS (nm) Y4 ZP (mV)

LB1 S60 SC 5 85.79 ± 1.79 312 ± 4 − 41.63 ± 0.70
LB2 S60 SC 15 85.55 ± 0.76 277 ± 10 − 40.73 ± 0.29
LB3 S60 SDC 5 90.01 ± 0.67 381 ± 11 − 44.33 ± 1.08
LB4 S60 SDC 15 87.10 ± 1.67 254 ± 14 − 40.23 ± 0.12
LB5 S60 STC 5 84.79 ± 1.60 297 ± 2 − 40.70 ± 0.78
LB6 S60 STC 15 71.60 ± 1.05 248 ± 5 − 40.07 ± 0.69
LB7 T60 SC 5 56.44 ± 2.26 169 ± 8 − 28.00 ± 0.83
LB8 T60 SC 15 54.99 ± 1.26 140 ± 21 − 24.27 ± 1.14
LB9 T60 SDC 5 65.55 ± 0.71 286 ± 23 − 29.90 ± 1.14
LB10 T60 SDC 15 57.01 ± 0.83 173 ± 14 − 24.63 ± 1.77
LB11 T60 STC 5 53.10 ± 3.07 146 ± 10 − 22.80 ± 3.61
LB12 T60 STC 15 47.95 ± 2.25 120 ± 6.28 − 17.77 ± 1.28
LSB S60 SDC 15 87.24 ± 0.85 323 ± 7.20 − 32.50 ± 1.60
Observed values of LB4 87.1 254 − 40.2
Predicted values of LB4 86.2 254 − 40.6
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the generated nanoparticles were pulled out of the solution 
using a magnet, rinsed five times with hot water, and dried 
overnight in a 50 °C oven (Natural Convection Oven LDO-
080N, Korea).

Preparation of LOR/SPION‑loaded bilosomes

LOR/SPION-loaded bilosomes (LSB) were prepared as 
described above in the preparation of LOR-loaded bilosomes, 
with a slight modification. The dry film of the selected for-
mula was hydrated with an adequate quantity of PBS/aque-
ous ferrofluid, namely700 μL of 10.3 mg/mL of SPION [29] 
mixture to produce a final volume of 10 mL [39, 40].

Characterization of LSB

Evaluation of entrapment efficiency percent, particle size, 
and zeta potential The entrapment efficiency percent of 
LOR in the prepared LSB, the particle size, and zeta poten-
tial were evaluated using the same methods mentioned ear-
lier for the evaluation of LOR-loaded bilosomes.

Evaluation of the magnetism At ambient temperature, LSB’s 
magnetization was measured with a vibrating sample mag-
netometer (VSM) (Lake Shore Model 7410, USA).

Morphological screening of the optimized LOR‑loaded 
bilosome (LB4) and LSB

The optimized LOR-loaded bilosome (LB4) and LSB were 
morphologically investigated using a transmission electron 
microscope (TEM) (Joel JEM 1230, Tokyo, Japan). A drop 
of the dispersion was applied to a carbon-coated copper 
grid that has been mounted on filter paper to soak up any 
surplus, and the grid was then left to dry into a thin film. 
Before this film on the grid dried completely, one drop of 
the freshly prepared stain was applied and allowed to air 
dry. After dryness, the samples were then inspected using 
the TEM. Photographs were captured with the appropriate 
magnification [41].

Lyophilization of the optimized LOR‑loaded bilosomes 
(LB4) and LSB

Before the lyophilization process, the optimized LOR-loaded 
bilosome (LB4) and LSB were refrigerated at − 18 °C for 
24 h and then lyophilized by freezing it at a specified tem-
perature (− 45 °C) and pressure of 0.07 mbar for 24 h to 
transform it into a powder (Labconco™ Cascade Free Zone 
6 Plus™ Freeze-Dry Systems, US Models, USA) [33].

Differential scanning calorimetry (DSC)

DSC calibrated with indium was used to investigate the ther-
mal behavior of the optimized LOR-loaded bilosome (LB4) 
and LSB. Thermal characterization was accomplished on 
optimized lyophilized LOR-loaded bilosomes (LB4) and 
LSB along with individual components: LOR plain powder, 
 Span®60, cholesterol, and SDC using DSC (Shimadzu Cor-
poration, DSC-60 with the thermal analyzer, TA-60 WS ther-
mal analyzer, Shimadzu, Tokyo, Japan). A specified amount 
of each sample was heated over a temperature range of 20 
to 300 °C at a scanning rate of 5 °C/min with inert nitrogen 
inflow (25 mL/min) [32].

Stability study

To assess the impact of storage on the optimized LOR-
loaded bilosome (LB4) and LSB, a sample was main-
tained in a tightly sealed glass vial at (4 °C) for 90 days. 
The entrapment efficiency percent, particle size, and zeta 
potential of the sample were evaluated at the end of the stor-
age duration relative to the first measurements of freshly 
prepared formulations. All measurements were carried out 
in triplicate.  SPSS® software 22.0 (SPSS, Chicago, IL, USA) 
was employed to statistically analyze the findings using the 
paired t-test [25].

Preparation of LSB in situ forming hydrogels

LSB in situ forming hydrogels were prepared by the cold 
method using Synperonic™ PE/F 127 (PE/F 127) as a ther-
mosensitive polymer, in addition to hyaluronic acid (HA). 
Precisely weighed quantities of PE/F 127 and HA were 
dispersed under constant stirring in the cold bilosomal dis-
persion, equilibrated at 4–6 °C using an ice bath, using a 
magnetic stirrer (model MSH-20D, GmbH, Germany) for 
2 h. The dispersion was kept in a refrigerator (4 °C) for at 
least 24 h to ensure the complete removal of air bubbles and 
full dissolution of the components [42].

Evaluation of the developed in situ forming hydrogel

Assessment of the gelation temperature The test tube inver-
sion method was used to determine the gelation temperature 
of the prepared in situ forming hydrogels [43]. Briefly, glass 
vials each containing 2 mL of the investigated systems were 
submerged in a thermostatically monitored water bath. The 
temperature was elevated gradually at a rate of 0.5 °C/min 
from 20 to 40 °C, and at each set point, the test tube was 
turned upside-down at 90°. The gelation temperature was 
defined as the temperature at which no flow was observed 
upon inversion of the vial.
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Assessment of gelation time The gelation time of the 
developed LSB in situ forming hydrogels was also evalu-
ated using the test tube inversion method [42]. A test tube 
containing 2 mL of the chosen LSB in situ forming hydrogel 
was submerged in a thermostatic water bath maintained at 
37 ± 0.5 °C. The gelation time is the time required to trans-
form the formula from a liquid state into a gel with no evi-
dence of flow upon inversion of the test tube.

Assessment of viscosity and rheological property The 
viscosity of the optimized LSB in situ forming hydrogel 
(LSB4c) was investigated utilizing a cone and plate vis-
cometer (Brookfield viscometer; type DVT2, Brookfield 
Engineering Labs., Middleborough, MA). Exactly, 0.5 mL 
of the optimized LSB in situ forming hydrogel (LSB4c) was 
dropped into the cup plate, and the space between the cone 
and plate was adjusted. To investigate the impact of tempera-
ture on the viscosity of in situ forming hydrogel, the CP-52 
(Cone/Spindle 52) revolved at a steady speed of 10 rpm, 
and the apparent viscosity was measured at two different 
temperatures (4 °C and 37 °C). The rheological property 
was investigated by allowing the dispersion to convert into 
a gel at 37 °C. Afterward, the determination of viscosity 
was conducted at various angular velocities (10, 20, 30, 40, 
and 50 rpm) with 10 s elapsed between each pair of subse-
quent speeds, and it was then repeated in descending order 
of velocities. A rheogram (graph between shear rate and the 
corresponding viscosities) was plotted to depict the formula-
tion’s flow pattern [44].

Syringeability study The capability of the developed formu-
lation to flux easily through a 21-G needle-equipped syringe 
was evaluated by filling the syringe with 1 mL of the cold 
optimized LSB in situ forming hydrogel (LSB4c) and gentle 
pressure was applied on the syringe’s injector [45, 46].

In vitro release study

The dissolution profile of LOR was ascertained from LOR 
suspension, the optimized LOR-loaded bilosome (LB4), 
LSB, and the optimized LSB in  situ forming hydrogel 
(LSB4c) through the employment of a shaking water bath 
(shaking water bath, model LSB-O15S Labtech). Briefly, 
a specified quantity of each formula was loaded in a pre-
viously treated dialysis bag by soaking it in dissolution 
media overnight (dialysis tubing cellulose membrane, 
Sigma-Aldrich Co., St. Louis, USA; molecular weight cut-
off 12,000–14,000). The bags were sealed on both ends to 
prevent leakage and then hanged in screw-capped bottles, 
which were packed with 95 mL of phosphate buffer saline 
(PBS) with pH 7.4 to retain a sink condition. The experiment 
was implemented at 50 rpm, and at 37 ± 0.5 °C in a shaking 
water bath. To preserve the sink condition, 4-mL samples 

were drawn at fixed time intervals (0.5, 1, 2, 4, 6, 8, 10, 12, 
24, and 48 h) and immediately replenished with the same 
volume of fresh dissolution media. The LOR content of the 
samples was evaluated spectrophotometrically at 376 nm [29, 
47]. Using  SPSS® software 22.0 (SPSS, Chicago, IL, USA), 
a statistical analysis of the rate of LOR release from various 
systems was carried out using univariate and Tukey’s post 
hoc test. Additionally, in order to evaluate the release mecha-
nism from various systems, the gathered data were fitted into 
several model equations using the DDSolver software (Excel 
Add-in). The highest correlation coefficient (R2) was used to 
determine which model fitted the data the best [48].

In vivo studies

Animal housing and handling Wister albino male rats (140–
150 g) were provided by the Animal House of the National 
Research Centre (Cairo, Egypt). The rats were housed under 
temperature- and light-controlled conditions (24 ± 2  °C 
under a 12-h light/dark cycle) and had free access to stand-
ard food and water. The animal experiments were performed 
in accordance with the guidelines of the Institutional Ani-
mal Ethics Committee (Medical Research Ethics Committee) 
of the NRC (National Research Center), Cairo, Egypt, that 
adhere to ARRIVE guidelines.

Experimental design of the in vivo study The induction of 
arthritis was achieved by intra-articular injection of carra-
geenan (0.02 mL/joint) into the rats’ right knees for 10 days 
[49]. Rats were assigned into five groups, each containing 
eight male rats as follows: group 1: normal control, group 
2: positive control (carrageenan) group, group 3: rats treated 
with intra-muscular injection (thigh muscle) of the in situ 
forming hydrogel containing the free drug (4 mg/kg) [50], 
groups 4 and 5: rats treated with intra-muscular injection of 
in situ forming hydrogel of the optimized LOR-loaded bilo-
some (LB4) and the optimized LSB in situ forming hydrogel 
(LSB4c), respectively. The treatment continued for 10 days, 
concurrent with carrageenan.

Evaluation of the joint diameter Knee joint thickness was 
measured under anesthesia using an electronic digital caliper 
(Mitutoyo, Japan).

Evaluation of the locomotor activity and coordination  
Motor activity was measured by evaluating rat move-
ments using a grid floor activity cage (model no. 7430, 
Ugo Basile, Italy). Rats were acclimatized for 1 h to the 
test room, before placing the animal in the activity cage 
(exposure) [51]. The activity counts of rats were measured 
in three successive sessions, each of 5-min duration, before 
beginning the experiment to habituate the rats to the appara-
tus [52]. Then, the rats were placed in the activity cage and 
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the activity counts were measured over 5-min durations at 
the end of the experiment [53].

Tissue sample preparation At the end of the experimental 
period, rats were anesthetized using pentobarbital sodium 
(40 mg/kg, IP) and then sacrificed by decapitation. A sam-
ple of the knee joint was removed from all rats, and then 
homogenized to obtain 20% homogenate. The homogenate 
was centrifuged for 10 min using a cooling centrifuge at 
3000 rpm; the supernatant was taken for the estimation of 
knee joint biochemical parameters.

Evaluation of MAPK/ERK1 and RANKL/OPG signaling path‑
way Mitogen-activated protein kinase (MAPK), extracel-
lular signal-regulated kinase (ERK1), receptor activator of 
nuclear factor kappa beta (RANKL), and osteoprotegerin 
(OPG) were assessed by Sunlong Biotech Co., Ltd, China, 
ELISA kit. The manufacturer’s instructions of the kit were 
followed for evaluating the results. Samples and standards 
were placed into the wells with immobilized antibodies 
specific for rat MAPK, ERK1, RANKL, and OPG and 
then were incubated. Biotinylated antirat MAPK, ERK1, 
RANKL, and OPG antibodies were added after incubation 
and washing. Any unbound substances were removed by 
washing, and horseradish peroxidase–conjugated strepta-
vidin was placed into the wells, which were washed once 
again. TMB (tetramethyl benzidine) substrate solution 
was added to the wells; color developed proportionally to 
MAPK, ERK1, RANKL, and OPG bound amount. Color 
development was discontinued (stop solution) and the color 
intensity was measured at 450 nm [54].

Statistical evaluation All the values are presented as 
means ± standard deviation of the means (SD). Compari-
sons between diverse groups were carried out using one-way 
analysis of variance (ANOVA) followed by Fisher’s LSD 
test for multiple comparisons (GraphPad Prism software, 
version 5 (Inc., USA)). Statistical difference (p < 0.05) was 
considered significant.

Histopathological examination Twenty-one days post 
carrageenan injection, rats were anesthetized using pento-
barbital sodium anesthesia (40 mg/kg, IP) and sacrificed. 
Autopsy samples were taken from the knee joint of rats in 
different groups and fixed in 10% formol saline for 24 h and 
decalcified by 10% formic acid. Washing was done in dis-
tilled water; then, serial dilutions of alcohol (methyl, ethyl, 
and absolute ethyl) were used for dehydration. Specimens 
were cleared in xylene and embedded in paraffin at 56 °C in 
a hot air oven for 24 h. Paraffin beeswax tissue blocks were 
prepared for sectioning at 4-μm thickness by rotary LEITZ 
microtome. The obtained tissue sections were collected on 
glass slides, deparaffinized, and stained by hematoxylin 

and eosin stain (HE) [55] for examination through the light 
electric microscope.

Results and discussion

Statistical analysis of the experimental design

Design of experiments (DOE) is a useful approach for 
studying the combined impact of formulation variables on 
vesicles’ properties with the least number of runs in which 
several independent variables may be altered to study their 
effect on various responses [56]. The model adopted was 
two-factor interaction (2 FI).

All the investigated variables had high R2 values and sig-
nificant correlations between the predicted and adjusted R2, 
since each of them exhibited a difference of less than 0.2 
(Table 1). The ratio of signal to noise was measured with 
adequate precision to guarantee that this model can be used 
to navigate the design space. A ratio greater than four is pre-
ferred [57] which was observed for all responses as shown 
in Table 1.

Impact of formulation variables on entrapment 
efficiency percent (Y1) of LOR in LOR‑loaded bilosomes

Results indicated that all formulations had a good capac-
ity to trap LOR. The average entrapment efficiency percent 
of LOR in different bilosomes ranged from 47.95 ± 2.25 to 
90 ± 0.67% as shown in Table 2. The impacts of surfactant 
type (X1), bile salt type (X2), and bile salt quantity (X3) on 
the entrapment efficiency percent of LOR-loaded bilosomes 
are graphically represented in Fig. 1 as response 3-D plots. 
The level of significance of each investigated parameter’s 
impact on the entrapment efficiency percent was assessed 
using an ANOVA test, which declared that each tested 
parameter significantly affected the entrapment efficiency 
percent of LOR in the manufactured vesicles (p < 0.0001 
for the three variables).

The entrapment efficiency percent of LOR in the pre-
pared LOR-loaded bilosomes was significantly influenced 
by the type of surfactant involved in their fabrication. 
LOR-loaded bilosomes containing Span 60 displayed a 
higher entrapment efficiency percent than those contain-
ing Tween 60. This can be ascribed to two reasons. The 
first reason is the surfactant transition temperature (TC). 
The phase transition temperature (TC) of Span 60 (solid 
at room temperature) is greater than that of Tween 60 
(viscous liquid or semi-gel at room temperature) result-
ing in higher entrapment within LOR-loaded bilosomes 
containing Span 60 [58–60]. Previous studies reported that 
the higher the TC of the surfactant, the better its capacity 
to produce a less permeable bilayer and a more ordered 
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gel structure, which may result in higher drug entrapment 
efficiency percent values, and vice versa [59, 61, 62]. The 
second reason is the hydrophilic-lipophilic balance (HLB) 
value. Span 60 has a lower HLB (HLB = 4.7) than Tween 
60 (HLB = 14.9), resulting in more hydrophobicity and a 
higher ability to entrap a hydrophobic drug like LOR [63].

The type of bile salt (X2) also has a significant impact 
on the entrapment efficiency percent of LOR in the pre-
pared LOR-loaded bilosomes (p < 0.0001). Among the 
tested bile salts, LOR-loaded bilosomes containing SDC 
exhibited the highest entrapment efficiency percent in 
comparison to those created with other bile salts (SC and 
STC). This may be attributed to the degree of lipophilicity 
of the tested bile salts. The order of effective intercalation 
of the hydrophobic drug, LOR, in the bilayer hydrophobic 
zone with consequent higher entrapment efficiency per-
cent increased as the hydrophobicity of bile salt increased 
(i.e., HLB value decline) which serves as a barrier delay-
ing the drug leaking out from vesicles [25, 64]. The results 
show that SD has the highest lipophilicity (HLB = 16) [65] 
in comparison to SC and STC (HLB = 18 [66] and 22.1 
[25], respectively).

ANOVA results also revealed that increasing the bile 
salt quantity (X2) (from 5 to 15 mg) significantly decreased 
LOR entrapment efficiency percent within the prepared 
LOR-loaded bilosomes. An increment in the bile salt content 
would result in the development of mixed micelles within 
the dispersion medium, which enhances drug miscibility in 
the dispersion medium and minimizes its entrapment within 
the bilosomes [67]. Furthermore, elevated concentrations of 
bile salts have a fluidizing impact on the vesicle’s lipid bilay-
ers, resulting in the loss of the trapped drug [22].

Impact of formulation variables on particle size (Y2) 
of LOR‑loaded bilosomes

All the prepared vesicles were in the nanoscale range, with 
their particle size ranging from 120 ± 6 to 381 ± 11 nm 
(Table 2). Response 3-D graphs in Fig. 2 depict the impact 
of the surfactant type (X1), type of bile salt (X2), and quan-
tity of bile salt (X3) on the particle size of LOR-loaded 
bilosomes. All tested factors significantly affect the particle 
size of the manufactured vesicles (p < 0.0001 for the three 
variables). The particle size findings are in agreement with 
the entrapment efficiency percent.

Concerning the surfactant type, results showed that Span 
60–containing LOR-loaded bilosomes showed higher parti-
cle size compared to those containing Tween 60. This result 
correlates well with the results of entrapment efficiency 
percent, where Span 60–containing LOR-loaded bilosomes 
showed a higher entrapment efficiency percent compared to 
those containing Tween 60. Moreover, the HLB value of the 
surfactant plays an important role in the particle size of the 
prepared LOR-loaded bilosomes, where an inverse relation 
between the particle size and HLB is expected. LOR-loaded 
bilosomes containing a surfactant with a higher HLB value 
will have higher surface energy and thus reduced particle 
size. Tween 60 has a higher HLB value (14.9) than Span 60  
(4.7). Therefore, the particle size of Tween 60–containing  
bilosomes is expected to be smaller than that of Span 
60–containing ones [68].

Concerning the type of bile salt, results revealed that 
LOR-loaded bilosomes prepared using STC had the small-
est particle size followed by SC and finally SDC. This 
could be attributed to the amount of drug entrapped within 

Fig. 1  Response 3-D plots for the effect of A surf type (X1), B BS type (X2), and C BS amount (X3) on EE% of LOR-loaded BLs. Abbreviations: 
BS, bile salt; Surf, surfactant; EE%, entrapment efficiency percent; LOR; lornoxicam; and BLs, bilosomes
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the bilosomes, where the entrapment efficiency percent 
increases in the same manner.

Regarding the amount of bile salt, results revealed a sig-
nificant reduction in particle size upon increasing the amount 
of bile salt (from 5 to 15 mg). This could be attributed to the 
fact that bile salts are anionic surfactants, which reduce sur-
face tension and raise vesicle flexibility, leading to the crea-
tion of smaller vesicles [69]. Another suppositional reason 
is that mixed micelles, which have a lower particle size than 
vesicles, develop when the bile salt concentration rises [70].

Impact of formulation variables on zeta potential 
(Y3) of LOR‑loaded bilosomes

The system is stabilized against agglomeration by the magni-
tude of zeta potential, which reflects the strength of electro-
static repulsion between particles with identical charges in dis-
persion [71]. All the prepared LOR-loaded bilosomes obtained 
negative zeta potential values which ranged from −17.8 ± 1.2 

to −44.3 ± 1.08 mV (Table 2). These results confirm that LOR-
loaded bilosomes have enough charges to prevent them from 
aggregating and fusing. Since the zeta potential values for all 
the prepared LOR-loaded bilosomes were negative, the abso-
lute values (without the negative sign) will be utilized in the 
discussion to avoid misunderstanding. The influence of for-
mulation variables is demonstrated as response 3-D plots in 
Fig. 3. In accordance with the studied design, zeta potential 
is significantly affected by the analyzed factors X1, X2, and X3 
(p < 0.001).

The type of surfactant (X1) significantly impacted the zeta 
potential of the prepared bilosomes. Results revealed that 
Span 60–containing bilosomes demonstrated greater zeta 
potential values, which may be attributed to its higher LOR 
entrapment efficiency values compared to those of Tween 
60–containing ones. LOR is an acidic drug that ionizes and 
acquires a negative charge at neutral or alkaline pH. Conse-
quently, its high concentration in the vesicles contributes to 
the rise in the charge density of bilosomes [72].

Fig. 2  Response 3-D plots for the effect of A surf type (X1), B BS type (X2), and C BS amount (X3) on PS of LOR-loaded BLs. Abbreviations: 
BS, bile salt; Surf, surfactant; PS, particle size; LOR, lornoxicam; and BLs, bilosomes

Fig. 3  Response 3-D plots for the effect of A surf type (X1), B BS type  (X2), and C BS amount (X3) on ZP of LOR-loaded BLs. Abbreviations: 
BS, bile salt; Surf, surfactant; ZP, zeta potential; and BLs, bilosomes
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The type of bile salt (X2) also had a significant impact 
on the zeta potential of the prepared LOR-loaded bilosomes 
and correlates well with the results of entrapment efficiency 
percent. LOR-loaded bilosomes containing SDC as a bile 
salt showed a greater vesicular bilayer charge when com-
pared to SC and STC. This might be clarified by the higher 
lipophobic feature of STC (HLB = 22.1) followed by SC 
(HLB = 18) as compared with SDC (HLB = 16) which can 
result in additional insulating the negative charge by the 
residence on the vesicular bilayer surface contributing to the 
disguising of its charge. As a result, the zeta potential value 
has drastically decreased [67]. The zeta potential of SC-
containing bilosomes is lower than that of SDC-containing 
bilosomes which may be explained by the extra hydroxyl 
group in SC’s structure compared to SDC’s structure. The 
observed zeta potential might be impacted by the steric hin-
drance that could arise from this hydroxyl group [73]. STC 
gives the least value of zeta potential because of the signifi-
cant acidity of the taurine group. High STC ionization will 
discharge more sodium ions into the solution, increasing the 
electrolyte concentration and, as a result, compressing the 
bilayer because of the accumulation of counterions which, 
in turn, mitigates the surface charges, resulting in lower zeta 
potential values compared to SC and SDC [63, 74].

Concerning the amount of bile salt (X3), the findings 
showed a significant reduction in the values of zeta potential 
upon increasing the bile salt amount. This might be illus-
trated by the fact that exceeding a particular threshold for 
bile salt causes the electrostatic double layer to collapse, 
leading to a considerable decline in zeta potential [38].

LOR‑loaded bilosome optimization

To figure out the level of each independent variable needed for 
optimization, the optimization process has been carried out for 
X1 (type of surfactant), X2 (type of bile salt), and X3 (concentra-
tion of bile salt) using the following target ranges: maximum 
entrapment efficiency percent (Y1), minimum particle size (Y2), 
and maximum zeta potential as an absolute value (Y3).

The optimal values of the variables were obtained graphi-
cally and numerically utilizing the Design-Expert software. 
The system obeying these criteria was the LOR-loaded 
bilosomes, containing Span 60 and SDC (15 mg), with a 
desirability value of 0.722. Consequently, this optimized 
system (LB4) has been selected for additional studies.

Characterization of LSB

Particle size, zeta potential, and entrapment efficiency percent

The synthesized SPIONs had a small particle size (25.0 ±  
5.0 nm) and a positive surface charge with a zeta poten-
tial of 24.8 ± 0.96 mV. Loading the optimized LOR-loaded 

bilosome (LB4) with SPION resulted in a significant increase 
in the particle size and a decrease in zeta potential with no 
significant effect on LOR entrapment efficiency percent in 
bilosomes. The elevation of particle size may be attributed to 
iron oxide nanoparticle incorporation, whereas the reduction 
in the absolute value of zeta potential is most likely caused 
by the positively charged iron oxide nanoparticles sticking to 
the bilosomes’ surface, which may have partially reduced the 
vesicles’ negative charge [75].

Magnetic properties

The saturation magnetization of SPIONs and LSB was 
25.539 emu/g and 7.1805 emu/g, respectively, according to 
the plots of hysteresis loops (Fig. 4). All of the samples’ 
magnetic hysteresis curves intersected the origin, indicating 
that coercivity and remanent magnetization were both zero. 
This outcome demonstrated that both prepared SPIONs and 
LSB have superparamagnetic nature. Even though LSB’s 
saturation magnetization was smaller than SPIONs’, it still 
demonstrated significant magnetic responsiveness to outside 
magnetic fields. The causes of this are the entrapment of 
SPIONs within the bilosomes [76, 77].

The fact that these entrapped nanoparticles can still be influ-
enced by an external magnetic field makes it possible to target 
specific sites by applying an external magnetic field [78].

Morphological screening

The TEM micrographs of the optimized LOR-loaded bilo-
some (LB4) and LSB are demonstrated in Fig. 5. The for-
mulated bilosomes were spherical, unilamellar, uniform 
vesicles with no clustering. Moreover, the mean diameter 
of vesicles recorded by TEM was in agreement with the one 
obtained by the Zetasizer.

Fig. 4  Hysteresis loop of the prepared (I; SPIONs) and (FI; LSB). 
Abbreviations: LSB, LOR SPION-loaded bilosome; SPION; super-
paramagnetic iron oxide nanoparticle; and LOR, lornoxicam
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The LSB nanoparticles demonstrated a capsule-like struc-
ture with peripheral localization to indicate that the SPIONs 
were successfully integrated into the bilosomes [79].

Differential scanning calorimetry

Figure 6 shows the thermograms of the pure LOR,  Span® 60, 
cholesterol, SPION, the optimized lyophilized LOR-loaded 
bilosome (LB4), and lyophilized LSB. The DSC scan of 
the pure LOR showed a sharp strong exothermic peak at 
220.32 °C, which is in the range of lornoxicam’s melting 
point (220–230 °C), and the sharp exothermic peak con-
firms the drug’s crystallinity [80]. According to DSC find-
ings, cholesterol, Span 60, SDC, and SPIONs had crystal 
structures with sharp endothermic peaks at 148.09, 59.31, 
118.45, and 157.5 °C, respectively, corresponding to the 
melting points of each material [81–84]. The DSC of Span 
60 showed two distinct peaks: the first one at 59.32 °C rep-
resenting the melting point in its crystal structure and the 
second one at 129.62 °C which displayed the flash point.

The DSC thermogram of the bilosomal system (opti-
mized LOR-loaded bilosome (LB4) and LSB) revealed the 
disappearance of the peaks for all system’s components, 
which indicates the entrapment of each of the drug and 
SPION within bilosomes and their change to an amor-
phous form. The absence of the drug’s exothermic peak 
might be attributed to the interaction with the vesicle’s 

surfactant bilayers, according to an earlier study [72]. The 
SDC peak’s disappearance indicates that it has been fluid-
ized in the surfactant’s lipid bilayer and that vesicles have 
developed. Peaks of both  Span® 60 and CHL vanished, 
indicating that CHL, SDC, and surfactant interact (drug 
solubilization in the dispersion of bilosome and its transi-
tion in an amorphous state) [72].

Stability study

During storage, the optimized LOR-loaded bilosome (LB4) 
and LSB were observed to maintain their appearance with 

Fig. 5  TEM photomicrograph 
of selected the vesicle (LB4). 
The inset shows the TEM image 
of (LSB). Abbreviations: LB4, 
the optimized LOR-loaded bilo-
some; LSB, LOR SPION-loaded 
bilosome; and LOR, lornoxicam

Fig. 6  DSC thermograms of lornoxicam, cholesterol, Span 60, sodium 
deoxycholate, the optimized LOR-loaded bilosome (LB4), and LOR 
SPION-loaded bilosome (LSB)
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no signs of phase separation or aggregation. Furthermore, 
there was a nonsignificant reduction in the values of entrap-
ment efficiency percent and zeta potential for both systems, 
and a nonsignificant rise in the values of particle size for the 
optimized LOR-loaded bilosome (LB4), and a nonsignifi-
cant reduction in the values of particle size of LSB which 
may be attributed to the modification of mean intensity 
distribution of the size (the particle’s intensity weighted 
distribution is used to compute the z-average) [85]. The 
responses of both stored and freshly prepared systems 
showed no significant changes (p > 0.05) and are presented 
in Table 3. These results verified that both systems were 
stable under the predetermined conditions of storage with 
no notable alterations.

Preparation of LSB in situ forming hydrogels

In the current study, the cold method rather than the hot 
method was conducted for the preparation of in situ forming 
hydrogel because of the better solubility of the polymer in 
the cold system due to the formation of hydrogen linkage 
at low temperature which results in the formation of a clear 
solution [86, 87].

Synperonic™ PE/F 127 was chosen based on its thermo-
gelling behavior as it exists as a liquid at low temperatures 
but transforms into a gel at high temperatures [26]. Differ-
ent concentrations of PE/F 127 were evaluated (Table 4) to 
find the formulation that retains its solution nature at room 
temperature to be readily injected and turns into a gel after 
injection in the body. As presented in Table 4, formula-
tions with PE/F 127 concentration ranging from 16 to 25% 
had the ability to form a gel but formula with 15% PE/F 
127 could not form a gel. This finding might be because 
PE/F 127 has a relatively limited concentration range that 
is appropriate for application, around 16–20% (w/v). The 
preparation cannot form a gel and retain its liquid state 
regardless of the temperature (both physiological (37 °C) 
and non-physiological (4 °C)) when the concentration is 
less than 16% (w/v). When exceeding 20% (w/v), it was 
converted into a gel at ambient temperature and exhibited 
no free-flowing features at 4 °C, resulting in inconvenient 
usage and storage [88, 89].

Characterization of LSB in situ forming hydrogels

Selection of the optimized in situ forming hydrogel based 
on the gelation temperature

An ideal thermosensitive system should have a sol-gel tran-
sition temperature above ambient temperature, ideally 30 °C, 
and will gel upon injection at (37 °C) [89, 90]. As presented 
in Table 4, LSB1 and LSB2 showed a sol-gel temperature 
of 22 ± 0.4 and 28 ± 0.22 °C, respectively, and therefore are 
not suitable for in situ forming hydro gelling utilization. On 
the other side, other systems exhibited acceptable gelation 
temperatures in the range of 32–39 °C. It was noticed that 
the increase in the concentration of PE/F 127 from 16% w/v 
(LSB4) to 25% w/v (LSB1) was accompanied by a decrease 
in the gelation temperature. PE/F 127 is an amphiphilic 
invertible thermogelling triblock copolymer composed of a 
lipophilic polypropylene oxide (PPO) monomeric unit sand-
wiched between two hydrophilic polyethylene oxide (PEO) 
monomeric units; both participate in the micellar agglom-
eration phenomenon [91]. Amphiphilic triblock copolymer 
molecules can form tiny micellar subunits in aqueous liq-
uids. Above a certain concentration, critical micelle concen-
tration that is known as the concentration of monomers at 

Table 3  Effect of storage on 
the physical properties of LB4 
and LSB

Data are presented as mean ± SD (n = 3)
EE%  entrapment efficiency percent,  PS  particle size,  ZP  zeta potential,  LB4  the optimized LOR-loaded 
bilosome, LSB selected bilosome loaded with SPION

Parameter LB4 fresh LB4 after 90 days at 4 ℃ LSB fresh LSB after 90 days at 
4 ℃

EE% 87.10 ± 1.67 84.12 ± 0.12 87.24 ± 0.85 86.83 ± 0.15
PS (nm) 254 ± 14 259 ± 16 323 ± 7.0 317 ± 3.0
ZP (mV) -40.23 ± 0.13 -36.87 ± 0.21 -32.47 ± 1.60 -30.63 ± 0.13

Table 4  Composition and gelation characteristics of in situ hydrogel 
formulations

Data are presented as mean ± SD (n = 3)
LSB  LOR/SPION-loaded bilosome,  PE/F 127  Synperonic™ PE/F 
127, HA hyaluronic acid

Formulations PE/F127
(%w/v)

HA
(%w/v)

Gelation Gelation 
temperature
(Tsol/gel) (°C)

LSB1 25 0.20 yes 22 ± 0.40
LSB2 18 0.20 yes 28 ± 0.22
LSB3 17 0.20 yes 32 ± 0.37
LSB4a 16 0.20 yes 34 ± 0.45
LSB5 15 0.20 no -
LSB4b 16 0.15 yes 36 ± 0.36
LSB4c 16 0.10 yes 37 ± 0.29
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which micelles developed, and temperature, critical micel-
lization temperature (CMT) that is known as the tempera-
ture below which amphiphile is present as unimer and uni-
mers and lumps coexist above that, the polymer molecules 
assemble to form a large micellar crosslinked network [92]. 
Below CMT, both propylene and ethylene oxide units are 
hydrated, and propylene oxide is slightly soluble in aqueous 
solutions. Moreover, exceeding CMT, the PPO blocks turn 
into dehydrated form and therefore less soluble than PEO 
blocks, which causes hydrophobic interactions between the 
PPOs and the development of spherical micelles with an 
inner dehydrated PPO core and an external tumid hydrous 
PEO shell [43]. Such micelles are challenging to disperse 
individually in the solution; rather, they interact with one 
another and entangle to create a three-dimensional network 
structure [93].

Different concentrations of HA solution were applied 
to the thermosensitive in situ forming hydrogelling sys-
tem to examine HA’s impact on the PE/F 127 system. It 
is worthy to note that the sol-gel transition temperature 
has been shifted to higher temperatures (from 34 to 37 °C) 
with decreasing the concentration of HA from 0.2 to 0.1 
w/v% [94]. This is probably because the addition of high-
molecular-weight HA could improve the dense packing of 
pluronic micelles at temperature of gelation above the lower 
critical solution temperature through lipophilic interaction 
among the CH3CO-branch on HA and the CH3-branch on 
PE/F127 resulting in the crosslinking among micelles and 
the reduction of the critical gelation temperature value of 
the thermosensitive hydrogel [95]. Generally, the tempera-
ture recommended for the creation of an in situ forming 
hydrogel system for injectable application is 37 °C, so 
the LSB in situ forming hydrogel (16 w/v% Synperonic™ 
PE/F 127 and 0.1 w/v% HA) with a gelation temperature 
of 37 ± 0.29 °C was selected as an ideal in situ forming 
hydrogel for the delivery of LOR.

Evaluation of the optimized in situ forming hydrogel formula

Assessment of gelation time In the current study, it was 
observed that the optimized LSB in situ forming hydrogel 
(LSB4c) recorded a short gelation time of about 38 ± 1.6 s, 
which is suitable for injection.

Assessment of viscosity and rheological properties At 
10 rpm, the viscosity of the optimized LSB in situ forming 
hydrogel (LSB4c) at 4 °C and 37 °C was 79.5 ± 7.33 cps and 
325.3 ± 11.03 cps, respectively. The previous results indicate 
that the viscosity increased about four times when the tem-
perature was shifted from 4 to 37 °C due to gelation.

According to the rheological analysis of the formula, the 
optimized LSB in situ forming hydrogel (LSB4c) displayed 
shear-thinning pseudoplastic flow, as illustrated in Fig. 7. It 
is worthy to note that the pseudoplastic flow of hydrogel is 
ideal for injectable preparations since a high shear rate dur-
ing injection will reduce the hydrogel’s viscosity to make 
it easier to inject, while the low shear rate will cause the 
hydrogel to keep its regular structure [96]. This flow pattern 
might be explained by the entanglement of the polymeric 
molecules that comprise the optimized formula during relax-
ation. Upon exposure to shear stress, the molecules detangle 
and align themselves with the flow direction resulting in 
the reduction of flow resistance along with the release of 
part of the trapped solvent. That accounts for the decreased 
viscosity [96, 97].

Syringeability study The optimized LSB in situ forming 
hydrogel (LSB4c) was found to be syringeable as it was 
smoothly injected through the 21-G needle at a cold tempera-
ture, assuring the convenience of administration during usage.

In vitro release study

Figure 8 demonstrates the LOR release from the optimized 
LOR-loaded bilosome (LB4), LSB, the optimized LSB 
in situ forming hydrogel (LSB4c), and the free drug suspen-
sion. From the figure, it could be noticed that the free drug 
suspension revealed a 100% drug release within 6 h while all 
other formulations showed an obvious sustainment in drug 
release with the demonstration of a biphasic release pattern. 

Fig. 7  Rheological characterization of LSB4c (a plot of viscosity 
and shear rate). The measurements were performed at 37 ± 2  °C, at 
varying shear speeds (10–50 rpm) with 10 s between every two con-
secutive speeds. Abbreviations: LSB4c, the optimized LOR SPION-
loaded bilosome in situ hydrogel system
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First, there was a burst release in the first 6 h, which may be 
attributed to the free drug in the dispersion medium and the 
loosely attached drug molecules to the bilosomal surface 
[86]. The first phase was followed by a steady release where 
92.87 ± 1.51%, 81.14 ± 2.82%, and 61.97 ± 2.49% of LOR 
were liberated from the optimized LOR-loaded bilosome 
(LB4), LSB, and the optimized LSB in situ forming hydro-
gel (LSB4c) after 48 h, respectively. The ability of bilosomes 
to function as drug reservoirs and release the encapsulating 
drugs in a sustained and controlled way is thought to be 
the cause of the observed sustained release pattern from the 
bilosomal dispersions [87]. The slower release of the drug 
from LSB in contrast to the optimized LOR-loaded bilosome 
(LB4) (p = 0.031) is likely due to the increased particle size 
of the former which in turn decreased the exposed surface 
area, thereby decelerating the drug release rate [29].

Loading LSB into an in situ forming hydrogel system 
resulted in prolonged release of LOR compared with LSB 
alone (p = 0.0001). This is because the in situ forming hydro-
gel system offers an additional obstacle that greatly hinders 
the diffusion of LOR to the external dissolution medium [98].

The analysis of LOR release kinetics from the developed 
nanoparticles was done using various kinetic models, namely 
first order, zero order, Hixson-Crowell, Higuchi, and Kors-
meyer-Peppas. The Korsmeyer-Peppas model was chosen as 
the best kinetic release model because it showed the highest 
R2 value [99]. In the Korsmeyer-Peppas model, the exponent 
of release n was estimated, indicating the release mechanism 
of the drug. If n is equal to 0.45, then the release of the drug 
complies case I or Fickian diffusion mechanism, n greater than 
0.45 but below 0.89 indicates anomalous behavior or non-Fick-
ian diffusion, n equal to 0.89 indicates case II transport, and 
n greater than 0.89 indicates super case II transport [48, 100]. 
The values of n for all generated formulations were observed 

to be ≤ 0.45, pointing out that the drug release mechanism is 
Fickian diffusion (unpublished data).

In vivo studies

In this study, the IM injection of the free LOR in situ form-
ing hydrogel, the optimized LOR-loaded bilosome (LB4) 
in situ forming hydrogel, or the optimized LSB in situ form-
ing hydrogels (LSB4c) was tested in rats with carrageenan-
induced joint inflammation. Regarding the group treated 
with the optimized LSB in situ forming hydrogel (LSB4c), 
an external magnet was directed toward the knee to attract 
the nanoparticles to its site of action with the aim of improv-
ing its effectiveness.

Effect on joint diameter

Results revealed that the diameter of the right knee joints was 
significantly elevated by 52% in osteoarthritic rats compared 
to the normal control. Treatment of the rat knee joint by IM 
injection of the free LOR in situ forming hydrogel (GP3), 
the optimized LOR-loaded bilosome (LB4) in situ form-
ing hydrogel (GP4), or the optimized LSB in situ forming 
hydrogel (LSB4c) (GP5) succeeded in improving the inflam-
mation caused by carrageenan. Results confirmed that the 
right knee joint diameter in rats that received treatment with 
the free LOR, the optimized LOR-loaded bilosome (LB4), 
and the optimized LSB in situ forming hydrogel (LSB4c) 
decreased by 12%, 16%, and 31%, respectively, as compared 
to the positive control group that received carrageenan with 
no treatment (GP2). In addition, treatment with the optimized 
LSB in situ forming hydrogel (LSB4c) reduced the rat joint 
diameter by 22% and 18% as compared to free drug and the 
optimized LOR-loaded bilosome (LB4), respectively, and 
returned it to its normal value (Fig. 9A; Table 5).

Effect on locomotor activity

Osteoarthritis arises from an imbalance between the chon-
drocyte synthesis and degeneration processes inducing loss 
in cartilaginous tissue, normal joint function, and locomo-
tor activity [101]. Arthritis induced by carrageenan reduced 
locomotor activity by 69%, as compared to normal values 
(negative control). Treatment with free drug, the optimized 
LOR-loaded bilosome (LB4), and the optimized LSB in situ 
forming hydrogel (LSB4c) elevated locomotor activity by 
56%, 89%, and 110%, respectively, as compared to the car-
rageenan group. In addition, treatment with the optimized 
LSB in situ forming hydrogel (LSB4c) elevated locomo-
tor activity by 35% and 11% as compared to free drug and 
the optimized LOR-loaded bilosome (LB4), respectively 
(Fig. 9B; Table 5).

Fig. 8  LOR release from LB4, LSB, LSB4c, and the free drug sus-
pension. Abbreviations: LOR, lornoxicam; LB4, the optimized LOR-
loaded bilosome, LSB, LOR SPION-loaded bilosome; and LSB4c, 
the optimized LOR SPION-loaded bilosome in situ hydrogel system
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Effect on MAPK/ERK1 signaling pathway

Carrageenan induced inflammation and arthritis in rats 
through MAPKs/ERK signaling pathway [102]. MAPKs 
and ERK inflammatory kinases provoke inflammatory and 
neuropathic pain in the dorsal root ganglion and spinal cord. 
In addition, ERK enhances neutrophil infiltration into the 

synovium in arthritis [103, 104]. In the current study, carra-
geenan injection induced an elevation in MAPK/ERK1 sign-
aling pathway by 58% and 146%, respectively, as compared 
to normal values. Treatment with free drug, the optimized 
LOR-loaded bilosome (LB4), and the optimized LSB in situ 
forming hydrogel (LSB4c) reduced MAPK joint content by 
9%, 23%, and 33% and ERK1 content by 34%, 45%, and 

Fig. 9  A Effect on joint diam-
eter, B locomotor activity, C 
MAPK, D ERK1, E RANKL, 
and F OPG. Data were 
expressed as mean ± SD (n = 8). 
Statistical analysis was carried 
out by one-way ANOVA fol-
lowed by Fisher’s LSD test for 
multiple comparisons. Different 
letters are significantly different 
at p < 0.05

Table 5  Effect of different formulas on joint diameter, locomotor activity, and various biomarkers

Data are presented as mean ± SD (n = 3)
GP1 normal control, carrageenan group, Gp2 positive control, Gp3  rats injected IM with in situ hydrogel of free drug, GP4  rats injected IM 
with in situ hydrogel of the optimized LOR-loaded bilosome (LB4), GP5 the optimized LSB in situ forming hydrogel (LSB4c), MAPK mitogen-
activated protein kinase, ERK1 extracellular signal-regulated kinase, RANKL  receptor activator of nuclear factor kappa beta, OPG osteoprote-
gerin. Positive sign (+) indicates improvement while a negative sign (−) indicates a reduction upon comparing GP2 versus GP1 and GP3, GP4, 
and GP5 versus GP2

GP1 GP2 GP3 GP4 GP5

Joint diameter (mm) 6.11 ± 0.11 9.26 ± 0.54 8.11 ± 0.05 7.76 ± 0.14 6.36 ± 0.15
Locomotor activity (counts/5 min) 193.0 ± 5.0 59.6 ± 3.0 92.8 ± 6.0 112.6 ± 2.0 125.0 ± 3.0
MAPK (ng/mL) 135 ± 5 213 ± 3 193 ± 3 164 ± 9 143 ± 2
ERK1 (pg/mL) 1.61 ± 0.40 3.96 ± 0.12 2.62 ± 0.01 2.17 ± 0.07 1.75 ± 0.11
RANKL (pg/mL) 48.81 ± 5.13 87.18 ± 5.95 76.80 ± 4.55 74.25 ± 6.15 56.92 ± 1.59
OPG (pg/mL) 1134 ± 139 561 ± 84 552 ± 71 794 ± 23 1176 ± 46

% Reduction/improvement or elevation

    Joint diameter (mm) − + 52 − 12 − 16 − 31
     Locomotor activity 

(counts/5 min)
− − 69 + 56 + 89 + 110

     MAPK (ng/mL) − + 58 − 9 − 23 − 33
     ERK1 (pg/mL) − + 146 − 34 − 45 − 56
     RANKL (pg/mL) − + 79 − 12 − 15 − 35
     OPG (pg/mL) − − 51 + 2 + 42 + 110
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56%, respectively, as compared to the carrageenan group. 
In addition, treatment with the optimized LSB in situ form-
ing hydrogel (LSB4c) reduced MAPK and ERK1 levels by 
26% and 33%, respectively, compared to the free drug, and 
by 13% and 20%, respectively, compared to the optimized 
LOR-loaded bilosome (LB4) suggesting that the optimized 
LSB in situ forming hydrogel (LSB4c) has a superior sup-
pressor effect on MAPK/ERK1 signaling pathway as it 
returned ERK1 to its normal values (Fig. 9C, D; Table 5). 
These results are in line with a previous study that showed 
that lornoxicam-loaded bilosomes using  31.22 full facto-
rial design modulate MAPK/ERK1 for the management of 
osteoarthritis [32].

Effect on RANKL/OPG in rats’ knee joints

RANKL is the osteoclastogenic cytokine leading to bone 
resorption, while OPG inhibits bone resorption via its sup-
pressor effect on RANKL [7]. A significant elevation of 
RANKL concentration in knee joints was noticed in rats 
injected intra-articularly with carrageenan by 79% versus the 
normal control group. The free drug, the optimized LOR-
loaded bilosome (LB4), and the optimized LSB in situ form-
ing hydrogel (LSB4c) treatments ameliorated this elevation 
by 12%, 15%, and 35% respectively versus the carrageenan 
control group. In addition, treatment with the optimized LSB 
in situ forming hydrogel (LSB4c) reduced RANKL levels 
by 26% and 23% respectively compared to the free drug and 

the optimized LOR-loaded bilosome (LB4). Conversely, a 
significant reduction by 51% of OPG concentration in knee 
joints was noticed in rats injected with carrageenan versus 
the normal control group. The optimized LOR-loaded bilo-
some (LB4) and the optimized LSB in situ forming hydrogel 
(LSB4c) treatments modulated this reduction by 42% and 
110% respectively versus the carrageenan control group. 
Moreover, the treatment with the optimized LSB in situ 
forming hydrogel (LSB4c) increased OPG levels by 113% 
and 48% compared to free drug and the optimized LOR-
loaded bilosome (LB4) respectively and returned its value 
to normal level (Fig. 9E, F; Table 5). Our results revealed 
that the optimized LSB in situ forming hydrogel (LSB4c) 
has an anti-arthritic effect for the first time via controlling 
RANKL/OPG joint content.

Histopathological evaluation

The histopathological characterization of knee joints of rats 
from various groups is demonstrated in Fig. 10. The nor-
mal histopathological features are observed for the negative 
control group regarding the synovial membrane, articular 
cartilaginous surface, bone marrow (Fig. 10A), or bone tra-
beculae (Fig. 10B), while the group of experimentally posi-
tive control rats revealed that focal erosion was detected in 
the articular cartilaginous surface associated with synovial 
membrane adhesion (Fig. 10C). In addition, the bone tra-
beculae showed osteoporosis (Fig. 10D).

Fig. 10  Photomicrographs of H & E–stained histological sections 
of normal, carrageenan, free LOR, the optimized LOR-loaded bilo-
some (LB4), and the optimized LOR SPION-loaded bilosomes in situ 
forming hydrogel (LSB4c) treated knee joints: A, B normal control; 
C, D positive control (carrageenan group); E, F free LOR; G the 

optimized LOR-loaded bilosomes (LB4); and H the optimized LOR 
SPION-loaded bilosomes in  situ forming hydrogel (LSB4c). Abbre-
viations: B, bone marrow; T, trabeculae; SM, synovial membrane, 
AC, articular cartilage; O, edema; IC, inflammatory cell; FE, focal 
erosion; SA, synovial adhesion; CBV, congested blood vessel
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Administering the free drug did not provide any relief of 
the inflammation caused by carrageenan. As demonstrated 
in (Fig. 10E), edema with inflammatory cell infiltration was 
detected in the synovial membrane. However, the articular 
cartilaginous surface showed normal histological structure 
(Fig. 10F). In the group of rats that underwent experimental 
induction and were treated with the optimized LOR-loaded 
bilosome (LB4), histopathology revealed the presence of 
congestion in the blood vessels of the synovial membrane, 
but the articular cartilage appeared normal (Fig. 10G). On 
the other hand, the group of rats that were experimentally 
induced and treated with the optimized LSB in situ form-
ing hydrogel (LSB4c) showed that the synovial membrane 
and articular cartilaginous surface had a normal histologi-
cal structure, as seen in Fig. 10H. These findings indicate 
that the application of an external magnet to the knee after 
intra-muscular administration of LSB into the thigh muscle 
facilitates targeting and localization of LOR/SPION-loaded 
nanoparticles and maximizes their concentration in the knee 
joint resulting in the optimum management of OA.

Conclusion

LOR-loaded bilosomes were successfully fabricated via the 
thin film hydration method and optimized by varying the 
surfactant type besides the type and amount of bile salt. All 
the developed bilosomes were within the nanosized range 
with high LOR encapsulation. The optimized LOR-loaded 
bilosome (LB4) displayed the highest %EE of the drug with 
a favorable size and zeta potential; thus, it was chosen to be 
loaded with SPIONs (LSB). The prepared LSB system was 
loaded into an injectable in situ forming hydrogel containing 
Synperonic™ PE/F 127 (PE/F127) and hyaluronic acid (HA). 
The in vivo results showed that the optimized LSB in situ 
forming hydrogel (LSB4c) has superiority over the optimized 
LOR-loaded bilosome (LB4) and the free drug hydrogel in 
the management of inflammation and osteoarthritis with a 
significant elevation in OPG level and reduction in RANKL, 
MAPK, and ERK1 levels as well as significant enhancement 
in the histopathological evaluation of the knee joint. Hence, 
the LOR SPION-loaded bilosome in situ forming hydrogel 
system that is injected intra-muscularly into the thigh muscle 
combined with the application of an external magnet to the 
knees could be regarded as a competent platform for the sup-
pression of OA in addition to being a safe and more accept-
able alternative to intra-articular injection.
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