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Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing system has been a major tech-
nological breakthrough that has brought revolutionary changes to genome editing for therapeutic and diagnostic purposes 
and precision medicine. With the advent of the CRISPR/Cas9 system, one of the critical limiting factors has been the safe 
and efficient delivery of this system to cells or tissues of interest. Several approaches have been investigated to find delivery 
systems that can attain tissue-targeted delivery, lowering the chances of off-target editing. While viral vectors have shown 
promise for in vitro, in vivo and ex vivo delivery of CRISPR/Cas9, their further clinical applications have been restricted 
due to shortcomings including limited cargo packaging capacity, difficulties with large-scale production, immunogenicity 
and insertional mutagenesis. Rapid progress in nonviral delivery vectors, including the use of lipid, polymer, peptides, and 
inorganic nanoparticle-based delivery systems, has established nonviral delivery approaches as a viable alternative to viral 
vectors. This review will introduce the molecular mechanisms of the CRISPR/Cas9 gene editing system, current strategies 
for delivering CRISPR/Cas9-based tools, an overview of strategies for overcoming off-target genome editing, and approaches 
for improving genome targeting and tissue targeting. We will also highlight current developments and recent clinical trials 
for the delivery of CRISPR/Cas9. Finally, future directions for overcoming the limitations and adaptation of this technology 
for clinical trials will be discussed.
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Introduction

Genome editing has brought revolutionary changes in gene 
therapy research by elucidating biological mechanisms, 
improving disease modelling, implementing gene therapies, 
and developing precision medicines [1]. So far, gene editing 
has shown potential utility to treat single gene-linked condi-
tions such as Huntington’s disease, cystic fibrosis, and sickle 
cell anaemia [2, 3]. The capacity has also been demonstrated 
in treating more complex polygenic conditions, such as can-
cers, heart disease, and neurological disorders; however, this 
usage is limited by difficulties in editing the gene of interest 
in multiple cells at differing sites [4]. Traditionally genome 
editing has used zinc nuclease fingers (ZFN) and transcrip-
tion-activator-like effector nucleases (TALENS). The use of 
these tools required substantial time and effort to ensure that 
their design targeted specific genomic sequences of interest, 
and thus limited their use. The development of the clustered 
regularly interspaced short palindromic repeats (CRISPR), 
and the CRISPR-associated protein 9 (CRISPR/Cas9) sys-
tem for genome editing has provided a cost effective and 
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programable tool for precise genome editing, addressing 
issues with ZFN and TALENS [5].

The CRISPR/Cas9 system was first discovered as an adap-
tive immune effector system in bacteria [6]. The CRISPR/
Cas9 system is composed of CRISPR association system 
(Cas) genes organized in an operon, which encodes nucle-
ases that complex with single guide RNA (sgRNA), which is 
composed of a transverse acting CRIPSR RNA strand (trac-
rRNA) and CRIPSR RNA strand (crRNA) [7]. The Cas9 
protein is an RNA-guided DNA endonuclease, which is a 
powerful gene editing tool. It acts as biomolecular scissors to 
cut the targeted DNA at a specific location specified by the 
sgRNA. The CRISPR/Cas9 complex randomly scans DNA 
in the cells through three-dimensional collisions to search for 
protospacer adjacent motifs (PAMs), which are short specific 
sequences that allows for further binding of the Cas9 nuclease 
to the DNA (Fig. 1). If no PAM site is detected, then Cas9 
rapidly disassociates from the DNA [8–11]. If a PAM site is 
encountered, the CRISPR/Cas9 complex is bought into con-
tact with the DNA strand and unwinds the first 10–12 nucleo-
tides adjacent to the PAM sequence, allowing for the forma-
tion of a DNA-RNA hybrid. If complementary DNA binding 
occurs to the sgRNA’s first 8–12 nucleotides, referred to as 
the “seed region”, confirmational changes of Cas9 allow for 
its HNH nuclease domain to cleave the primary DNA stand, 
while the RuvC domain of the Cas9 cleaves the secondary 
DNA strand [8–11]. The first 13 nucleotides upstream of the 
PAM sequence are the most important regarding sgRNA and 
DNA binding, with mismatches in this “seed” region leading 
to failed binding and cleavage. In contrast, mismatches are 
more tolerated in regions downstream of the seed region, and 
thus can result in off-target cleavage [12].

Genome editing using CRISPR/Cas9 results in per-
manent genomic changes in the affected cells. Typically, 

therapeutic gene editing in somatic cells specifically tar-
gets the inherited gene, strictly limiting the effect to the 
individual patients, without being passed down to future 
generations. In contrast, gene editing in germline cells may 
induce changes that can be inherited by future generations, 
sparking ethical concerns with its usage [10]. Notably, in 
2019, a highly controversial illegal gene editing activity 
on human embryos violated ethics and aroused public con-
cerns [13, 14]. A crucial challenge for applying CRISPR/
Cas9 technology is off-target editing in host cells with 
editing occurring at undesired genome sites. Efforts have 
been made to optimize CRISPR/Cas9 systems and sgRNA 
sequences to limit off-target events [15, 16]. Eradication 
of off-target events is challenging, especially in larger 
genomes such as humans, with magnitudes higher propor-
tion of off-target mutations occurring in humans than in 
simpler genomes [17]. Another challenge is gene-editing 
efficiency. Editing efficiency is dictated not just by the 
Cas and sgRNA complex, but also by the efficiency of 
the delivery methods. Additionally, tissue and cell-specific 
delivery of CRISPR/Cas9 systems remains a key challenge 
as well, and the successful targeted delivery will hinge 
many potential therapeutic applications [17].

To date, several CRISPR/Cas9 gene editing systems 
have been translated into clinical trials. The first clini-
cal trial of using the CRISPR/Cas9-based DNA repair 
pathway was initially introduced in 2016 in China, where 
CRISPR/Cas9 mediated knockout of PD1 was performed 
to reactivate T cells in a patient with lung cancer [18, 19]. 
The United States Food and Drug Administration (FDA) 
has also listed more than 30 clinical trials of CRISPR/Cas9 
to treat different genetic disorders, including carcinomas, 
sickle cell anaemia, inflammatory disorders and retinal 
disorder [20]. In this review, we will discuss the recent 

Fig. 1   Overview of the Cas9 
endonuclease. TracrRNA is 
attached to 3′ end of crRNA and 
acts an anchor to the Cas9 endo-
nuclease, this combined RNA 
molecule is known as a single 
guide RNA (sgRNA). Cas9 
scans potential target DNA for 
the appropriate protospacer 
adjacent motif (PAM). When 
the protein finds the PAM, a 
confirmation change occurs 
leading to unwinding of the 
DNA allowing for interaction 
between the crRNA and DNA. 
The RuvC and HNH domains 
then cut the target DNA if 
complementary binding occurs 
between the guide and seed 
region
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advances in the development of CRISPR/Cas9 gene edit-
ing tools and diverse strategies for its delivery. We will 
discuss the challenges and limitations of these systems and 
will highlight therapeutic applications. We will also shed 
light on the clinical translation of promising gene editing 
therapeutic technologies.

Approaches for Cas9 delivery

The delivery of sgRNA and Cas9 endonuclease into host 
cells remains a crucial challenge for gene editing. Their 
delivery into cells currently relies on two key aspects; 
firstly, which form the Cas9 system takes (plasmid 
encoding the Cas9 endonuclease (pDNA) and sgRNA, 
Cas9 mRNA plus sgRNA, or recombinant Cas9 protein 
and sgRNA forming a ribonucleotide protein (RNP)) and 
secondarily, the method to deliver the CRISPR/Cas9 sys-
tem [21–24]. The selection of which system and deliv-
ery method is used will determine the time before editing 
occurs, and the likelihood of off-targeting events occur-
ring, the choice of CRISPR/Cas9 system will also affect 
which delivery method is employed, for example Cas9 
RNP will require a delivery construct which is capable 
of complexing with negatively charged protein complexes 
[15, 21].

In comparison to nucleic acid delivery, where nucleic 
acids (e.g., DNA, mRNA, siRNA, miRNA or antisense 
RNA) only need to be delivered as a single species to be 

effective, CRISPR/Cas9 systems require that the targeting 
sgRNA is complexed to the Cas9 endonuclease protein 
to achieve its biological functions [25]. Currently, three 
different approaches are applied to deliver CRISPR/Cas9 
complexes with sgRNA (Fig. 2). CRISPR/Cas9 can be 
delivered as genetically encoded material (virally encoded, 
plasmid DNA (pDNA) or mRNA or as ribonucleoprotein 
(RNP)-based (Cas9 protein complexed with sgRNA) sys-
tem [21]. Among these, pDNA is the most widely used 
form for the CRISPR/Cas9 system due to its stability, 
ease of construction and flexibility of plasmid prepara-
tion [26, 27]. Once pDNA is successfully delivered into 
a cell’s nucleus, it can efficiently undergo transcription 
and translation to express the desired Cas9 endonuclease 
(Fig. 2). Detectable genomic insertion/deletion (Indel) 
events from Cas9 endonuclease expression through pDNA 
delivery can take 24–48 h to appear, as unlike the other 
processes, DNA encoded Cas9 endonuclease requires both 
transcription and translation to occur to generate func-
tional Cas9/sgRNA complexes. In addition, as pDNA can 
replicate in the host, with basal expression of Cas9 which 
may increase the chance of off-target gene editing. Fur-
thermore, pDNA can also potentially undergo undesirable 
stable integration into the host genome, which may lead to 
long-term expression of Cas9, increasing the likelihood of 
off-target events occurring [28, 29].

In comparison to plasmid DNA, the Cas9 mRNA is sim-
pler to introduce and quicker to express, as this form circum-
vents the requirement for nuclear delivery for transcription of 

Fig. 2   Delivery of CRISPR/
Cas9 in the form of pDNA, 
mRNA, and RNP. pDNA will 
converge into mRNA pathway, 
and mRNA will converge into 
the RNP pathway. pDNA steps: 
Successful delivery of pDNA 
results in the plasmid being 
transported to the nucleus, 
where transcription can occur. 
Transcribed sgRNA and Cas9 
mRNA is exported from the 
nucleus to the cytoplasm. 
mRNA steps: mRNA is 
translated to yield the folded 
Cas9 endonuclease, which then 
interacts with sgRNA to form 
the Cas9 RNP complex. Cas9 
RNP steps: the RNP complex 
is imported into the nucleus, 
where genome editing occurs
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DNA and can commence mRNA translation instantly [25, 30]. 
Additionally, this approach alleviates the plasmid-associated 
risk of insertional mutagenesis and reduces chances of off-
target effect due to short time presence in the cell and reverse 
transcription to Cas9 DNA does not occur. However, mRNA 
is unstable compared to plasmid DNA and is highly suscepti-
ble to RNase-mediated degradation.

The use of purified RNP Cas9 is a straightforward form of 
the system that has attracted much research interest (Fig. 2). 
Gene editing using this system is the most rapid due to its 
bypassing of transcription and translation steps, with indel 
events detected from 1 hr of delivery. RNP-based approaches 
also have reduced off-target effects when compared to the 
pDNA system due to the short-lived transient presence of 
the Cas9 endonuclease. However, due to the high molecular 
weight of Cas9 protein and the additional requirement to 
be connected with sgRNA and delivery difficulties due to 
unable to cross the cell membrane, loading and delivering 
protein cargo is challenging, therefore, requires more opti-
mization to formulate into nanoparticles that can load the 
protein [31, 32].

Strategies for CRISPR/Cas9 delivery

A significant bottleneck for in vivo applications of CRISPR/
Cas9 systems is the availability of an efficient delivery vehi-
cle. Currently CRIPSR/Cas9 delivery systems have limited 
effectiveness at bypassing biological barriers (e.g. systemic 
degradation, targeted intracellular delivery, endosomal 
escape, nuclear localization) required for successful delivery 
[33]. Therefore, efforts have conducted to identify safe, less 
immunogenic, biocompatible, and efficient delivery systems 
for CRISPR/Cas9. Such delivery systems are broadly clas-
sified into two types — viral and nonviral delivery systems.

Viral vectors are commonly used for in vivo delivery as 
they can incorporate therapeutic genes into their genome or 
encapsulate genetic materials to facilitate their intracellular 
delivery [34]. Commonly used viral vectors include Adeno 
associated virus (AAV), adenoviruses, and lentiviruses [35]. 
However, the applications of these vectors are restricted 
due to the limited package size of the vector limiting use of 
CRISPR/Cas9 constructs to smaller variants systems, as well 
as concerns with immunogenicity, which limits their ability 
to be used multiple times in the same host. Viral vectors are 
also associated with insertional mutagenesis, tumorigenesis, 
and other associated safety issues [36]. These shortcomings 
have led researchers to explore safer and less immunogenic 
alternatives for delivering CRISPR/Cas9 components.

The nonviral approach used for CRISPR/Cas9 delivery 
can be split between physical delivery and carrier-mediated 
delivery (Table 1). The most common physical methods are 
reliable but lack specificity and scalability. Carrier-mediated 

delivery can provide beneficial characteristics of scalability 
and specificity, biodegradablity, high packaging capacity, 
ease of fabrication, and biostability [37]. Many nonviral car-
riers have been investigated in different studies for CRISPR/
Cas9 delivery (Table 1) Among all, lipid-based, polymer-
based, peptide-based, and inorganic nanocarriers are the 
most widely studies delivery systems.

Physical methods for nonviral CRISPR/Cas9 delivery

Physical nonviral gene delivery methods are less complex 
than other non-viral approaches for the delivery of CRISPR/
Cas9 cassettes. They employ physical forces to facilitate the 
intracellular delivery of CRISPR/Cas9 components though 
the disruption of host cellular and nuclear membranes. 
Despite their laboratory success, in vivo applications of 
physical methods are still restricted due to their technical 
limitation of scalability and administration skill [38]. Physi-
cal delivery methods include electroporation, microinjec-
tion, and hydrodynamic injection. Among these, electropo-
ration is a widely used method for both in vitro and ex vivo 
delivery [33, 39]. It employs electrical currents to stimu-
late the formation and opening of pores in cell membranes, 
which permits the internalisation of the CRISPR/Cas9 cargo. 
Ex vivo electroporation approaches have been used in sev-
eral clinical trials for CRISPR/Cas9 therapeutic delivery. 
For example, autologous CD34+ cells edited with CRISPR/
Cas9 targeting the BCL11A enhancer were administered 
back to donor patients by electroporation for the treatment 
of transfusion-dependent β-thalassemia (TDT) and sickle 
cell disease (SCD) (Clinical trial number: NCT03745287; 
NCT03655678) [40]. Despite its success in transferring 
these gene-editing tools into clinical trials; this method is 
still limited in ex vivo applications and the requirement of 
in vivo application without prior isolation of cells for elec-
troporation in the process of further development [41].

Microinjection is one of the most used techniques to 
deliver CRISPR/Cas9 into cells. It involves injecting 
CRISPR/Cas9 into cells via the use of a microneedle under 
microscopic visualisation conditions. This technique has 
challenges relating to its intensive technical requirements 
to inject a single cell by hand, and scalability, thus is still 
confined to animal models and excludes it from in vivo 
human application [33, 41]. However, direct delivery 
through injecting the CRISPR/Cas9 therapeutic system has 
the advantage of delivering all form of CRISPR/Cas9 sys-
tem regardless of their overall size of the delivery approach, 
e.g., protein. For example, in a study by Ma et al. [42], this 
technique was efficiently applied in knocking out four 
genes (ApoE, B2m, Prf1, and Prkdc) in rats in one-step, by 
co-injection of Cas9 mRNA and sgRNAs into zygotes. In 
a recent study, Crispo et al. [43] successfully delivered 
sgRNA along with Cas9 protein specific for ovine myostatin 
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(MSTN) through microinjection into the cytoplasm of ovine 
zygotes to disrupt the MSTN genomic sequence in the whole 
embryo. This approach resulted in successfully knocking 
out of MSTN in ship. The intensive nature of this system 
limits its usage in vivo delivery as only single cells can be 
efficiently transfected.

While microinjection and electroporation are limited 
to use in in vitro or ex vivo cultured cells, hydrodynamic 
injection has already been applied for in vivo delivery of 
CRISPR/Cas9 tools. Hydrodynamic injection involves 
the injection of a large volume of solution containing the 
CRISPR/Cas9 system into animal's bloodstream [21]. 
This causes a sudden increase in hydrodynamic pressure, 
which temporarily improves the permeability of endothe-
lial and parenchymal cells, allowing for the CRISPR/Cas9 
payload to enter cells in many tissues including the heart, 
liver, kidneys, lungs, and muscles [21]. For example, Zhen 
et al. successfully applied the hydrodynamic injection tech-
nique to deliver CRISPR/Cas9 pDNA targeting the cod-
ing region of the hepatitis B surface antigen (HBsAg) into 
hepatitis B virus (HBV)-positive mice through tail vein 
injection [44]. Immunohistochemical results demonstrated 
almost no HBsAg-positive cells in the liver tissue of HBV 
infected mice. However, this technically simple method is 
only available for in vivo applications due to the require-
ment of hydrodynamic pressure which is not applicable for 
in vitro applications. Furthermore, hydrodynamic delivery 
is quite traumatic to the organism, commonly resulting in 
cardiac dysfunction, liver expansion, and elevated blood  
pressure [45].

Lipid nanoparticle‑based nonviral CRISPR/Cas9 
delivery

Nanoparticles (NPs) are materials with nano-scale dimen-
sions (e.g., 1–100 nm), which have unique biological prop-
erties due their surface properties and size [46]. NPs can 
be formulated or self-assembled and are broadly used for 
drug delivery. Lipid nanoparticle (LNP)-based delivery sys-
tems have been widely adopted for gene transfection. These 
systems commonly feature cationic phospholipids, which 
complex with and condense DNA, and improve their cel-
lular uptake. Current research is focused on improving the 
properties of LNPs with respect to cell-penetration, endo-
some escape, reducing toxicity, degradation, and improving 
long-term storage stability [47, 48].

Due to the large size and negative charge of the Cas9 
RNP complex, they cannot be readily transported through 
negatively charged mammalian cell membranes [21]. A key 
delivery system to address this issue is the application of cati-
onic lipids to condense the anionic-charged cargo via elec-
trostatic interactions into LNPs, which can facilitate endocy-
tosis through the cell membrane [49, 50]. The condensation Ta
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of these payloads provides protection from degradation. An 
optimal equilibrium between the complexation level required 
for endocytosis and the ability of the CRISPR/Cas9 system to 
be released at its site of action is required for efficient trans-
fection. The use of LNPs instead of traditional viral delivery 
systems has been shown to lead to less immune responses 
because LNPs do not containing any viral-sourced immuno-
genic components. To date, they are being broadly utilized 
for in vitro, ex vivo, and in vivo applications [51].

LNP-based delivery systems provide the possibility for 
highly efficient and stable nonviral CRISPR/Cas9 delivery. For 
example, Wang and colleagues [52] used a library of bioreduc-
ible LNP-based delivery systems to form Cas9/sgRNA com-
plexes. In this work three lipids (amines with disulphide bond 
and 14-carbon hydrophobic tail) were formulated with choles-
terol, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) 
and C16-PEG2000-ceramide which showed high gene knockout 
efficiency (> 70%) in human embryonic kidney (HEK) cells. 
Lipofectamine is a family of phospholipid formulations, which 
have been developed for optimal delivery of different oligonu-
cleotides or proteins, including DNA (Lipofectamine™ 2000, 
3000, and LTX), mRNA (Lipofectamine MessengerMAX™) 
and RNPs (Lipofectamine CRISPRMAX™) [53, 54]. Lipo-
fectamine 3000 is a commercially available LNP-based sys-
tem for gene delivery, which is used as a gold standard for 
pDNA-based CRISPR/Cas9 delivery research [55]. This cati-
onic lipid-based system can associate with and cross anionic 
cell membranes to deliver genetic materials into cells [53, 54]. 
However, due to issues with rapid plasma clearance, immuno-
genicity and toxicity, Lipofectamine formulations are gener-
ally not applicable for clinical purposes [56, 57]. Functional 
modification of lipids can further improve the transfection 
efficiency and reduce the toxicity of cationic liposomes. For 
example, Zhang et al. [58] have developed a polymer polyeth-
ylene glycol-modified lipid nanocarrier (LPLNP) for in vitro 
delivery of cas9 Plasmid / sgRNA into A375 cells. The system 
efficiently condensed and encapsulated Cas9/sgPLK-1 plas-
mids to form a core–shell structure (PLNP/DNA) and achieved 
47.4% transfection efficiency in A375 cells. In vivo applica-
tion through intra-tumoral injection of as9/sgPLK-1 plasmids 
into melanoma tumor-bearing mice significantly downregu-
lated Polo-like kinase 1 (PLK-1) protein and suppressed tumor 
growth (> 67%).

Polymer‑based systems for CRISPR/Cas9 delivery

Polymers can form highly versatile molecular complexes 
with CRISPR/Cas9 systems, which can be functionalized 
to incorporate a variety of components to improve cell/tis-
sue targeting, cell uptake and endosome escape [59–61]. In 
contrast to cationic lipids, cationic polymer carriers show 
chemical diversity and functional potential, providing more 

choices for flexible structural designs and may directly 
complex with CRISPR/Cas9 to improve its delivery char-
acteristics [62]. Polyethylenimine (PEI) is a hydrophilic 
cationic polymers with linear or branched structures, and 
varying molecular weights, which can complex with and 
condense negatively charged DNA via electrostatic inter-
actions and provides pH buffering capabilities that assist 
with endosomal escape [63, 64]. Ryu et al. [65] used 25-kDa 
branched PEI (bPEI-25 k) to deliver CRISPR/Cas9 plas-
mids to Neuro2a cells, with the polymer/plasmid complex 
demonstrating > 70% transfection efficiency, and > 20% of 
Nuero2a cells demonstrated Indels in the targeted genes, 
which is compatible to commercial reagents Lipofectamine 
2000. Unfortunately, PEI exhibits significant toxicity due 
to its high density of cationic charge, which restricts its 
in vivo and clinical applications [66]. New polymers or 
combinations of polymers with less toxicity are currently 
under development for CRISPR/Cas9 system delivery [67]. 
Recently, O’Keeffe Ahern et al. [68] have successfully used 
a highly branched poly(β-amino ester) polymer to deliver an 
RNP-based CRISPR/Cas9 system to HEK293 and human 
recessive dystrophic epidermolysis bullosa (REDB) cell 
lines with high efficiency (15–20% of HEK293 cells dem-
onstrated indels in the targeted genes, > 40% of REDB cells 
demonstrated indels in the targeted genes) and high cell 
viability (72% for HEK293) after transfection.

Polymers can also be incorporated into cationic LNP-based 
systems to deliver CRISPR/Cas9 cargo and to enhance in vivo 
stability [27]. Polyethylene glycol (PEG) is a family of neu-
tral biocompatible polymers with high hydrophilicity and low 
toxicity [69, 70]. In many studies, PEG demonstrated reduced 
interactions with biological components, increased the col-
loidal stability of the delivery systems, and reduced uptake 
of the particles by the reticuloendothelial system, improving 
persistence [70–72]. Finn et al. [73] used the lipid myristoyl 
diglyceride-conjugated to PEG (DMG-PEG) in a LNP-based 
CRISPR mRNA/sgRNA delivery system to edit the transthyre-
tin (TTR​) gene in the liver, which achieved high in vivo effi-
ciency (97% reduction in serum protein levels) in vivo for at 
least 1 year. The DMG-PEG complex has been demonstrated 
to be safe in humans, and is widely utilized in the Moderna 
mRNA-1273 COVID-19 vaccine elasomeran (Spikevax) [74]. 
Zhang and colleagues [75] used PEGylated chitosan to deliver 
Cas9 pDNA/sgRNA in vitro, providing a 15% transfection effi-
ciency at low pH (6.5–6.8) in HEK293 cell line. PEGylated 
LNPs are promising for CRISPR/Cas9 delivery, but high levels 
of PEGylation may hinder interactions between phospholipids 
and cell membranes, blocking their cellular uptake. PEGyla-
tion of neutral and anionic LNPs has also been investigated. 
However, these systems demonstrate lower levels of cellular 
uptake, which is further reduced through PEGylation, hence, 
limiting its applications for these systems [71].
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Peptide‑based systems for CRISPR/Cas9 delivery

Peptide-based delivery systems have shown great potential 
for the delivery of CRISPR/Cas9 gene editing systems as 
cationic peptides have the potential to complex with more 
cargo than viral systems and facilitate intracellular delivery 
with reduced immune or cytotoxic responses. Cell-penetrating 
peptides (CPPs) are short peptides that can directly interact 
with cell membranes allowing for the intracellular delivery 
of therapeutic cargos through cell membranes and, therefore 
successfully used to facilitate intracellular delivery of thera-
peutic cargos [76].

Possibilities of CPP-mediated delivery of Cas9 RNPs 
have been explored in several studies where covalent 
approaches were used to conjugate the Cas9 endonuclease 
and CPP [76–78]. However, these studies revealed that the 
covalent approach for CPP-driven RNP delivery required 
large amounts of Cas9 and multiple incubation steps with 
target cells, resulting in low gene editing efficiencies and 
ultimately reduced therapeutic efficacy [78]. Thus, to 
increase gene editing efficiency, optimization of the RNP-
CPP delivery approach has been required. Lostale-Seijo et 
al. [76] developed a non-covalent strategy for delivering a 
complex of the Cas9 RNP with an amphipathic CPP PT24 
(PT24/Cas9 RNP). The complex was formed by a hydrazone 
bond formation between a cationic peptide scaffold PT24 
and a hydrophobic aldehyde tail. This work reported that the 
complexes that were formed only required a single incuba-
tion step for efficient delivery of the Cas9 RNP cargo while 
demonstrating good efficiency and low toxicity. Similarly, 
Del’Guidice et al. [79] have used an amphiphilic peptide 
6His-CM18-PTD4 to deliver functional transcription factor 
HoxB4, CRISPR/Cas9, and Cpf1 RNP complexes into the 
hard-to-transfect primary natural killer (NK) cells. This pep-
tide is composed of a hexahistidine fused with the endoso-
molytic peptide CM18 and the CPP PTD4. The authors 
reported that co-incubation of the 6HisCM18-PTD4 peptide 
with spCas9 and/or asCpf1 CRISPR RNPs achieved robust 
gene editing in less than 2 min. When the same procedure of 
co-incubating with the transcription factor HoxB4 was inves-
tigated, transcriptional regulation was also achieved [79]. In 
another in vitro study, PEGylated NPs (P-HNPs) based on 
the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-
1-yl)ethyl)aminomethyl)benzyl-L-glutamate) (PPABLG) 
for the delivery of CRISPR/Cas9 expression plasmid and 
sgRNA were investigated [80]. This study demonstrated 
that P-HNP mediated delivery of a CRISPR/Cas9 plasmid/
sgRNA targeting the polo-like kinase 1 (Plk1) gene resulted 
in a 35% gene deletion in HeLa cells,reduced the Plk1 pro-
tein level by 66.7%, suppressed tumor growth by > 71%, 
and prolonged animal survival to 60% within 60 days [80]. 
Recently, Gustafsson et.al   [78]. investigated the capac-
ity of RNA-delivering CPP, PepFect14 (PF14), to deliver 

a Cas9 RNP using a non-covalent interaction between the 
sgRNA and Cas9 RNP. The RNP-CPP complexes demon-
strated high levels of efficiency (i.e., up to 80% gene edit-
ing in HEK293T cells), comparable to the commercial lipo-
fectamine reagents RNAiMAX and CRISPRMax™. The 
possibility of using other cationic peptides like dendrons 
or dendrimers have also been evaluated as potential carri-
ers for CRISPR/Cas9. In a recent study, Zamolo et al. [81] 
tested several dendron systems and identified one peptide 
dendrimer Z22 ((rl)8(krl)4(krl)2kk(C18)c) as a potential 
peptide-based career for CRISPR/Cas9 pDNA delivery with 
low immunogenicity and toxicity.

Inorganic nanoparticle‑based delivery systems

Inorganic nanoparticles, including metal NPs, metal–organic 
frameworks, carbon nanotubes, and mesoporous silica nano-
particles, have also been used to facilitate the delivery of 
CRISPR/Cas9 systems [82, 83]. Due to being chemically 
inert, gold NPs (AuNPS) gained much interest in being used 
as a delivery tool, which also does not trigger host’s immune 
system. With high efficiency and low toxicity, gold NPs are 
considered as a safer alternative for the delivery of gene edit-
ing toolboxes. Lee and collaborators [84] injected gold NPs 
complexed with CRISPR/Cas9 system in vivo, and showed 
that there are no immune responses towards the complexes. 
Gold NPs have been successfully used in many in vitro, 
ex vivo, and in vivo applications [85]. Generally, the size and 
in-cell retention time of gold NPs(AuNp) are critical for their 
efficiency [86, 87]. Shahbazi et al. [88] designed an ex vivo 
colloidal gold NP-based CRISPR/Cas9 pDNA delivery sys-
tem for treating hard-to-transfect haematopoietic stem and 
progenitor cells (HSPCs). The treated HSPCs demonstrated 
efficient gene editing with low toxicity, with greater than 
80% cell viability observed after transfection. Wang and col-
laborators [89] used PEG-lipid/AuNPs/Cas9-sgPlk-1 (LACP) 
system to knock out the Plk-1 gene and down regulate Plk-1 
protein expression in a melanoma model (subcutaneously 
implanted A375 cells). This Cas9-sgPlk-1 plasmid delivery 
achieved 65% down-regulation of Plk-1 protein compared 
to the PBS control. Mesoporous silica nanoparticles repre-
sent another inorganic nanoparticulate delivery platform that 
has been investigated for the delivery of nucleic acid-based 
molecules. These particles have a large internal surface area 
and high cargo loading capacity, which have demonstrated 
the potential to deliver CRISPR/Cas9 in several studies. 
Furthermore, silica nanoparticles can be readily chemically 
modified, including with lipids and polymers for improving 
encapsulation of CRISPR/Cas9 systems. Most of the silica 
based CRISPR/Cas9 delivery systems are mesoporous, for-
mulated with tetraethyl orthosilicate (TEOS) and conjugated 
with lipid and polymer. For example, in a study conducted 
by Wang et al. [90], stimuli-responsive silica nanoparticles 
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(SNPs) demonstrated the capacity to efficiently deliver 
CRISPR/Cas9 cargoes. In vivo studies showed that subreti-
nally injected SNPs conjugated with all-trans-retinoic acid 
(ATRA) and intravenously injected glutathione-responsive 
SNPs conjugated with N-acetylgalactosamine effectively 
delivered Cas9 mRNA and RNP to murine retinal pigment 
epithelium (RPE) cells and liver cells with good biocompat-
ibility and efficient gene editing capability (1.3-fold higher 
gene knockdown efficiency than lipofectamine 2000 and 
CRISPRMAX [90].

The nanoscale zeolitic imidazolate framework (ZIF) is a 
biomimetic metal–organic framework, which enables effec-
tive and cell-specific delivery of the CRISPR/Cas9 gene 
editing system [91]. Different cells showed different selec-
tivity of the cancer cell membrane coated CRISPR/Cas9 in 
ZIF delivery, which allows for targeted delivery of gene edit-
ing tools, which good potential for future applications [91]. 
ZIF-8 is a cage-like coordination compound with rhombic 
dodecahedron crystals [92]. Alsaiari et al. [93] initially used 
ZIF-8 to deliver the Cas9 plasmid/sgRNA system in 2018, 
and the delivery system showed good biocompatibility, and 
loading capacity (17%) for both plasmid and sgRNA and 
gene knockdown efficiency (37% over 4 days) in Chinese 
hamster ovary (CHO) cells.

Targeted delivery for CRISPR/Cas9

Target-oriented delivery of gene therapeutics is an exciting 
approach for successful gene therapy. Gene editing using 
the CRISPR/Cas9 systems results in permanent genomic 
changes in the affected cells within an organism [21]. A 
crucial challenge for applying CRISPR/Cas9 technology is 
reduction of off-target editing events in host cells, which 
have been readily demonstrated in mice embryos and adult 
human cells [103, 104]. Two types of off-target effects 
are associated with CRISPR/Cas9-mediated gene editing. 
Several studies have demonstrated that the CRISPR/Cas9 
protein can tolerate small mismatches between the sgRNA 
and genomic DNA, allowing for cleavage at off target 
sites [104–106]. This could lead to lethal genetic muta-
tions, genotoxicity, and carcinogenesis. Several approaches 
have been applied to redesign sgRNA through the use of 
chemical modifications and engineering to reduce or pre-
vent off-target gene editing [15]. Several studies reported 
that optimising the GC content (40–60%), shortening the 
length (18–20 bp), dual nicking of sgRNA and Cas9, and 
incorporation of 2′-O-methyl-3′-phosphonoacetate in the 
sgRNA backbone can increase target sequence specific-
ity and decrease off-target effects [107]. Additionally, the 
development of alternative or improved Cas9 variants also 
provide a means to reduce off-target effects.

Predicting the genomic sites that are susceptible to 
CRISPR/Cas9 off-target activity is primarily determined 
using  in silico modelling of the homology between the 
sgRNA sequence and genome, while considering increased 
mismatch tolerability with the increasing distance from the 
sgRNA “seed” region [108]. In vitro screening is still used 
to verify target-specificity and off-target effects. Currently, 
the determination of off-target effects is still being refined to 
give more accurate predictions, as well as the designing of 
sgRNAs with high targeting specificity with low off-target 
effects [109].  DNA site selection is vital to limit off-target 
events and requires the selection of a unique target sequence. 
Research into the rational design of sgRNA has led to the 
development of a variety of criteria and design algorithms 
[110]. Despite significant efforts in sgRNA design, experi-
mental testing is still required, with many predicted sgRNAs 
showing little to no target site activity [111, 112]. Tolerability 
of mismatches between sgRNA and target DNA sequences 
has led to the development of engineered Cas9 proteins to 
reduce off-target effects. One such example involves the inac-
tivation of a cleavage domain to create a Cas9 variant that can 
only break one DNA strand, known as Cas9 nickase (nCas9) 
[113]. Using a pair of the nCas9 to flank the target sequence 
with one binding to the forward DNA sequence and the other 
to the reverse sequence, means that double stranded breaks 
only occur were both nCas9 molecules are bound in flanking 
locations to each other. Thus, off-target cleavage only results 
in a single-strand nick, which is quickly repaired by DNA 
ligase. This system has shown a 50% reduction in off-target 
effects with a minimal decrease in on-target cleavage com-
pared to conventional Cas9 editing [17, 114, 115].

In addition to off-target genome cleavage events, target-
ing CRISPR-mediated gene editing to specific cells or tis-
sues within an organism may be required. This has led to 
the development of approaches that promote cell and tissue 
targeting for CRISPR/Cas9 delivery through modifications 
to nonviral vectors with targeting moieties, such as peptides, 
aptamers and antibodies for receptor or antigen-targeting 
delivery [116]. Various liposome and lipidated nanopar-
ticles formulations have been used to allow for targeted 
delivery into specific tissues or cancer cells based upon the 
biophysical properties of the formulations. Here, we cover 
some recently developed targeted delivery approaches for 
CRISPR/Cas9 delivery; these approaches can be categorized 
into ligand-mediated active targeting and passive targeting. 
Ligand-mediated active targeting involves the use of a target-
ing moieties, such as peptides, antibodies, and nucleic acid 
aptamers, that specifically target overexpressed receptors 
on tumor cells, or antigens. The targeting agent serves as a 
“homing device” that directs the delivery system specifically 
to the cells of interest. This approach is highly specific and 
can selectively target the desired cells. Passive targeting, on 
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the other hand, relies on the physicochemical properties of 
the delivery system, such as its size, charge, or lipophilicity, 
and pathophysiological condition of the targeting site; for 
example, leaky vasculature and impaired lymphatic drain-
age are distinctive factors of the microenvironment of solid 
tumors [117, 118]. In the following section a detailed over-
view of both approaches for CRISPR/Cas9 delivery, with 
specific examples, are discussed.

Active targeting

Aptamers are short single-stranded nucleic acid sequences 
which conform to a unique 3-dimensional structure; screen-
ing of aptamers has shown some 3-dimensional structures 
that can bind to specific target molecules, such as pro-
teins or small molecules, with high affinity and specific-
ity. Large libraries of aptamers can be rapidly synthesized 
and screened, are biocompatible, and readily modifiable to 
improve their stability under physiological conditions. They 
can be generated through a process called in vitro selection 
or systematic evolution of ligands by exponential enrich-
ment (SELEX), which involves the iterative selection and 
amplification of aptamer sequences that bind to the target 
of interest [119]. Aptamers have widely implemented in 
delivery systems and have the capacity to selectively inter-
act with a wide range of molecules, including receptors 
on the surface of cells, enzymes, and other biomolecules. 
In one study, cationic liposomes were modified by incor-
porating RNA aptamers to allow for the targeted delivery 
of the Cas9 pDNA/sgRNA system to prostate tumor cells 
expressing the prostate-specific membrane antigen. This 
aptamer-liposome-CRISPR/Cas9 system demonstrated sig-
nificant cell-specific binding and was used to effectively 
knock out the survival gene, polo-like kinase 1 (PK1) in both 
in vitro and in vivo studies [120]. In another study, Zhuang 
et al. [121] have developed a valency-controlled tetrahedral 
DNA nanostructures (TDNs) conjugated to specific cancer 
cell specific DNA aptamers (TLS11a aptamer) and loaded 
it on a extracellular vessel surface via cholesterol anchor-
ing for specific cell targeting (e.g., HepG2 cells). In vitro, 
in vivo, and ex vivo studies demonstrated successful delivery 
of CRISPR/Cas9 RNPs and significant downregulation of 
GFP expression and WNT10B in cultured HepG2 cells and 
human primary liver cancer-derived organoids, as well as 
xenograft tumor models.

The use of peptides as targeting ligands for non-viral deliv-
ery systems is an attractive option because of several favour-
able characteristics and has been studied in many gene deliv-
ery studies. Peptides can be readily synthesized and can be 
engineered to be conjugated with non-viral delivery vectors, 
demonstrate low toxicity, and have the potential to specifi-
cally target many different cells and tissue types in a target- 
specific manner [122]. Due to their ease of incorporation 

into delivery systems and cancer specific receptor-targeting 
capacity, they have been incorporated into non-viral delivery 
systems to allow for targeted delivery into cancer cells. For 
example, the iRGD peptide was used as a targeting ligand 
for liposome-templated hydrogel nanoparticles (LHNPs) to 
selectively deliver CRISPR/Cas9 to U87 cells (in vitro) and 
tumors in the brain (in vivo). The iRGD modified LHNPs 
demonstrated higher efficiency than the commercial agent 
Lipofectamine 2000 for delivering Cas9 protein/sgRNA in 
cell culture. When (PLK1) targeted CRISPR/Cas9 protein 
was delivered using iRGD modified LHNPs, inhibition 
of tumor growth and improved survival of tumor-bearing 
mouse were observed [123]. In addition to receptor tar-
geting, peptides can also be used to target cargoes to the 
nucleus. Nuclear localization signals (NLS) are generally 
short peptides, which facilitate the nuclear transport of pro-
teins from the cytoplasm into the nucleus [124]. A multiple-
functionalized targeting delivery system was developed for 
efficient delivery of Cas9/sgRNA plasmids into tumors. Pro-
tamine decorated by nuclear location signal peptide (CPK-
KKRKV) and the nucleon targeted AS1411 aptamer with 
specific affinity for nucleolin in the tumor cell membrane 
was used to the deliver Cas9/sgRNA plasmids. With the 
aid of the NLS and nucleon targeted aptamer, this multi- 
factionalized vector specifically delivered the plasmid to the 
nuclei of HeLa cells and demonstrated high gene editing effi-
ciency by knocking out the protein tyrosine kinase 2 (PTK2) 
gene to down-regulate focal adhesion kinase (FAK) [125].

Antibody-mediated delivery of CRISPR/Cas9 systems 
has recently become increasingly examined for their ability 
to provide high selectivity towards species that are exposed 
on the surface of cells. Plasmid and RNP CRISPR/Cas9 have 
been delivered via the use of antibodies that are directly 
conjugated to the CRIPSR/Cas9 RNP. In a recent study, anti-
bodies Trastuzumab or Pertuzumab, as Fab fragments that 
are targeting HER2, were conjugated to the Cas9 protein to 
deliver Cas9/sgRNA RNPs to SKBR3 breast cancer cells, 
which overexpress the HER2 receptor. This Fab-conjugated 
Cas9/sgRNA RNP demonstrated target-specific cellular 
uptake and gene editing [126]. Guo et al. [127] engineered 
a triple-negative breast cancer (TNBC)-targeted nanolipogel 
system (tNLG) featuring an ICAM1 antibody that is cova-
lently conjugated to DOPC-DSPE-PEG for the delivery of 
a CRISPR/Cas9 plasmid. In vivo application of this sys-
tem demonstrated a greater than 81% knockout of Lipocalin 
2 (Lcn2) in TNBC tumour tissues, which resulted in sig-
nificant tumour growth suppression. Antibodies provide a 
highly-specific targeting approach with low immunogenicity 
concerns. Antibody orientation is required to be controlled 
to ensure targeting properties of the antibody are functional. 
This requires strict configuration and chemical functionali-
zation protocols to be observed, limiting the development 
of antibody-mediated delivery of CRIPSR/Cas9 systems. 
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An exciting approach to overcome this is the one-step syn-
thesis of a metal-organic framework (MOFs) antibody-drug 
delivery system, which pairs antibodies with a metal frame-
work that can incorporate the cargo of interest. This metal 
framework preserves the targeting capability of the antibody 
and provides a system to load the cargo without requiring 
synthesis consideration for antibody orientation. This holds 
much potential for targeted CRISPR Cas9 delivery [128].

Exosomes are extracellular lipid vesicles that are released 
by cells to mediate specific cell-to-cell communication 
[129]. Exosomes can provide a biocompatible, cell-targeted 
system with the potential to load various cargos for in vivo 
delivery [130] Cell targeting with exosomes occurs through 
a variety of mechanisms. A key mechanism is through the 
presence of certain proteins, such as tetraspanins, associated 
with the exosome membrane, which can interact with pro-
teins on the target cell's surface. Additionally, exosomes also 
have specific lipids and nucleic acids on their surface, which 
can also interact with the target cell surface. Engineered can-
cer-derived exosomes have been successfully used to target 
ovarian tumors to deliver CRISPR/Cas9 pDNA resulting in 
the induction of apoptosis [131]. The use of exosomes holds 
great promise, but it is currently in its infancy. Understand-
ing the mechanisms that allow for specific cell targeting and 
delivery is still broad and requires further exploration for 
each cell-derived and engineered exosome. Due to their cell-
derived nature, the current production of exosomes is limited 
to small scales, and their usage for CRISPR/Cas9 delivery is 
an emerging area of research [27].

Passive targeting

Unique features of tumor pathophysiology have drawn 
significant interest as potential targets for tumor-targeted 
delivery of therapeutics. Tumor growth has been associated 
with the formation of acidic microenvironment around solid 
tumor with the pH range of 6.0-–6.5 [132]. Considering this, 
pH-responsive tumor-targeted nucleic acid delivery systems 
have been developed, which rely on changes in their delivery 
characteristics in the acidic tumor microenvironment. For 
example,  Tang et al. [133]  have developed a multistage 
delivery nanoparticle (MDNP) with pH-responsive tumor 
targeting. This system features a core–shell structure, com-
posed of a cationic polyplex of CRISPR/Cas9 pDNA and 
phenylboronic acid (PBA) modified low molecular weight 
polyethyleneimine, while the shell is formed by the poly-
mer 2,3-dimethylmaleic anhydride (DMMA)-modified 
poly(ethylene glycol)-b-polylysine (mPEG113-b-PLys100/
DMMA). When exposed to an acidic microenvironment, 
the polymer shell DMMA groups rapidly decompose, caus-
ing the polymer to convert from an anionic to a cationic 

surface charge. The cationic polymer then dissociates from 
the cationic core, exposing the core and leading to tumor 
accumulation of these exposed cationic cores. Along with 
the cationic charge of the core, the PBA groups on the core 
structure bind with sialic acid, which is overexpressed in 
cancer cells resulting in enhanced cellular internalisation 
of the core structure into the cells. Systemic administration 
of this MDNP containing CRISPR/Cas9 (MDNP/dCas9-
miR-524) to tumor-bearing mice resulted effective upregu-
lation of miR-524 in tumor, resulting in tumor growth retar-
dation [134].

Organ targeted or specific tissue targeted delivery of 
CRISPR/Cas9 system is another attractive strategy for tar-
geted delivery of gene editing therapeutics. Several stud-
ies have utilized this tissue specific targeting strategy for 
CRISPR/Cas9 delivery. In many in  vivo delivery, lipi-
dated nanoparticles were found to accumulate in the liver, 
therefore, they have been further investigated as potential 
liver targeted systems for CRISPR/Cas9 delivery [135]. 
Studies have also focused on adapting LNPs for targeting 
other organ (such as kidney, spleen), with the adaption of 
the systems occurring via alteration of lipid compositions 
to modify the physicochemical properties such as size, 
shape, charge, or surface chemistry of the nanoparticles to 
allow for selectively distribution to the target organ. The 
interactions between a LNPs and tissue specific proteins 
in physiological environment are theorized to be responsi-
ble for the accumulation of LNPs in certain tissues [136]. 
Being inspired with this strategy, Cheng et al. developed a 
CRISPR/Cas9 delivery approach which exemplifies organ 
targeting known as Selective Organ Targeting (SORT) [137]. 
This SORT approach is a promising technique which uses 
various combinational approaches of LNPs with the addi-
tion of a optimized ratio of a cationic lipid supplemental 
molecules (e.g., dioleoyl-3-trimethylammonium propane) 
which exhibits specific biophysical properties and results 
in the LNPs exhibiting specificity and effectively medi-
ated CRISPR/Cas9 delivery to specific organs including; 
lungs, spleen, and liver depending on ratios used [137]. A 
key advantage is that this system can target the numerous 
relevant cell types in the targeted organ and successfully 
deliver CRISPR/Cas9 system in vivo (e.g., epithelial cells, 
endothelial cells, B cells). Tissue-specific LNP delivery 
of the CRISPR/Cas9 system has also been used in another 
in vivo study to rescue dystrophin expression in Duchenne 
muscular dystrophy mice [138].

Overall, targeted delivery system for CRISPR/Cas9 sys-
tem mediated genome editing is an emerging area of great 
interest, Fig. 3. summarizes key methods which have com-
monly been adopted for targeted delivery of the CRISPR/
Cas9 system in many studies.
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Translation to the clinic

Although the development of CRISPR/Cas9-associated 
therapeutics have progressed rapidly over the past decade, 
these techniques have not been widely investigated in human 
clinical trials due to various issues (e.g., difficulties with 
tissue-targeted delivery and the potential for off-target gene 
editing). Currently, more than 30 clinical trials are listed in 
the NIH clinicaltrials.gov register [20], which indicate the 
use of CRISPR/Cas9 system as a therapeutic intervention, 
with the number of active clinical trials slowly increasing 
each year. These trials include treatments for various genetic 
disorders, including cancers, disorders of the eye, metabolic 
diseases, and infections [20]. For specific examples, readers 
are directed to Table 2. Many of these trials are in the early 
stages, and thus the possibility of any of these approaches 
proving successful in phase III trials, and being approved 
by drug regulatory bodies, will still be several years away.

The  clinical translation of CRISPR/Cas9 gene edit-
ing technologies relies on the careful selection of each 

component (e.g., the Cas9 sequence/enzyme used; the 
type of guide RNA used, and whether this will be a single 
sequence or a pool; whether a protein, mRNA, or DNA-
based approach will be used; and what type of delivery 
approach will be used) to maximize tissue or cell-specific 
delivery, uptake and gene editing, and to minimize the like-
lihood of off-target gene editing [144]. As can be seen in 
Table 2, the vast majority of CRISPR/Cas9 human clinical 
trials have used ex vivo approaches, where specific cells are 
removed from a patient, enriched, subjected to gene editing, 
and then reintroduced into the patient. This process means 
that more complex tissue/cell-targeted delivery approaches 
(such as those needed for  in vivo  approaches) are not 
required, potentially increasing the gene editing efficiency 
and reducing the potential for toxicity, as only the enriched 
cells are subjected to the gene editing approach. The ex vivo 
approaches mostly used stem cells and immune-responsive 
cells. For instance, the program cell death (PD-1) protein, 
a membrane of immune cells, is targeted and knocked out 
by CRISPR/Cas9 technology for treating several tumors 

Fig. 3   Summary of methods for targeted CRISPR/Cas9 delivery. A 
Cargo loading shows different forms of the CRISPR/Cas9 system 
which can be loading into non-targeted delivery vectors, with the 
examples being liposomes, polymer nanoparticles, and peptide. B 
Modifications for targeting is achieved through attaching with a tar-
geting moity (such as a peptide, antibody, or aptamer) that can selec-
tively bind to a receptor/cell surface protein/sugar and allow for active 
targeted cellular delivery. Modification with tissue specific promoter 

can direct a delivery system to a cell of interest. C Passive target-
ing can be divided into tumor and organ targeting. Tumor targeting 
occurs via the use of confirmational changes of the delivery systems 
under acidic environment of tumor micro-environment. Organ target-
ing uses a lipid nanoparticle approach in using the biophysical (siz, 
and charge) properties of the formulations resulting in accumulation 
in a specific organ, e.g., liver, lung, and spleen depending on formula-
tion used, leading to targeted delivery
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and cancer cells. PD-1 downregulates T cell activity and 
suppresses the immune system's antitumor activity. Clini-
cal trials are investigating the potential of ex vivo CRISPR/
Cas9-mediated PD1 knockout technique in humans for dif-
ferent solid tumors, liver cancer ((NCT04417764), lung can-
cer (NCT02793856), and prostate cancer (NCT03525652) 
[139]. However, ex vivo approaches are only applicable 
where the cells that are being targeted for gene editing can 
be extracted from the patient, which is not always possible. 
Therefore, in vivo approaches are still required despite their 
increased complexity. The application of in vivo gene editing 
therapeutic delivery is gradually stepping forward to clinical 
translation. NIH Clinical trial has listed a few in vivo appli-
cations of the CRISPR/Cas9 mediated therapeutic delivery 
(Examples in Table 2). NTLA-2001 is currently in phase I 
clinical trial that is used or treating transthyretin amyloido-
sis. Intravenous administration of NTLA-2001 composed of 
lipid nanoparticle encapsulating messenger RNA for Cas9 
protein and a single guide RNA targeting T transthyretin 
(TTR) resulted in knocking out of TTR protein and thus led 
to decreased concentration (> 50% depending on dose con-
centration) of TTR protein in serum with few adverse effect 
[56]. Compared to ex vivo application, in vivo delivery of 
gene editing therapeutics is more challenging due to the 
concern of tissue specificity, selectivity, off-targeting, and 
safety; thus, robust optimisation and strategical application 
are essential. Progressively these clinical trials will establish 
the therapeutic potential for these ongoing gene engineered 
therapeutics and will also provide insight for future research 
on genome editing tool in a wide range of genetic disorders.

Conclusion

The CRISPR/Cas9 system has been heralded as revolu-
tionary for the treatment of genetic disorders. This system 
has allowed for more targeted and accessible gene editing 
than ever before. In vivo therapeutic use of this system 
is limited by the lack of specific and effective delivery 
systems. Viral vectors have shown vast potential for the 
delivery of CRISPR/Cas9. However, the immunogenicity 
and limited ability to carrying large genetic cargoes has 
reduced their applications. Alternatively, nonviral deliv-
ery systems provide promising stability and delivery effi-
ciency with in vitro, ex vivo, and in vitro applications, and 
each of them comes with advantages and disadvantages. 
Most delivery systems are based on nanoparticles, which 
could be merged to gather the benefits and reduce the 
drawbacks. The emergence of targeted delivery systems 
primarily depends on DNA aptamer or peptide ligands to 
facilitate cell-specific delivery. These emerging systems 
still require further research to establish efficacy and avoid 
cytotoxicity or considerations. The reduction of genomic Ta
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off-targeting has been a critical issue in implementation 
of gene editing therapeutics. Improved rational design of 
sgRNA, truncation of sgRNA sequence and determination 
of Cas variant have been proven as simple and effective 
ways to mitigate the risk of off-targeting events. Overall, 
there has been exciting progress in CRISPR/Cas9-based 
gene editing therapy, which has translated several thera-
peutics into clinical trials.

However, continuous developments are required for 
the mode of delivery and tailoring of the systems as most 
therapeutic deliveries are still based on ex vivo approaches 
and in vivo applications stills require more optimisation 
in this area. Tissue-specific and selective organ-targeted 
deliveries are the breakthroughs that have been advent in 
recent years. Inorganic nanoparticles like carbon nano-
tubes and bare mesoporous silica nanoparticles are also 
emerging as exciting platforms for CRISPR/Cas9 delivery.
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