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Abstract
Rasagiline mesylate (RM) is a monoamine oxidase inhibitor that is commonly used to alleviate the symptoms of Parkinson’s 
disease. However, it suffers from low oral bioavailability due to its extensive hepatic metabolism in addition to its hydrophilic 
nature which limits its ability to pass through the blood–brain barrier (BBB) and reach the central nervous system where it 
exerts its pharmacological effect. Thus, this study aims to form RM-loaded spanlastic vesicles for intranasal (IN) adminis-
tration to overcome its hepatic metabolism and permit its direct delivery to the brain. RM-loaded spanlastics were prepared 
using thin film hydration (TFH) and modified spraying technique (MST). A  23 factorial design was constructed to study 
and optimize the effects of the independent formulation variables, namely, Span type, Span: Brij 35 ratio, and sonication 
time on the vesicles᾽ characteristics in each preparation technique. The optimized system prepared using MST (MST 2) has 
shown higher desirability factor with smaller PS and higher EE%; thus, it was selected for further in vivo evaluation where 
it revealed that the extent of RM distribution from the intranasally administered spanlastics to the brain was comparable 
to that of the IV drug solution with significantly high brain-targeting efficiency (458.47%). These results suggest that the 
IN administration of the optimized RM-loaded spanlastics could be a promising, non-invasive alternative for the efficient 
delivery of RM to brain tissues to exert its pharmacological activities without being dissipated to other body organs which 
subsequently may result in higher pharmacological efficiency and better safety profile.

Keywords Rasagiline mesylate · Spanlastics · Thin film hydration · Modified spraying technique · Intranasal · Brain 
targeting
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ANOVA  Analysis of variance
AUC   Area under curve
AUMC  Area under first moment curve
BBB  Blood-brain barrier
BTE%  Brain-targeting efficiency
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MDT  Mean dissolution time
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Tc  Transition temperature
TEM  Transmission electron microscopy
TFH  Thin film hydration
UV  Ultraviolet
ZP  Zeta potential

Introduction

Parkinson’s disease (PD) is one of the most popular neuro-
degenerative diseases that develops after the loss of dopa-
minergic neurons in the substantia nigra and the accumula-
tion of α-synclein, inside some cytoplasmic bodies called 
Lewy bodies [1]. The incidence of PD increases with aging, 
some environmental factors like exposure to carbon monox-
ide or pesticides in high levels, and other hereditary genetic 
factors. It is also more prevalent in males than females. 
Patients with PD show some motor symptoms like trem-
ors, bradykinesia, and instability in the posture, in addition 
to non-motor changes such as sleep disorder, depression, 
hallucinations, dementia, and cognitive impairment. The 
diagnosis of the disease is based on the clinical symptoms 
and family history with no definite laboratory investiga-
tion except for histological observation of α-synclein inside 
Lewy bodies. Positron emission tomography and single 
photon emission computed tomography tests have been 
performed recently using dopaminergic ligand to indicate 
dopamine deficiency and metabolism which improved the 
certainty of the diagnosis [2]. The management and treat-
ment of PD are usually directed towards the improvement 
of the clinical symptoms and prevention of more neuronal 
degeneration [3]. The treatment strategy always begins with 
restoring dopamine levels in the substantia nigra through 
the administration of levodopa (L-DOPA). As a common 
adjuvant with L-DOPA, monoamine oxidase type B (MAO-
B) inhibitors such as rasagiline and selegiline are widely 
used. MAO-B inhibitors act to inhibit the degradation of 
dopamine by monoamine oxidase enzyme which prevents 
further decrease in the dopamine levels [4].

Rasagiline mesylate (RM) is a selective potent irrevers-
ible inhibitor of MAO-B that is used to restore dopamine 
levels inside the central nervous system (CNS). It is rapidly 
absorbed after oral administration to reach its maximum 
concentration in plasma within 1 h; however, it has a short 
half-life of 1.5–3.5 h [5]. RM shows low oral bioavailabil-
ity as it is extensively metabolized by cytochrome p450. In 
addition, the hydrophilic nature and high water solubility of 
RM limit its ability to pass through the blood–brain barrier 
(BBB) and reach its active site [6].

Recently, the intranasal (IN) route for drug administra-
tion has become far superior to other conventional routes in 
improving the delivery of drugs into the central nervous sys-
tem (CNS) through BBB [7]. The intranasally administered 

drug may reach the brain directly via the olfactory pathway 
or after absorption into the lymphatic system and then to the 
cerebrovasculature to reach the brain [8]. The direct move-
ment through the olfactory pathway involves transcellular 
and paracellular penetration [9]. The intranasally adminis-
tered drug can travel along the olfactory sensory nerves to 
reach olfactory bulb. After which, it can diffuse through 
the adjacent nerves present in the cerebrum to the different 
brain regions [10]. Thus, the IN route tends to overcome the 
first pass effect for the drugs that are extensively metabo-
lized after oral administration. Subsequently, this gives an 
opportunity for lower doses and less side effects [11]. In 
addition, the large surface area of the nasal mucosa and the 
underlying rich vasculature provide high absorption rates 
and faster onset of action [12]. It can also be used for the 
delivery of large peptide macromolecules such as protein-
based antigens [13]. Thus, the intranasal route was used for 
the novel treatment of CNS disorders like Parkinson’s dis-
ease and Alzheimer’s disease by stem cells [14]. Several 
commercial intranasal products are now available to treat 
CNS disorders like  Nayzilam® nasal spray developed by 
UCB, Inc., Belgium, and  Nayzilam®, a midazolam spray, 
which was developed to stop acute seizure episodes [15]. 
Also,  Zomig® nasal spray (2.5 or 5 mg of zolmitriptan) was 
developed by AstraZeneca, Inc., Canada, to relieve acute 
migraine attacks [16, 17].

On the other hand, the pharmaceutical applications of 
nanoparticles have showed significant progress in the diag-
nosis and treatment of different disorders. The potential to 
manipulate the particle size, the surface charge, and the 
shape of the nanoparticles has contributed to their diverse 
wide applications as drug carriers and imaging agents [18]. 
Among their numerous advantages, their ability to pass 
through BBB after intranasal administration is considered 
one of the gold standard applications of nanoparticles devel-
opment to study the pathogenesis and alleviate the symp-
toms of many CNS disorders. They can also be used for 
improving the therapeutic performance and preventing some 
of the peripheral and systemic side effects of some chemo-
therapeutic agents used for brain cancers [19]. Nanoparticles 
are also able to overcome the rapid intranasal mucocilliary 
clearance due to their rapid absorption aided by their small 
particle size and elasticity that permit the direct passage 
of the intranasally administered nanoparticles through the 
olfactory pathway to brain [20]. Spanlastics are flexible, bio-
degradable, and deformable nanovesicles that are composed 
mainly of Span as a non-ionic surfactant and edge activator 
(EA). They are characterized by their spherical unilamellar 
or multilamellar structure with an inner core that is able 
to encapsulate hydrophilic or lipophilic drugs and improve 
their bioavailability, thus protecting the encapsulated drug 
against the external environment and the extensive hepatic 
metabolism. The proper choice of the EA that provides the 
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required degree of elasticity and deformability is a keypoint 
during spanlastic formulation to facilitate their passage 
through the tight junctions of the relatively impermeable 
membranes [21, 22]. In spite of their unique surface charac-
ters, few studies have investigated their potential application 
for IN administration of centrally acting drugs. Zolmitriptan-
spanlastics were formulated for the treatment of migraine 
episodes where El-Nabarawy et al. [23] have found that the 
intranasally administered nanovesicles showed better alle-
viation of migraine episodes when compared to the in vivo 
outcomes of the available commercial products. IN spanlas-
tics were also used to improve the brain-targeting proper-
ties of carbamazepine [24] and granisetron hydrochloride 
through its formulation in a nasal spanlastic gel insert [25].

The work in this study aims to formulate a new vesicular 
nanosystem to enhance the distribution of RM to the brain 
rather than the systemic circulation. To achieve our goal, 
RM-loaded spanlastic vesicular systems were prepared using 
different preparation techniques, namely, thin film hydration 
(TFH) and modified spraying technique (MST), to fabricate 
vesicles with small vesicular size and high drug encapsu-
lation.  23 full-factorial designs were constructed for both 
techniques using the same independent formulation vari-
ables, and the results of the formulated runs were statisti-
cally characterized relative to the values of their particle size 
(PS), polydispersity index (PDI), zeta potential (ZP), and 
entrapment efficiency (EE%), compared and optimized to 
generate the best compromise of all the selected formulation 
variables. The in vitro release profiles of RM from the opti-
mized systems prepared by each technique were evaluated, 
and their morphological characteristics were investigated 
via transmission electron microscope (TEM). The pH of 
the optimized systems was also measured to ensure its safe 
intranasal administration. And finally, the optimized sys-
tem with the smallest PS and highest desirability factor was 
selected for further in vivo pharmacokinetic evaluation to 
demonstrate its brain-targeting efficiency and its estimated 
in vivo performance.

Methods

Materials and methods

Rasagiline mesylate (RM),  Span®60 (sorbitan monostea-
rate),  Span®80 (sorbitan monooleate), Brij 35 (polyoxyl 
23 lauryl ether), and dialysis cellulose membrane (D9777-
100FT, flat width 25 mm, 1400 molecular weight cut-off) 
were obtained from Sigma-Aldrich Inc. AL. (St. Louis, MO, 
USA). Sucrose, potassium chloride, sodium chloride, diso-
dium hydrogen phosphate, hydrogen disodium phosphate, 
calcium chloride, and ethanol were purchased from EL-Nasr 
ln pharmaceutical chemicals company (Cairo, Egypt).

Study design

RM-loaded spanlastic nanovesicles were prepared using 
two different preparation methods, namely, thin film 
hydration (TFH) technique and modified spraying tech-
nique (MST). A two-level, three-factor design  (23) was 
developed using Design-Expert  12® software (Stat-ease 
Inc., Minneapolis, MN, USA) to study the effects of the 
different formulation variables on the characteristics of 
the prepared spanlastic nanovesicles in each preparation 
method. The factorial design is an experimental build-
ing methodology that is commonly used for studying the 
effects of the independent factors and their interactions 
on one or more selected variables [26]. The independent 
formulation variables investigated are Span type  (Span®80 
or  Span®60; X1), Span: Brij 35 ratio (1:1 or 4:1; X2), and 
the sonication time (0 or 60 s; X3), whereas the formulated 
vesicles are characterized in terms of: particle size (PS; 
Y1), polydispersity index (PDI; Y2), zeta potential (ZP; 
Y3), and entrapment efficiency (EE%; Y4) as shown in 
Table 1. Each design is constructed of 8 runs in duplicates 
as shown in Tables 2 and 3. The statistical influence of 
the formulation variables on the nanovesicular properties 

Table 1  Levels of the 
independent formulation 
variables for a  23 factorial 
design and the optimization 
criteria for the responses

Independent variables Levels

X1: Span type Span®80  Span®60
X2: Span: Brij 35 ratio 1:1 4:1
X3: Sonication time (sec) 0 60

Responses Optimization goal

Y1: Particle size (nm) Minimize
Y2: Polydispersity index Minimize
Y3: Zeta potential (mv) Maximize (absolute values)
Y4: Entrapment efficiency (%) Maximize
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was evaluated via analysis of variance (ANOVA) using 
Design-Expert  12® where the statistical significance was 
considered at p value < 0.05.

Preparation of RM‑spanlastic vesicles

Thin film hydration technique

RM-loaded spanlastics are prepared by TFH [27] as per the 
formulation variables shown in Table 2. Briefly,  Span®60 
or  Span®80 was dissolved in 2 mL ethanol in a round-
bottom flask which was then evaporated under vacuum 
using rotary evaporator (Rotavapor, Heidolph, 1300 w, 
Schwabach, Germany) at 60 °C and 90 rpm. A thin dried 
film was formed which was hydrated by 5 mL phosphate-
buffered saline (PBS) containing RM (20 mg) and Brij 
35 at 60 °C and 150 rpm to formulate the spanlastic dis-
persion. The prepared dispersion was then sonicated in a 
water bath sonicator (Elma, Elma Schmidbauer GmbH, 
Singen, Germany) to reduce the particle size [28]. Finally, 
the obtained spanlastic vesicular systems were subjected to 

four consecutive freeze–thaw cycles at –8 °C for 8 h and 
25 °C for 1 h aiming to enhance the entrapment of RM 
inside the nanosystem [29].

Modified spraying technique

RM-loaded spanlastic vesicles are also prepared using 
MST [30, 31] as per Table 3. Concisely,  Span®60 or 
 Span®80 (100  mg), Brij 35, and RM (20  mg) were 
dissolved in 2 mL ethanol to form the organic phase 
which was then transferred to a spray device. The aque-
ous phase was prepared of sucrose solution (9% w/v in 
double-distilled water) and heated to 60 °C in a closed 
system. The organic phase was then sprayed on the aque-
ous medium at a rate of 250 µL each 5 s while stirring 
at 1500 rpm and 60 °C (230 V-50/60 HZ, DAIHAN Sci-
entific Co., Ltd. South Korea). Finally, the formulated 
nanodispersions were subjected to freeze–thaw cycles 
as previously described. All systems were prepared ran-
domly in duplicates.

Table 2  Composition of RM-loaded spanlastics prepared via thin film hydration technique corresponding to the developed  23 factorial design 
with their resultant dependent responses

PS particle size, PDI polydispersity index, ZP zeta potential, EE% entrapment efficiency percentage

System run X1: Span type X2: Span: 
Brij 35 ratio

X3: Sonication 
time (second)

Y1: PS ± SD
(nm)

Y2: PDI ± SD Y3: ZP ± SD (mV) Y4: EE ± SD (%)

TFH 1 Span®60 1:1 0 164.631 ± 03.6 0.369 ± 0.007 (-)41.7 ± 1.58 47.75 ± 0.36
TFH 2 Span®60 1:1 60 211.766 ± 51.3 0.755 ± 0.088 (-)45.6 ± 0.10 56.46 ± 3.06
TFH 3 Span®60 4:1 0 537.065 ± 29.2 0.707 ± 0.055 (-)46.2 ± 2.55 58.21 ± 0.09
TFH 4 Span®60 4:1 60 232.916 ± 16.9 0.483 ± 0.066 (-)42.7 ± 0.70 50.11 ± 2.84
TFH 5 Span®80 1:1 0 251.233 ± 30.7 0.487 ± 0.028 (-)40.8 ± 2.05 52.30 ± 2.60
TFH 6 Span®80 1:1 60 172.816 ± 14.1 0.642 ± 0.037 (-)40.4 ± 0.86 48.71 ± 1.50
TFH 7 Span®80 4:1 0 250.666 ± 46.6 0.440 ± 0.027 (-)48.4 ± 1.23 45.09 ± 3.62
TFH 8 Span®80 4:1 60 151.333 ± 04.5 0.299 ± 0.037 (-)44.6 ± 2.03 50.33 ± 1.65

Table 3  Composition of RM-loaded spanlastics prepared via modified spraying technique corresponding to the developed  23 factorial design 
with their resultant dependent responses

PS particle size, PDI polydispersity index, ZP zeta potential, EE% entrapment efficiency percentage

System run X1: Span type X2: Span: 
Brij 35 ratio

X3: Sonication 
time (second)

Y1: PS ± SD
(nm)

Y2: PDI ± SD Y3: ZP ± SD (mV) Y4: EE ± SD (%)

MST 1 Span®60 1:1 0 103.509 ± 6.2 0.333 ± 0.038 (-)32.8 ± 1.66 56.17 ± 0.03
MST 2 Span®60 1:1 60 84.060 ± 4.5 0.654 ± 0.097 (-)38.3 ± 2.30 53.60 ± 1.90
MST 3 Span®60 4:1 0 522.666 ± 34.0 0.703 ± 0.033 (-)33.1 ± 1.13 46.29 ± 2.36
MST 4 Span®60 4:1 60 359.183 ± 33.9 0.540 ± 0.069 (-)30.1 ± 2.10 51.01 ± 3.05
MST 5 Span®80 1:1 0 143.266 ± 9.2 0.409 ± 0.013 (-)37.9 ± 0.23 38.42 ± 3.15
MST 6 Span®80 1:1 60 165.280 ± 48.3 0.583 ± 0.059 (-)39.6 ± 0.85 42.41 ± 0.99
MST 7 Span®80 4:1 0 266.750 ± 30.1 0.496 ± 0.016 (-)43.6 ± 4.45 38.03 ± 0.62
MST 8 Span®80 4:1 60 163.083 ± 23.1 0.405 ± 0.110 (-)39.4 ± 1.73 43.49 ± 5.70
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Characterization of RM‑loaded spanlastics

Determination of particle size, polydispersity index, 
and zeta potential

The PS, PDI, and ZP values for all systems were measured 
by photon correlation spectroscopy using Malvern Zetasizer 
(Malvern Panalytical Ltd., Malvern, UK). Briefly, all sam-
ples were diluted with double-distilled water [32] and meas-
ured at 25 °C. The mean individual values for two replicate 
batches (each with three measurements) are determined, and 
their mean values ± SD are presented in Tables 2 and 3.

Determination of RM entrapment efficiency (EE%)

The entrapment of RM inside the spanlastic vesicles was 
determined after the separation of the unentrapped drug 
using dialysis method [33]. In brief, 2 mL of each system 
was enclosed in a dialysis bag and immersed in 25 mL of 
double-distilled water for 4 h, which was previously esti-
mated to ensure the complete liberation of free unentrapped 
drug to the outer compartment. The amount of RM in the 
outer compartment was then determined spectrophotometri-
cally at λmax 265 nm (Shimadzu UV-1800, kyoto, Japan) 
[34]. Finally, the EE% of RM was calculated using the fol-
lowing Eq. (1) [35]:

The individual values for two replicates were determined 
and their mean values were reported.

Optimization of RM‑loaded spanlastic

The different independent variables for the formulation of 
RM-loaded spanlastics were optimized using Design-Expert 
 12® software. The optimization criteria are set to minimize 
the PS and PDI while maximizing the absolute ZP values 
and EE% as shown in Table 1. The same optimization cri-
teria were applied to both designs. The optimized systems 
obtained from both techniques were prepared and used for 
further evaluation.

Characterization of the optimized systems

In vitro release characteristics of RM

The in vitro release of RM from the optimized systems was 
investigated using modified Franz diffusion cells (Franz dif-
fusion cell with dialysis membrane) [36]. In a few words, an 
exact volume of each optimized system was placed in the 

(1)Entrapment eff iciency %(EE%) =
(Total drug amount − free unentrapped drug)

drug amount
× 100

donor cell, and the dialysis process was performed against 
50 mL of simulated nasal fluid (SNF;  CaCl2.2H2O 0.32 mg/
mL, NaCl 7.45 mg/mL, KCl 1.29 mg/mL, pH 6.5) [37] main-
tained at 37 °C while stirring at 50 rpm [38]. Three milliliter  
sample was withdrawn at each time interval (0.25, 0.5, 1, 1.5, 
2, 3, 4, 6, 8, 10 and 12 h) and replaced with equal volumes 
of drug free SNF [39]. The amount of RM in each sample 
was measured spectrophotometrically at λmax 265 nm. The 
in vitro release profiles of the two optimized systems were 
compared to RM aqueous solution profile. Furthermore, the 
mean dissolution time (MDT) was calculated for both sys-
tems following Eq. (2) [40]:

where j is the sample number, tj* is the midpoint time 
between t and tj-1 that can be calculated by (t + tj-1/2), n is 
the number of release samples, and ∆Mj is the additional 
amount released between t and tj-1. The higher the MDT 
value, the slower the drug release rate.

Transmission electron microscopy (TEM)

The morphological characteristics of the two optimized sys-
tems were evaluated by transmission electron microscope 

(Joel 1400, Tokyo, Japan). The micrographs were prepared 
by diluting one drop of spanlastic dispersion followed by 
adsorption on carbon-coated copper grids [41]. The excess 
dispersion was removed with a filter paper, and then, the 
sample was left to dry at room temperature for 10 min prior 
to microscopic visualization at 80 kv [42].

pH measurement

The pH of the optimized systems was measured to ensure 
their safety upon application into the nasal mucosa. Briefly, 
a definite volume of each optimized system was diluted with 
double distilled water in ratio (1:10), and then, the pH was 
measured using a calibrated pH meter (Jenway 3510, Jenway, 
Staffordshire, UK) [43].

In vivo evaluation of RM‑loaded spanlastics

In order to evaluate the in vivo performance of the selected 
MST 2, an in vivo pharmacokinetics study was performed 
to measure the bioavailability and brain-targeting ability of 
the selected system after intranasal administration into rats. 

(2)MDT =

∑n

j=1
t∗
j
ΔMj

∑n

j=1
ΔMj
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The study protocol was previously approved by the research 
ethics committee for the experimental and clinical studies 
at the Faculty of Pharmacy Cairo University with approval 
code (PI 2680). Briefly, forty-eight rats were divided into 
two groups (n = 24), and each group was divided into eight 
subgroups (n = 3). The average weight of the rats was 180 
gm, and they were subjected to 12-h cycles of light/dark-
ness. They were kept in cages with free access to food 
and water. The relative humidity was maintained in range 
40–60%, and the temperature ranged from 20 to 25 °C dur-
ing the experiment.

The first group was administered the optimized MST 2 
equivalent to 0.05 mg/kg/day of RM [44] intranasally (IN) 
using a polyethylene tube which was attached to Hamilton 
syringe, whereas the second group was administered the 
same dose of an intravenous (IV) RM aqueous solution 
through the tail vein. Blood samples were collected from the 
rats at specified time intervals (0.25, 0.5, 1, 1.5, 2, 4, 8, and 
12 h) via the puncture of lateral vesicular vein, centrifuged 
at 4000 rpm for 15 min, and separated to obtain the plasma 
that was then frozen at –80 °C until further investigations. 
Additionally, six rats (three of each subgroup) were anaes-
thetized and sacrificed to separate the brain tissues at 0.5, 
1, 2, 4, and 8 h. The brain tissues were washed twice with 
normal saline and then weighed. An equal weight of nor-
mal saline was added to each brain sample, which was then 
homogenized (Heidolph DIAX 900, Heidolph Instruments, 
Schwabach, Germany) and kept frozen at – 80 °C until anal-
ysis. RM levels in plasma samples and brain homogenates 
were measured by a validated liquid chromatography-mass 
spectrometry (LC–MS/MS) method.

Sample preparation

Calibration curves of RM in plasma and brain homogenate 
were constructed using clonazepam as internal standard (IS). 
Briefly, specific volumes of RM stock solution were mixed 
with one hundred microliter of clonazepam stock solution 
(100 ng/mL) and then spiked into 0.5 mL plasma or brain 
homogenate to obtain the following concentrations: 0.1, 1, 
10, 20, 100, and 1000 ng/mL. For RM extraction from the 
samples, 0.5 mL of plasma samples or brain homogenates 
was mixed with 100 µL of clonazepam solution as IS and 
4 mL of ethyl acetate to precipitate the proteins followed by 
vortexing (Stuart SA8, BiBBY Sterlin Ltd., UK) for 5 min 
and centrifugation for 10 min at 3000 rpm. The supernatant 
was transferred to a new tube to evaporate the organic sol-
vent under vacuum using a vacuum concentrator (Eppendorf 
5301, Hamburg, Germany). The obtained dry residue was 
reconstituted in 0.5 mL of the mobile phase (acetonitrile: 
0.1% formic acid solution in water at a ratio (80:20 v/v)) 
after then, 9 µL of the obtained solution was injected into 
(LC–MS/MS) for analysis.

LC–MS/MS The analysis of RM in plasma samples and 
brain homogenates was done by LC–MS/MS (Shimadzu 
CBM20A, Japan) fitted with mass spectrometer AB Sciex 
4000 (Sciex Instruments, USA) and auto-sampler (Shimadzu 
SIL20A, Japan). The mass spectrometer was equipped with 
turbo ion spray having a positive polarity with tempera-
ture set at 500  °C. The samples were analyzed by inject-
ing aliquots of 9 µL, and the mobile phase flow rate was 
adjusted at 0.8 mL/min. The transition was from 172.036 to 
117.000 m/z for RM and from 316.024 to 270 m/z in case of 
clonazepam. The analysis of the obtained results was done 
using Analyst software (version 1.6.3, Sciex Instruments, 
Framingham, USA).

Pharmacokinetic study

Non-compartmental pharmacokinetic model was applied to 
analyze RM plasma and brain levels using Kinetica software 
(version 2000, Arlington, USA). There are different pharma-
cokinetic parameters, namely, Cmax (maximum concentration 
in brain and plasma), Tmax (time to reach maximum con-
centration), AUC 0-∞ (area under the curve), and  AUMC0-∞ 
(area under first moment curve). AUC and AUMC were cal-
culated by the trapezoidal rule; MRT (mean residence time; 
MRT =  AUMC0-∞/AUC 0-∞) [45], half-life, and elimination 
rate constant (k) were calculated for the intranasally admin-
istered MST 2 and the intravenous RM solution. In order to 
ensure the brain-targeting ability of the formulated system, 
the brain-targeting efficiency (BTE%) which compares the 
specific delivery of drug to brain after IN administration and 
IV administration was calculated as per Eq. (3) [46]:

where PIN and BIN are the AUC 0-∞ in the plasma (P) and 
brain (B) after intranasal administration of the optimized 
system, while  PIV and  BIV are the AUC 0-∞ after IV adminis-
tration. BTE% values above 100 indicate efficient delivery 
of the drug to the brain after IN administration [47].

In addition, direct transfer percentage (DTP%) was also 
calculated to measure the extent of RM reaching the brain 
directly from the nose relative to the total amount reaching 
the brain after IN administration. DTP% was calculated fol-
lowing Eqs. (4) and (5) [48]:

(3)BTE % =

BIN∕PIN

BIV∕PIV

× 100

(4)DTP% =

(

BIN − Bx

)

BIN

× 100

(5)Bx =
BIV

PIV

× PIN



1159Drug Delivery and Translational Research (2023) 13:1153–1168 

1 3

where Bx is RM fraction that reached brain through BBB 
from the systemic circulation after intranasal administra-
tion. Positive values for DTP% suggest that the drug passes 
directly from the nose to the brain after IN administration, 
while zero or negative values indicate that the drug reaches 
the brain after being cleared from the nasal cavity to blood 
stream and then pass through BBB [49]. The pharmacoki-
netic parameters were analyzed statistically by ANOVA at p 
value < 0.05 using SPSS  (SPSS® statistics program software, 
IBM, USA).

Results and discussion

The blood–brain barrier (BBB) is a term used to describe 
the non-fenestrated nature of the microvasculature reach-
ing the CNS. Its tight junctions hinder the movement of 
ions, molecules, cells, and most therapeutic compounds 
across their wall to the brain tissues [50]. The PS of the 
different compounds plays a crucial role in enhancing its 
transportability across the BBB where the endocytosis of 
different components can be enhanced by reducing their 
PS and increasing their surface area [51]. It was previously 
claimed that nanoparticles less than 100 nm show the high-
est potential for delivering most drugs through BBB [52]. 
In this study, we managed to prepare RM-loaded spanlas-
tics using 2 different techniques, TFH and MST, aiming 
to produce nanovesicles with small PS and high EE%. 
TFH is a commonly used technique for the preparation of 
nanovesicles because of its ability in producing a uniform 
nanodispersion [53]. In our preliminary trials, TFH was 
successfully adopted to formulate RM-loaded spanlastics 
with high EE%; however, it was incapable of producing 
vesicles with PS less than 100 nm; thus, MST was applied 
to produce vesicles with smaller PS. The preparation of 
nanovesicles via the novel spraying methods is simple and 
results in vesicles with small PS which may enhance their 
activity when compared to the larger particles prepared by 
the conventional methods [54]. Spraying techniques are 
considered “break-down” methods for the conversion of 
a liquid solution into nanoparticles. The characteristics of 
the final nanoparticles such as PS and surface morphology 
can be modified by adjusting the composition and the con-
centration of the starting solution as well as the size of the 
atomized droplets [55]. The modified spraying technique 
(MST) is considered a modification of the ethanol injec-
tion method to produce more uniform and size-controlled 
nanovesicles with high surface area [30]. Our preliminary 
results suggested that MST is more efficient in reducing PS 
than the conventional ethanol injection method which may 
be explained by the difference in the organic phase injec-
tion method in both techniques where the ethanol injection 
depends on the rapid injection of the organic phase in a 

continuous stream [56], whereas MST works via spraying 
small organic phase droplets in the aqueous medium. It is 
worth mentioning that several atomizers were tested in the 
screening stage and the one resulted in the smallest PS of 
RM-loaded spanlastics was selected. The use of ethanol in 
both preparation techniques was attributed to its beneficial 
impact on producing smaller vesicles, increasing ZP and 
EE%. Ethanol can impart a certain degree of steric stabi-
lization to the formulated vesicles owing to its ability in 
interpenetrating the lipid bilayers which results in smaller 
vesicular size [57]. Additionally, ethanol has a condensing 
ability on the lipid membranes as it causes breakdown of 
large unilamellar vesicles (LUVS) to small multilayer vesi-
cles which enhances RM partitioning inside the lipid bilayer 
[58, 59]. Furthermore, the penetrability of ethanol through 
the vesicles layers provokes the expulsion of the counter 
ions out of the vesicles which imparts more negative charge 
to the membrane and subsequently higher ZP values [60].

Statistical analysis

RM-loaded spanlastic nanovesicles were prepared by TFH 
and MST in which  23 factorial design was constructed to 
study the effects of the different formulation variables on the 
characteristics of the formulated RM-spanlastic nanovesicles 
using both techniques. Design-Expert  12® software was used 
to analyze the variables affecting the dependent responses. 
The three-factor interaction model (3FI) was suggested by 
the software to evaluate all the dependent responses in both 
techniques except for the EE% in MST which was analyzed 
by the main effect model. The selected model orders showed 
the highest R2 values, high adjusted and predicted R2 val-
ues with the least difference between them, the lowest pre-
dicted residual error sum of squares (PRESS) values, and 
adequate precision values higher than 4 suggesting the high 
discriminating performance of the built models [61]. The 
predicted R2 values of the models are used to measure the 
predictability of the built designs. As previously stated in 
the literature [62], the adjusted R2 and predicted R2 are in 
good correlation when the difference between their values 
does not exceed 0.2. The statistical ANOVA values for the 
different responses in both preparation techniques are shown 
in Table 4. All p values were < 0.05, which indicates the 
statistical significance of the built models.

Evaluation of RM spanlastic vesicles

Effect of the independent variables on the particle size

The PS of the formulated nanovesicles is an important 
parameter that affects the direct transfer of the vesicles 
from the nose to the brain as it was previously reported 
[63] that nanoparticles with size smaller than 100 nm may 
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pass directly to the brain via olfactory pathway. In our 
study, the PS of the vesicles obtained with TFH was from 
151.333 to 537.065 nm, whereas the PS of the formulated 
nanovesicles ranged from 84.060 to 522.666 nm in MST. 
These results support the previous claim that smaller 
nanovesicles can be easily formulated using spraying 
techniques. Statistical analysis of the data in both tech-
niques revealed that the Span type, Span: Brij 35, and 
sonication time significantly affected the vesicles’ size. 
ANOVA results have shown that the PS of the formulated 

spanlastics was significantly affected by the type of Span 
used with p values of 0.0041 and 0.0017 for TFH and 
MST, respectively. The effect of each Span type differs 
according to the amount of EA used as there was a sig-
nificant interaction between the type of Span and Span: 
Brij 35 ratio with respective p values 0.0008 and < 0.0001 
for TFH and MST. Meanwhile, the effect of Span: Brij 
35 ratio on the spanlastics᾽ size was also significant with 
p = 0.0016 for TFH and < 0.0001 for MST. In general, 
increasing the amount of EA to a ratio of 1:1 results in 

Table 4  Summary of model 
statistics for the measured 
responses of RM-loaded 
spanlastics prepared by TFH 
and MST methods

TFH  thin film hydration,  MST  modified spraying technique,  PS  particle size,  PDI  polydispersity 
index, ZP zeta potential, EE% entrapment efficiency percentage, 3FI three factorial interaction, adeq.preci-
sion adequate precision, PRESS predicted residual error of sum squares

TFH MST

Response PS (nm) PDI ZP (mV) EE (%) PS (nm) PDI ZP (mV) EE (%)

Model 3FI 3FI 3FI 3FI 3FI 3FI 3FI Main effect
R2 0.9307 0.8724 0.6509 0.6442 0.9537 0.6652 0.7636 0.7309
Adjusted R2 0.8845 0.8087 0.5637 0.5895 0.9305 0.5815 0.7045 0.6636
Predicted R2 0.7809 0.6735 0.3794 0.4611 0.8814 0.4048 0.5797 0.5216
p value < 0.0001 0.0003 0.0044 0.0012 < 0.0001 0.0035 0.0005 0.0010
Adeq. precision 13.9057 10.1994 8.1371 7.7240 17.4029 7.8518 10.2505 8.1520
PRESS value 50,027.29 0.1340 95.050 191.76 38,740.08 0.1784 148.730 371.97

Fig. 1  3D surface plot for the 
effect of Span type and Span: 
Brij 35 ratio on the PS (a), 
line plot for the main effect of 
sonication time on the PS (b), 
the main effect of Span: Brij 35 
ratio on the ZP (c), and the main 
effect of Span type on the EE% 
(d) of RM-loaded spanlastics 
prepared by TFH
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vesicles with lower PS as shown in Figs. 1a and 2a. This 
reduction in the PS values could be correlated with the 
lower interfacial tension observed with higher amounts 
of the EA [24, 64]. In addition, the lower amounts of EA 
used at the 4:1 ratio could be insufficient to surround the 
whole surface of the formulated vesicles which may result 
in a hindered emulsification process and subsequent par-
ticles coalescence to produce larger vesicles with smaller 
active surface area that can be efficiently stabilized with 
the available EA molecules [65]. These results could also 
be explained based on the structure of Brij 35 in water. 
Low concentrations of Brij 35 may result in a more diluted 
solution with higher chance for the formation of extended 
and less twisted hydrocarbon chains which may lead to the 
formation of vesicles with larger sizes [66]. This effect of 
Span: Brij ratio on the PS of the formulated spanlastics 
was more significant when  Span®60 was used. This could 
be attributed to the difference in the structure between 
 Span®60 and  Span®80.  Span®80 is characterized by the 
presence of double bond in the eighth carbon [67] which 
gives their molecules flexible structure and ability to bend 
their chain in the spanlastic layers, while other types of 
Span such as  Span®60 and  Span®20 possess saturated 
hydrocarbon chains with no double bond; thus, they have 

lower tendency to be accommodated effectively inside 
the vesicle layers [68] especially in the presence of low 
amounts of EA (ratio 4:1) resulting in larger PS.

Finally, it is observed that the nanovesicular dispersions 
subjected to longer time of sonication during preparation 
resulted in spanlastics with smaller PS either with TFH 
(p = 0.0006) or MST (p = 0.0068) as illustrated in Figs. 1b 
and 2b, respectively. This effect could be attributed mainly to 
the prolonged impact of the ultrasonic waves on the formu-
lated vesicles. These waves tend to form cavitation bubbles 
within the spanlastics’ layers, which then blow and shatter 
the large spanlastic vesicles into more smaller vesicles [69].

Effect of independent variables on the zeta potential

Zeta potential is an important parameter to evaluate the physi-
cal stability of the colloidal dispersions. Nanoparticle disper-
sions with ZP values more than 30 (absolute values) are con-
sidered sufficiently stable and not liable to aggregation [70].

In our study, the ZP values of the spanlastic vesicles for-
mulated using TFH were in range of − 48.43 to − 40.4 mV, 
while those prepared by MST ranged from − 43.6 
to − 30.1 mV, suggesting that the formulated vesicle are 
highly stable devoid from any aggregated particles [71]. 

Fig. 2  3D surface plot for the 
effect of Span type and Span: 
Brij 35 ratio on the PS (a), 
line plot for the main effect of 
sonication time on the PS (b), 
the main effect of Span type on 
the ZP (c), and EE% (d) of 
RM-loaded spanlastics prepared 
by MST
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The statistical analysis of data shows that the ZP of the 
vesicles formulated using TFH was significantly affected 
(p = 0.0083) by the Span: Brij 35 ratio as shown in Fig. 1c 
where higher ZP values were observed at higher Span: Brij 
35 ratio (4:1). This can be explained based on the effect 
of EA concentration on the PS. The higher vesicles’ size 
attained at 4:1 Span: Brij 35 ratio may reduce the electrical 
mobility of the vesicles and increase their ZP values [72]. In 
contrast, the ZP values in MST are significantly (p = 0.0003) 
affected by the type of Span applied during their preparation 
as shown in Fig. 2c. This can also be explained in the light 
of the structural difference between Span®80 and Span®60 
where Span®80 is characterized by the presence of unsatu-
ration in the eighth carbon. It was previously reported by 
Park et al. [73] that the higher the degree of unsaturation in 
the vesicular components, the higher the ZP values.

Effect of independent variables on the entrapment 
efficiency

The entrapment of RM inside the spanlastic vesicles pre-
sented a great challenge during formulation because of its 
tendency, as a hydrophilic drug, to escape from the nanoves-
icles to the external aqueous phase [74]. In the preliminary 
trials, freeze and thaw cycles were successful in increasing 
the EE% from 16 to 27% in TFH, while EE% was increased 
from 39 to 55% in MST. The effect of the consecutive freeze 
and thaw cycles on the EE% was previously studied by Costa 
et al. [75] where they found that the repetitive freeze and 
thaw cycles improved the liposomal EE% by reducing their 
lamellarity, forming more uniform dispersion and disrupting 
phospholipid bilayers, allowing more drug molecules to dif-
fuse inside the nanovesicles. The EE% values observed with 
TFH ranged from 45.09 to 58.21%, whereas it ranged from 
ranged from 38.03 to 56.17% in MST. Statistical analysis 
of the EE% data shows that the entrapment of RM inside 
spanlastic vesicles was significantly affected by the Span 
type with p values of 0.0228 and 0.0002 in TFH and MST, 
respectively, as shown in Figs. 1d and 2d. The amount of 
RM encapsulated within the spanlastic vesicles formulated 
using  Span®60 was higher than those formulated using 
 Span®80. This may be explained based on the phase transi-
tion temperature (Tc) of both surfactants which is higher in 

 Span®60. The higher Tc maintains the hydrophobic structure 
of  Span®60 in the completely extended and ordered orienta-
tion which may prevent RM leakage from the formulated 
spanlastic vesicles [76]. On the other hand, the lower EE% 
values observed with  Span®80 may be attributed to the 
unsaturated alkyl chains in  Span®80. The unsaturation of the 
alkyl chain may cause its tilting during preparation, which 
increases the vesicular membrane fluidity and subsequently 
its permeability, with higher chance for RM diffusion out of 
the prepared spanlastics [77].

Optimization of the spanlastic variables

The independent formulation variables for the preparation 
of RM-loaded spanlastics are optimized in both preparation 
techniques aiming to minimize the PS and PDI of the for-
mulated nanovesicles, while maximizing their ZP values and 
EE% as shown in Table 1. In TFH, Design-Expert  12® soft-
ware suggested “TFH 8” as the optimum system with desir-
ability factor 0.758 which is prepared using  Span®80 in ratio 
4:1 with Brij 35 and sonicated for 1 min, whereas “MST 2” 
was chosen from those prepared using MST method with 
desirability factor of 0.773. MST 2 was formulated using 
 Span®60 in a ratio 1:1 with Brij 35 and sonicated for 1 min. 
In order to ensure the validity of the built models in pre-
dicting the optimized formula, the two optimum systems 
are prepared and characterized where the observed and the 
predicted results for both systems are shown in Table 5. The 
two optimum systems, namely, TFH 8 and MST 2, were used 
for further characterization. 

Characterization of the optimized systems

In vitro RM release from the spanlastic vesicles

RM release from RM solution and the optimum systems 
(TFH 8 and MST 2) are presented in Fig. 3. As observed, 
the complete release of RM from the two optimum sys-
tems was extended up to 10 h compared to 4 h in case 
of RM solution. An initial burst release can be observed 
from both formulations, which may be accounted for the 
unentrapped portions of RM available in the nanovesicular 

Table 5  The predicted 
and observed values of 
the optimized RM-loaded 
spanlastics prepared by TFH 
and MST methods

PS  particle size,  PDI  polydispersity index,  ZP  zeta potential,  EE%  entrapment efficiency percent-
age, TFH thin film hydration, MST modified spraying technique

Method of 
preparation

Response PS (nm) PDI ZP (mv) EE (%)

TFH 8 Predicted values 141.425 0.296 (-) 45.420 52.317
Observed values 183.015 ± 37.185 0.358 ± 0.092 (-) 45.60 ± 3.148 50.84 ± 1.9815

MST 2 Predicted values 94.426 0.608 (-) 37.079 54.691
Observed values 84.060 ± 5.510 0.604 ± 0.046 (-) 39.30 ± 1.294 53.60 ± 1.9050



1163Drug Delivery and Translational Research (2023) 13:1153–1168 

1 3

dispersion and surface drug molecules that can be readily 
released to the external compartment [45, 78]. In addi-
tion, the hydrophilic nature of RM may prevent its deep 
impediment inside the lipid bilayer and promote its ten-
dency to escape from the formulated vesicles to the release 
media contributing to the initial burst release [79]. It is 
also obvious that RM release from MST 2 was more rapid 
compared to TFH 8. These observations coincide with the 
MDT values which were calculated to be 0.333 ± 0.0991, 
1.365 ± 0.3118, and 2.115 ± 0.1073 h for RM solution, 
MST 2, and TFH 8, respectively. The faster RM release 
observed with MST 2 compared to TFH 8 can be explained 
in terms of the difference in their PS. The smaller vesicles 
of MST 2 show larger effective surface area with higher 
dissolution and release rate [80]. On the other hand, the 
difference in the vesicles composition due to the different 
Span: Brij 35 ratio could be another reason for the higher 
release rate observed with MST 2. Increasing Brij  35 

concentration as an EA may result in an increased mem-
brane permeability [81], where the high hydrophilicity of 
Brij 35 demonstrated in its high HLB value (16) [82] may 
produce an ultra-deformable vesicles containing transient 
pores in the vesicular membrane that could enhance drug 
leakage and result in faster drug release rate [83].

Transmission electron microscope (TEM)

The transmission electron micrographs of TFH 8 (a) and 
MST 2 (b) are represented in Fig. 4. The optimum RM-loaded 
spanlastic systems prepared by both techniques showed the 
non-aggregated, spherical nature of the formulated spanlastic 
nanovesicles. However, the optimized vesicles formulated via 
MST showed a characteristic distinct opaque shell surround-
ing hollow vesicles which could be accredited to the spraying 
technique used in their preparation [84].

Fig. 3  In vitro release profile 
of RM from TFH-optimized 
system (TFH 8), MST-optimized 
system (MST 2), and RM solu-
tion (RM concentrations are 
represented as mean ± SD)

Fig. 4  Transmission electron 
micrographs of TFH-optimized 
system (TFH 8) (a: magni-
fication power = 40,000 ×) 
and MST-optimized system 
(MST 2) (b: magnification 
power = 25,000 ×)
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pH measurement

The pH of the optimum systems was measured to evaluate 
their safety upon application onto the nasal mucous mem-
brane. It was reported that the pH values of nasal prepara-
tions below 5.5 or higher than 6.5 may cause nasal irritation 
and affect the rate of drug penetration through the nasal epi-
thelium especially when the applied formula has a higher 
buffer capacity [85]. In our work, the measured pH of the 
optimized systems were 6.378 ± 0.1706 and 6.289 ± 0.0613 
for the TFH 8 and MST 2, respectively, which fall within the 

acceptable range for the intranasal preparations suggesting 
its safe, non-irritant effect on the nasal mucosa [86].

In vivo biodistribution of RM

MST 2 was chosen for the in vivo evaluation as it shows 
higher desirability factor [87] with lower PS and higher EE% 
when compared to TFH 8. Thus, MST 2 was administered 
intranasally at a dose of 0.05 mg/kg/day and compared to 
an intravenous RM solution. The concentrations of RM in 
plasma and brain tissues were measured by LC–MS/MS. 
The calibration curves of RM in plasma and brain homoge-
nates were constructed in concentrations ranged from 
0.1 to 1000 ng/mL with R2 values of 0.9996 and 0.9992, 
respectively. The pharmacokinetic parameters are calcu-
lated for the intranasal optimized system (IN-spanlastics) 
and the intravenous RM solution (IV-RM) to evaluate the 
brain-targeting behavior of MST 2 as presented in Table 6. 
The concentrations of RM inside brain at the different time 
intervals for both systems are shown in Fig. 5. It can be 
observed that the Tmax was shorter for the IV-RM when 
compared to IN-spanlastics which may be accounted for 
the intranasal systemic absorption and the time required 
for the spanlastics to pass through the olfactory pathway. It 
can also be observed that the IV solution showed a higher 
Cmax; however, the AUC 0-∞ of the intranasally administered 
MST 2 is insignificantly higher than the AUC 0-∞ of IV solu-
tion (p = 0.422) as presented in Table 6. In order to ensure 
the brain-targeting behavior of RM spanlastics, BTE% and 

Table 6  Mean pharmacokinetic parameters of RM in brain following 
intranasal administration of RM spanlastics (IN MST 2) and intrave-
nous RM solution (IV solution)

MST modified spraying technique, RM rasagiline mesylate, Cmax maximum 
concentration, Tmax time to reach maximum concentration, AUC  area under 
curve, K elimination rate constant, MRT mean residence time, BTE% brain-
targeting efficiency percentage, DTP% direct transfer percentage

Pharmacokinetic parameter IN MST 2 IV RM solution

Cmax (ng/mL) 9.929 ± 0.40 15.835 ± 0.34
Tmax (hr) 1 0.5
AUC 0-∞ (ng.hr/mL) 28.840 ± 8.94 28.001 ± 1.84
K  (hr−1) 0.570 ± 0.13 0.377 ± 0.13
T1/2 half (hr) 1.200 ± 0.41 1.830 ± 0.24
MRT (hr) 2.420 ± 0.31 2.270 ± 0.71
BTE % 458.4720527
DTP % 54.90261622

Fig. 5  Mean RM concentration (mean ± SD) in brain upon IN administration of MST 2 and IV RM solution to healthy rats (n = 3). *significant 
difference and n.s, non-significant difference
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DTP% of MST 2 were calculated. The BTE% value was 
458.472%, which demonstrates the wider distribution of the 
drug in the brain tissues relative to the systemic circula-
tion and confirms the high targeting efficiency of the IN-
spanlastics and its ability to cross the BBB. In addition, the 
positive value of DTP% (54.90%) indicates that the olfac-
tory nerves were the main entry pathway to the brain [88]. 
These results could be attributed to the small PS of MST 
2, which potentiated its ability to pass through the small 
pores of the olfactory mucosa and the tight junctions of BBB 
despite the possible repulsion between the negative nasal 
lining mucosa [89] and negatively charged spanlastics [63]. 
The same results were obtained and explained by Sahagun 
et al. [90] who concluded that the passage of nanoparticles 
across semipermeable membranes is more dependent on PS 
than surface charge. This is also supported by Fick᾽ law of 
diffusion which states that the passive diffusion of particles 
across semipermeable membrane is greatly dependent on 
their size and surface area [91]. Finally, the mean residence 
time (MRT), which indicates the average time that a mol-
ecule stays in the brain [92], was insignificantly higher in 
MST 2. These results suggest that the IN administration of 
the optimized RM-loaded spanlastics can achieve compara-
ble effects to those obtained using IV drug solution and can 
be considered as alternative, non-invasive and efficient route 
for brain targeting. However, the high BTE% observed with 
the intranasally administered MST 2 signifies its possible 
superiority in reducing the undesirable systemic side effects 
observed with the CNS-acting drugs [93].

Conclusion

In this study, two different preparation techniques, namely, 
MST and TFH, were utilized to formulate RM-loaded 
spanlastic vesicles. The investigated formulation variables 
affecting each technique were statistically characterized, 
compared, and optimized to prepare physically stable 
spanlastic vesicular system with small PS (< 100 nm) and 
high EE%. Accordingly, the optimized system prepared 
by MST showed smaller PS and higher EE%, so it was 
selected for further in vitro and in vivo evaluation. The 
in vivo pharmacokinetic results revealed that the extent 
of RM distribution to the brain was comparable for the 
intranasally administered MST 2 and the IV drug solu-
tion; however, the optimized spanlastic vesicular system 
has shown a significantly high BTE% which indicates the 
higher proportion of drug reaching the brain relative to 
the plasma after IN administration compared to the IV 
route. These results could be attributed to the small PS 
of the vesicles which permitted its direct passage through 
the olfactory pathway to the brain and suggested that the 
formulated vesicles could be a promising system for the 

efficient delivery of RM to brain tissues to exert its phar-
macological activities without being dissipated to other 
body organs which subsequently may result in higher 
pharmacological efficiency and better safety profile. 
Formulation of an intranasal in situ gel containing RM-
loaded spanlastics can be considered as a future prospect 
to enhance the retention of the drug in the nasal cavity 
and provide more sustainment for RM release for better 
patients᾽ compliance.
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