Skip to main content

Advertisement

Log in

Construction and evaluation of a phospholipid-based phase transition in situ gel system for brexpiprazole

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The objective of this study was to develop phospholipid-based injectable phase transition in situ gels (PTIGs) for the sustained release of Brexpiprazole (Brex). Phospholipid (Lipoid S100, S100) and stearic acid (SA) were used as the gel matrix which was dissolved in biocompatible solvent medium-chain triglyceride (MCT), N-methyl pyrrolidone (NMP), and ethanol to obtain PTIGs solution. The Brex PTIG showed a solution condition of low viscosity in vitro and was gelatinized in situ in vivo after subcutaneous injection. Both in vitro release assay and in vivo pharmacokinetics study in SD rats displayed that Brex in PTIGs could achieve a sustained release, compared with brexpiprazole solution (Brex-Sol) or brexpiprazole suspension (Brex-Sus). The Brex-PTIGs had good degradability and biocompatibility in vivo with rare inflammation at the injection site. Among the three Brex-PTIG formulations, Brex-PTIG-3 with the SA in the formulation had the greatest gelation viscosity, the lowest initial release rate, and the most stable release profile with sustained release of up to 60 days. The above results indicated that, as a novel drug delivery system, the Brex-PTIGs offered a new option for the clinical treatment of patients with schizophrenia.

Grapical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data presented in this study are available upon request.

Abbreviations

PTIGs:

phospholipid-based injectable phase transition in situ gels

NMP:

N-methyl pyrrolidone

S100:

soya bean phosphatidyl Choline

SA:

stearic acid

MCT:

medium chain triglyceride

Brex-Sol:

Brexpiparzole solution

Brex-Sus:

Brexpiparzole suspension

References

  1. Mai Y, et al. Topical formulation based on disease-specific nanoparticles for single-dose cure of psoriasis. J Control Release. 2022;349:354–66.

    Article  CAS  PubMed  Google Scholar 

  2. Xu W, et al. Analysis of Factors Influencing Telemedicine-Based Psychiatric Extended Care and Care of Psychiatric Patients. J Healthc Eng. 2022;2022:9434820.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aladeen T, et al. The use of brexpiprazole amongst individuals with insufficient outcomes with aripiprazole or bupropion: A case series. Perspect Psychiatr Care. 2018;54(4):507–13.

    Article  PubMed  Google Scholar 

  4. Crapanzano C, et al. Brexpiprazole 2 mg Starting Dose: A Case Series. Psychiatr Danub. 2022;34(2):308–9.

    Article  PubMed  Google Scholar 

  5. Rawat A, Bhardwaj U, Burgess DJ. Comparison of in vitro-in vivo release of Risperdal((R)) Consta((R)) microspheres. Int J Pharm. 2012;434(1–2):115–21.

    Article  CAS  PubMed  Google Scholar 

  6. Shiadeh SNR, et al. Lipid-liquid crystals for 2 months controlled risperidone release: In-vitro evaluation and pharmacokinetics in rabbits. Int J Pharm. 2022;618.

    Article  CAS  PubMed  Google Scholar 

  7. Brexpiprazole for schizophrenia. Aust Prescr. 2017;40(5):197–8.

    Article  Google Scholar 

  8. Orsolini L, et al. A case report of clozapine-treatment-resistant schizophrenia successfully managed with brexpiprazole combination therapy. Asian J Psychiatr. 2022;72.

    Article  PubMed  Google Scholar 

  9. Brexpiprazole (Rexulti) for schizophrenia and depression. Med Lett Drugs Ther, 2015. 57(1475): p. 116-8. https://secure.medicalletter.org/TML-article-1475c.

  10. Frampton JE. Brexpiprazole: A Review in Schizophrenia. Drugs. 2019;79(2):189–200.

    Article  CAS  PubMed  Google Scholar 

  11. Chitkara D, et al. Biodegradable injectable in situ depot-forming drug delivery systems. Macromol Biosci. 2006;6(12):977–90.

    Article  CAS  PubMed  Google Scholar 

  12. Fakhari A, Subramony JA. Engineered in-situ depot-forming hydrogels for intratumoral drug delivery. J Control Release. 2015;220(Pt A):465-475.

  13. Schwendeman SP, et al. Injectable controlled release depots for large molecules. J Control Release. 2014;190:240–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang K, et al. Comparative study of electrospun crystal-based and composite-based drug nano depots. Mater Sci Eng C Mater Biol Appl. 2020;113.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang P, et al. Comparison of three in-situ gels composed of different oil types. Int J Pharm. 2020;587.

    Article  CAS  PubMed  Google Scholar 

  16. de Freitas CSM, Soares AN. Efficacy of Leuprorelide acetate (Eligard(R)) in daily practice in Brazil: a retrospective study with depot formulations in patients with prostate cancer. Int Braz J Urol. 2020;46(3):383–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Elstad NL, Fowers KD. OncoGel (ReGel/paclitaxel)–clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev. 2009;61(10):785–94.

    Article  CAS  PubMed  Google Scholar 

  18. Sartor O. Eligard: leuprolide acetate in a novel sustained-release delivery system. Urology. 2003;61(2 Suppl 1):25–31.

    Article  PubMed  Google Scholar 

  19. Srikhao N, et al. Multi-Responsive Optimization of Novel pH-Sensitive Hydrogel Beads Based on Basil Seed Mucilage, Alginate, and Magnetic Particles. Gels. 2022;8(5).

  20. Su R, et al. Polydopamine/tannic acid/chitosan/poloxamer 407/188 thermosensitive hydrogel for antibacterial and wound healing. Carbohydr Polym. 2023;302.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y, et al. A poloxamer/hyaluronic acid/chitosan-based thermosensitive hydrogel that releases dihydromyricetin to promote wound healing. Int J Biol Macromol. 2022;216:475–86.

    Article  CAS  PubMed  Google Scholar 

  22. Ahmed TA, et al. Development of biodegradable in situ implant and microparticle injectable formulations for sustained delivery of haloperidol. J Pharm Sci. 2012;101(10):3753–62.

    Article  CAS  PubMed  Google Scholar 

  23. Parent M, et al. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. J Control Release. 2013;172(1):292–304.

    Article  CAS  PubMed  Google Scholar 

  24. Kamali H, et al. In-vitro, ex-vivo, and in-vivo evaluation of buprenorphine HCl release from an in situ forming gel of PLGA-PEG-PLGA using Nmethyl2pyrrolidone as solvent. Mater Sci Eng C Mater Biol Appl. 2019;96:561–75.

    Article  CAS  PubMed  Google Scholar 

  25. Li Z, et al. An in vitro gel-based system for characterizing and predicting the long-term performance of PLGA in situ forming implants. Int J Pharm. 2021;609.

    Article  CAS  PubMed  Google Scholar 

  26. Biswas S, et al. Enhanced permeability and photoprotective potential of optimized p-coumaric acid-phospholipid complex loaded gel against UVA mediated oxidative stress. J Photochem Photobiol B. 2021;221.

    Article  CAS  PubMed  Google Scholar 

  27. Xu X, et al. Fabrication of oral nanovesicle in-situ gel based on Epigallocatechin gallate phospholipid complex: Application in dental anti-caries. Eur J Pharmacol. 2021;897.

    Article  CAS  PubMed  Google Scholar 

  28. Guse C, et al. Biocompatibility and erosion behavior of implants made of triglycerides and blends with cholesterol and phospholipids. Int J Pharm. 2006;314(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  29. Xiang N, et al. An Injectable Gel Platform for the Prolonged Therapeutic Effect of Pitavastatin in the Management of Hyperlipidemia. J Pharm Sci. 2016;105(3):1148–55.

    Article  CAS  PubMed  Google Scholar 

  30. Puri A, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bunjes H. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J Pharm Pharmacol. 2010;62(11):1637–45.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang T, et al. Injectable and biodegradable phospholipid-based phase separation gel for sustained delivery of insulin. Colloids Surf B Biointerfaces. 2019;176:194–201.

    Article  CAS  PubMed  Google Scholar 

  33. Du LR, et al. Development and evaluation of liquid embolic agents based on liquid crystalline material of glyceryl monooleate. Int J Pharm. 2014;471(1–2):285–96.

    Article  CAS  PubMed  Google Scholar 

  34. Ren T, et al. Lipid emulsions in parenteral nutrition: current applications and future developments. Expert Opin Drug Deliv. 2013;10(11):1533–49.

    Article  CAS  PubMed  Google Scholar 

  35. Han L, et al. An injectable, low-toxicity phospholipid-based phase separation gel that induces strong and persistent immune responses in mice. Biomaterials. 2016;105:185–94.

    Article  CAS  PubMed  Google Scholar 

  36. Li H, et al. An in situ-forming phospholipid-based phase transition gel prolongs the duration of local anesthesia for ropivacaine with minimal toxicity. Acta Biomater. 2017;58:136–45.

    Article  CAS  PubMed  Google Scholar 

  37. Luo J, et al. Efficient weapon for protracted warfare to malaria: A chondroitin sulfate derivates-containing injectable, ultra-long-lasting meshy-gel system. Carbohydr Polym. 2019;214:131–41.

    Article  CAS  PubMed  Google Scholar 

  38. Liang Y, et al. Adhesive Hemostatic Conducting Injectable Composite Hydrogels with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full-Thickness Skin Regeneration During Wound Healing. Small. 2019;15(12).

    Article  PubMed  Google Scholar 

  39. Remenar JF. Making the leap from daily oral dosing to long-acting injectables: lessons from the antipsychotics. Mol Pharm. 2014;11(6):1739–49.

    Article  CAS  PubMed  Google Scholar 

  40. Wang K, et al. Self-assembled L-alanine derivative organogel as in situ drug delivery implant: characterization, biodegradability, and biocompatibility. Drug Dev Ind Pharm. 2010;36(12):1511–21.

    Article  CAS  PubMed  Google Scholar 

  41. Yadav SK, Khan G, Mishra B. Advances in patents related to intrapocket technology for the management of periodontitis. Recent Pat Drug Deliv Formul. 2015;9(2):129–45.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang T, et al. A high-efficiency, low-toxicity, phospholipids-based phase separation gel for long-term delivery of peptides. Biomaterials. 2015;45:1–9.

    Article  PubMed  Google Scholar 

  43. Wu W, et al. A novel doxorubicin-loaded in situ forming gel based high concentration of phospholipid for intratumoral drug delivery. Mol Pharm. 2014;11(10):3378–85.

    Article  CAS  PubMed  Google Scholar 

  44. Xuan JJ, et al. Rheological characterization and in vivo evaluation of thermosensitive poloxamer-based hydrogel for intramuscular injection of piroxicam. Int J Pharm. 2010;395(1–2):317–23.

    Article  CAS  PubMed  Google Scholar 

  45. Chen H, et al. Characterization of pH- and temperature-sensitive hydrogel nanoparticles for controlled drug release. PDA J Pharm Sci Technol. 2007;61(4):303–13.

    CAS  PubMed  Google Scholar 

  46. Thakur RR, McMillan HL, Jones DS. Solvent induced phase inversion-based in situ forming controlled release drug delivery implants. J Control Release. 2014;176:8–23.

    Article  CAS  PubMed  Google Scholar 

  47. HPS AK, et al. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr Polym. 2016;150:216-26.

  48. Ning Q, et al. Neurodegenerative changes and neuroapoptosis induced by systemic lipopolysaccharide administration are reversed by dexmedetomidine treatment in mice. Neurol Res. 2017;39(4):357–66.

    Article  CAS  PubMed  Google Scholar 

  49. Milak S, Zimmer A. Glycerol monooleate liquid crystalline phases used in drug delivery systems. Int J Pharm. 2015;478(2):569–87.

    Article  CAS  PubMed  Google Scholar 

  50. Kempe S, Mader K. In situ forming implants - an attractive formulation principle for parenteral depot formulations. J Control Release. 2012;161(2):668–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study leading to the reported results was funded by the Program of Postgraduate Joint Training Base of Chongqing (Chongqing Medical University& Yaopharma Co., Ltd joint training base for postgraduate in pharmacy) (to Huali Chen and Yan Zhang), and the Science and Technology Research Program of Chongqing Municipal Education Commission (grant no. KJQN202000407; to Huali Chen).

Author information

Authors and Affiliations

Authors

Contributions

Ran Tao: Conceptualization, Methodology, Investigation, Data curation, Writing an original draft, Visualization. Li Liu: Methodology, Investigation, Data curation, Visualization, Supervision, Writing - review & editing. Yingxin Xiong: Methodology, Investigation, Resources, Supervision. Qianyu Zhang: Methodology, Investigation, Writing - review & editing. Xiangyu Lv: Data curation, Formal analysis. Linbo He: Data curation, Formal analysis, Resources. Fang Ren: Validation, Methodology. Lu Zhou: Methodology, Software. BaoYan Chen: Formal analysis, Software. Kexin Wu: Validation, Visualization. Yan Zhang: Project administration, Resources, Supervision. Huali Chen: Funding acquisition, Conceptualization, Supervision, Writing - review & editing.

Corresponding authors

Correspondence to Yan Zhang or Huali Chen.

Ethics declarations

Ethics approval

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board of Chongqing Management Approach of Laboratory Animal (chongqing government order NO.195).

Informed consent

Not applicable.

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, R., Liu, L., Xiong, Y. et al. Construction and evaluation of a phospholipid-based phase transition in situ gel system for brexpiprazole. Drug Deliv. and Transl. Res. 13, 2819–2833 (2023). https://doi.org/10.1007/s13346-023-01349-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01349-0

Keywords

Navigation