Skip to main content

Advertisement

Log in

Glycol chitosan stabilized nanomedicine of lapatinib and doxorubicin for the management of metastatic breast tumor

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Advanced breast cancer is known to be highly evasive to conventional therapeutic regimes with a 5-year survival rate of less than 30% compared to over 90% for early stages. Although several new approaches are being explored to improve the survival outcome, there is still some room for equipping existing drugs such as lapatinib (LAPA) and doxorubicin (DOX) to fight the systemic disease. LAPA is associated with poorer clinical outcomes in HER2-negative patients. However its ability to also target EGFR has warranted its use in recent clinical trials. Nevertheless, the drug is poorly absorbed post oral administration and possess low aqueous solubility. DOX on the other hand is avoided in vulnerable patients in advanced stages due to its pronounced off-target toxicity. To overcome the pitfalls of the drugs, we have fabricated a nanomedicine co-loaded with LAPA & DOX and stabilized with glycol chitosan, a biocompatible polyelectrolyte. With a loading content of ~ 11.5% and ~ 15% respectively, LAPA and DOX in a single nanomedicine showed synergistic action against triple-negative breast cancer cells in comparison to physically mixed free drugs. The nanomedicine showed a time-dependent association with cancer cells thereon inducing apoptosis leading to ~ 80% cell death. The nanomedicine was found to be acutely safe in healthy Balb/c mice and could negate DOX-induced cardio toxicity. The combination nanomedicine significantly inhibited both the primary 4T1 breast tumor and its spread to the lung, liver, heart, and kidney compared to pristine drug controls. These preliminary data indicate bright prospects for the nanomedicine to be effective against metastatic breast cancer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Jin X, Mu P. Targeting breast cancer metastasis. Breast Cancer : Basic and Clinical Research. 2015;9(Suppl 1):23. https://doi.org/10.4137/BCBCR.S25460.

    Article  PubMed  Google Scholar 

  2. Andreopoulou E, Schweber SJ, Sparano JA, Mcdaid HM. Therapies for triple negative breast cancer. Expert Opin Pharmacother. 2015;16(7):983. https://doi.org/10.1517/14656566.2015.1032246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2015. https://doi.org/10.1016/j.addr.2015.10.022.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cianfrocca ME, Rosen ST, Roenn JH, von Rademaker AW, Rubin SD, Friedman RA, Rozario CP, Gradishar WJ. A phase I trial of pegylated liposomal anthracycline and lapatinib (L) combination in the treatment of metastatic breast cancer (MBC): first evaluation of an anthracycline and lapatinib combination in the treatment of MBC. 2007. https://doi.org/10.1200/Jco.2007.25.18_suppl.1079, 25(18_suppl), 1079–1079. https://doi.org/10.1200/JCO.2007.25.18_SUPPL.1079.

  5. Stringer-Reasor EM, May JE, Olariu E, Caterinicchia V, Li Y, Chen D, Della Manna DL, Rocque GB, Vaklavas C, Falkson CI, Nabell LM, Acosta EP, Forero-Torres A, Yang ES. An open-label, pilot study of veliparib and lapatinib in patients with metastatic, triple-negative breast cancer. Breast Cancer Res. 2021;23(1):1–12. https://doi.org/10.1186/S13058-021-01408-9/TABLES/3.

    Article  Google Scholar 

  6. Bonde GV, Yadav SK, Chauhan S, Mittal P, Ajmal G, Thokala S, Mishra B. Lapatinib nano-delivery systems: a promising future for breast cancer treatment. 2018;15(5):495–507. https://doi.org/10.1080/17425247.2018.1449832.

  7. Volkova M, Russell R. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev. 2011;7(4):214–20. https://doi.org/10.2174/157340311799960645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma L, Kohli M, Smith A. Nanoparticles for combination drug therapy. ACS Nano. 2013;7(11):9518–25. https://doi.org/10.1021/NN405674M/ASSET/IMAGES/LARGE/NN-2013-05674M_0004.JPEG.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shanavas A, Jain NK, Kaur N, Thummuri D, Prasanna M, Prasad R, Naidu VGM, Bahadur D, Srivastava R. Polymeric core-shell combinatorial nanomedicine for synergistic anticancer therapy. ACS Omega. 2019. https://doi.org/10.1021/ACSOMEGA.9B02167/ASSET/IMAGES/MEDIUM/AO9B02167_M004.GIF.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy – strategies and perspectives. J Control Release. 2016;240:489–503. https://doi.org/10.1016/J.JCONREL.2016.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. https://doi.org/10.1038/NRC.2016.108.

    Article  CAS  PubMed  Google Scholar 

  12. Rommasi F, Esfandiari N. Liposomal nanomedicine: applications for drug delivery in cancer therapy. Nanoscale Res Lett. 2021;16:1:16(1):1–20. https://doi.org/10.1186/S11671-021-03553-8.

  13. Carvalho MR, Reis RL, Oliveira JM. Dendrimer nanoparticles for colorectal cancer applications. J Mater Chem B. 2020;8(6):1128–38. https://doi.org/10.1039/C9TB02289A.

    Article  CAS  PubMed  Google Scholar 

  14. Majumder N, Das NG, Das SK. Polymeric micelles for anticancer drug delivery. 2020. https://doi.org/10.4155/Tde-2020-0008, 11(10):613–635. https://doi.org/10.4155/TDE-2020-0008.

  15. Sun M, Wang T, Li L, Li X, Zhai Y, Zhang J, Li W. The application of inorganic nanoparticles in molecular targeted cancer therapy: EGFR targeting. Front Pharmacol. 2021;12:1454. https://doi.org/10.3389/FPHAR.2021.702445/BIBTEX.

    Article  Google Scholar 

  16. Zhang Y, Fang F, Li L, Zhang J. Self-assembled organic nanomaterials for drug delivery, bioimaging, and cancer therapy. ACS Biomater Sci Eng. 2020;6(9):4816–33. https://doi.org/10.1021/ACSBIOMATERIALS.0C00883/ASSET/IMAGES/LARGE/AB0C00883_0015.JPEG.

    Article  CAS  PubMed  Google Scholar 

  17. Ekladious I, Colson YL, Grinstaff MW. Polymer–drug conjugate therapeutics: advances, insights and prospects. (n.d.). https://doi.org/10.1038/s41573-018-0005-0.

  18. Min Y, Caster JM, Eblan MJ, Wang AZ. Clinical translation of nanomedicine. Chem Rev. 2015;115(19):11147–90. https://doi.org/10.1021/ACS.CHEMREV.5B00116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jang HL, Zhang YS, Khademhosseini A. Boosting clinical translation of nanomedicine. Nanomedicine (Lond). 2016;11(12):1495–7. https://doi.org/10.2217/NNM-2016-0133.

    Article  CAS  PubMed  Google Scholar 

  20. Tan YF, Lao LL, Xiong GM, Venkatraman S. Controlled-release nanotherapeutics: state of translation. J Control Release : Official J Control Release Soc. 2018;284:39–48. https://doi.org/10.1016/J.JCONREL.2018.06.014.

    Article  CAS  Google Scholar 

  21. Mei H, Cai S, Huang D, Gao H, Cao J, He B. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: from intrinsic physicochemical properties to external modification. Bioact Mater. 2022;8:220–40. https://doi.org/10.1016/J.BIOACTMAT.2021.06.035.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Huang L, Liu F. Paclitaxel nanocrystals for overcoming multidrug resistance in cancer. Mol Pharm. 2010;7(3):863–9. https://doi.org/10.1021/MP100012S/SUPPL_FILE/MP100012S_SI_001.PDF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mimansa JM, Das R, Shanavas A. High drug loading nanoparticles stabilized with autologous serum proteins passively inhibits tumor growth. Biomacromol. 2022. https://doi.org/10.1021/ACS.BIOMAC.2C00907.

    Article  Google Scholar 

  24. Yu C, Zhou M, Zhang X, Wei W, Chen X, Zhang X. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis. Nanoscale. 2015;7(13):5683–90. https://doi.org/10.1039/C5NR00290G.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Li S, An FF, Liu J, Jin S, Zhang JC, Wang PC, Zhang X, Lee CS, Liang XJ. Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Nanoscale. 2015;7(32):13503–10. https://doi.org/10.1039/C5NR03259H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao C, Bhattarai P, Chen M, Zhang N, Hameed S, Yue X, Dai Z. Amphiphilic drug conjugates as nanomedicines for combined cancer therapy. Bioconjug Chem. 2018;29(12):3967–81. https://doi.org/10.1021/ACS.BIOCONJCHEM.8B00692/ASSET/IMAGES/LARGE/BC-2018-006922_0008.JPEG.

    Article  CAS  PubMed  Google Scholar 

  27. Xu S, Zhu X, Huang W, Zhou Y, Yan D. Supramolecular cisplatin-vorinostat nanodrug for overcoming drug resistance in cancer synergistic therapy. J Control Release : Official J Controlled Release Soc. 2017;266:36–46. https://doi.org/10.1016/J.JCONREL.2017.09.007.

    Article  CAS  Google Scholar 

  28. Chen F, Zhao Y, Pan Y, Xue X, Zhang X, Kumar A, Liang XJ. Synergistically enhanced therapeutic effect of a carrier-free HCPT/DOX nanodrug on breast cancer cells through improved cellular drug accumulation. Mol Pharm. 2015;12(7):2237–44. https://doi.org/10.1021/MP500744M.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang C, Long L, Xiong Y, Wang C, Peng C, Yuan Y, Liu Z, Lin Y, Jia Y, Zhou X, Li X. Facile engineering of indomethacin-induced paclitaxel nanocrystal aggregates as carrier-free nanomedicine with improved synergetic antitumor activity. ACS Appl Mater Interfaces. 2019;11(10):9872–83. https://doi.org/10.1021/ACSAMI.8B22336.

    Article  CAS  PubMed  Google Scholar 

  30. Yan L, Crayton SH, Thawani JP, Amirshaghaghi A, Tsourkas A, Cheng Z. A pH-responsive drug-delivery platform based on glycol chitosan–coated liposomes. Small. 2015;11(37):4870–4. https://doi.org/10.1002/SMLL.201501412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chou TC. Drug combination studies and their synergy quantification using the chou-talalay method. Can Res. 2010;70(2):440–6. https://doi.org/10.1158/0008-5472.CAN-09-1947/655517/P/DRUG-COMBINATION-STUDIES-AND-THEIR-SYNERGY.

    Article  CAS  Google Scholar 

  32. Kaur N, Mathur P, Yadav P, Chakraborty S,  Shanavas A. Glycol chitosan in situ coating on PLGA nanoparticle curtails extraneous paclitaxel precipitates and imparts protein corona independent hemocompatibility. Carbohydr Polym. 2020;237:116170. https://doi.org/10.1016/J.CARBPOL.2020.116170.

  33. Liu CY, Hu MH, Hsu CJ, Huang CT, Wang DS, Tsai WC, Chen YT, Lee CH, Chu PY, Hsu CC, Chen MH, Shiau CW, Tseng LM, Chen KF. Lapatinib inhibits CIP2A/PP2A/p-Akt signaling and induces apoptosis in triple negative breast cancer cells. Oncotarget. 2016;7(8):9135–9149. https://doi.org/10.18632/ONCOTARGET.7035.

  34. Liu C-Y, Hu M-H, Hsu C-J, Huang C-T, Wang D-S, Tsai W-C, Chen Y-T, Lee C-H, Chu P-Y, Hsu C-C, Chen M-H, Shiau C-W, Tseng L-M, Chen K-F, Liu C-Y, Hu M-H, Hsu C-J, Huang C-T, Wang D-S, Chen K-F. Lapatinib inhibits CIP2A/PP2A/p-Akt signaling and induces apoptosis in triple negative breast cancer cells. Oncotarget. 2016;7(8):9135–9149. https://doi.org/10.18632/ONCOTARGET.7035.

  35. Kumar V, Leekha A, Kaul A, Mishra AK, Verma AK. Role of folate-conjugated glycol-chitosan nanoparticles in modulating the activated macrophages to ameliorate inflammatory arthritis: in vitro and in vivo activities. Drug Deliv Transl Res. 2020;10:4, 10(4):1057–1075. https://doi.org/10.1007/S13346-020-00765-W.

  36. Kim CH, Park TK, Cho SW, Oh MS, Lee DH, Seong CS, Gwag H, bin, Lim, A. Y., Yang, J. H., Song, Y. bin, Hahn, J. Y., Choi, J. H., Lee, S. H., Gwon, H. C., Ahn, J., Carriere, K. C., & Choi, S. H. Impact of different nitrate therapies on long-term clinical outcomes of patients with vasospastic angina: a propensity score-matched analysis. Int J Cardiol. 2018;252:1–5. https://doi.org/10.1016/J.IJCARD.2017.07.031.

    Article  PubMed  Google Scholar 

  37. Lee PW, Hsu SH, Tsai JS, Chen FR, Huang PJ, Ke CJ, Liao ZX, Hsiao CW, Lin HJ, Sung HW. Multifunctional core-shell polymeric nanoparticles for transdermal DNA delivery and epidermal Langerhans cells tracking. Biomaterials. 2010;31(8):2425–34. https://doi.org/10.1016/J.BIOMATERIALS.2009.11.100.

    Article  CAS  PubMed  Google Scholar 

  38. Na JH, Koo H, Lee S, Han SJ, Lee KE, Kim S, Lee H, Lee S, Choi K, Kwon IC, Kim K. Precise targeting of liver tumor using glycol chitosan nanoparticles: mechanisms, key factors, and their implications. Mol Pharm. 2016;13(11):3700–11. https://doi.org/10.1021/ACS.MOLPHARMACEUT.6B00507/ASSET/IMAGES/LARGE/MP-2016-00507Q_0008.JPEG.

    Article  CAS  PubMed  Google Scholar 

  39. Ryu JH, Yoon HY, Sun I-C, Kwon C, Kim K, Ryu JH, Yoon HY, Sun IC, Kwon C, Kim K. Tumor-targeting glycol chitosan nanoparticles for cancer heterogeneity. Adv Mater. 2020;32(51):2002197. https://doi.org/10.1002/ADMA.202002197.

    Article  CAS  Google Scholar 

  40. Shen C, Zhao L, Du X, Tian J, Yuan Y, Jia M, He Y, Zeng R, Qiao R, Li C. Smart responsive quercetin-conjugated glycol chitosan prodrug micelles for treatment of inflammatory bowel diseases. Mol Pharm. 2021;18(3):1419–30. https://doi.org/10.1021/ACS.MOLPHARMACEUT.0C01245/ASSET/IMAGES/LARGE/MP0C01245_0008.JPEG.

    Article  CAS  PubMed  Google Scholar 

  41. Wang H, Li F, Du C, Wang H, Mahato RI, Huang Y. Doxorubicin and lapatinib combination nanomedicine for treating resistant breast cancer. Mol Pharm. 2014;11(8):2600–11. https://doi.org/10.1021/MP400687W/ASSET/IMAGES/LARGE/MP-2013-00687W_0009.JPEG.

    Article  CAS  PubMed  Google Scholar 

  42. Elwakeel A, Soudan H, Eldoksh A, Shalaby M, Eldemellawy M, Ghareeb D, Abouseif M, Fayad A, Hassan M, Saeed H. Implementation of the Chou-Talalay method forstudying thein vitropharmacodynamic interactions of binaryand ternary drug combinations on MDA-MB-231 triplenegative breast cancer cells. Synergy. 2019;8. https://doi.org/10.1016/j.synres.2019.100047.

  43. Colino CI, Lanao JM, Gutierrez-Millan C. Targeting of hepatic macrophages by therapeutic nanoparticles. Front Immunol. 2020;11:218. https://doi.org/10.3389/FIMMU.2020.00218/BIBTEX.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17(8):2950–62. https://doi.org/10.1016/J.BMC.2009.02.043.

    Article  CAS  PubMed  Google Scholar 

  45. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510. https://doi.org/10.1016/J.NANTOD.2015.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. 2016. 11(6):673–692. https://doi.org/10.2217/NNM.16.5.

  47. Kulkarni SA, Feng SS. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res. 2013;30(10):2512–22. https://doi.org/10.1007/S11095-012-0958-3/FIGURES/6.

    Article  CAS  PubMed  Google Scholar 

  48. duPre’, S. A., & Hunter, K. W. Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp Mol Pathol. 2007;82(1):12–24. https://doi.org/10.1016/J.YEXMP.2006.06.007.

    Article  PubMed  Google Scholar 

  49. Yang L, Yong L, Zhu X, Feng Y, Fu Y, Kong D, Lu W, Zhou T, yan. Disease progression model of 4T1 metastatic breast cancer. J Pharmacokinet Pharmacodyn. 2020;47(1):105–16. https://doi.org/10.1007/S10928-020-09673-5.

    Article  PubMed  Google Scholar 

  50. Guo Z, Sui J, Li Y, Wei Q, Wei C, Xiu L, Zhu R, Sun Y, Hu J, Li J-L. GE11 peptide-decorated acidity-responsive micelles for improved drug delivery and enhanced combination therapy of metastatic breast cancer. Journal of Materials Chemistry B. 2022;10(44):9266–79. https://doi.org/10.1039/D2TB01816K.

    Article  CAS  PubMed  Google Scholar 

  51. Pazhayattil GS, Shirali AC. Drug-induced impairment of renal function. Int J Nephrol Renov Dis. 2014;7:457. https://doi.org/10.2147/IJNRD.S39747.

    Article  Google Scholar 

Download references

Acknowledgements

Navneet Kaur and Priyanka Sharma would like to thank the Institute of Nano Science and Technology for senior research fellowships. Mimansa acknowledges the University Grants Commission for senior research fellowship. The authors acknowledge Dr. Nitin Singhal and Ms. Poonam Sagar for helping with IVIS studies at the National Agri Food Biotechnology Institute. Asifkhan Shanavas remembers the late Ms. Shajereth Begum for her brave encounter with metastatic breast cancer.

Funding

Dr. Asifkhan Shanavas received funding from the Government of India under the SERB core research grant scheme (EMR/2016/003851).

Author information

Authors and Affiliations

Authors

Contributions

Navneet Kaur: methodology, writing—original draft, visualization, formal analysis, investigation. Priyanka: writing—methodology, visualization, investigation. Mimansa: methodology, investigation. Mahendran Jaganathan: visualization, investigation. Rafika Munawara: methodology, formal analysis. Anjali Aggarwal: methodology, formal analysis. Asifkhan Shanavas: conceptualization, project administration, supervision, resources, writing—review & editing, funding acquisition.

Corresponding author

Correspondence to Asifkhan Shanavas.

Ethics declarations

Ethics approval

All institutional and national guidelines for the care and use of laboratory animals were followed, and ethical approval was obtained from the institute animal ethics committee (IISERM/SAFE/PRT/2021/025).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3900 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Sharma, P., Mimansa et al. Glycol chitosan stabilized nanomedicine of lapatinib and doxorubicin for the management of metastatic breast tumor. Drug Deliv. and Transl. Res. 13, 2520–2532 (2023). https://doi.org/10.1007/s13346-023-01335-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01335-6

Keywords

Navigation