Skip to main content

Advertisement

Log in

Particle preparation of pharmaceutical compounds using supercritical antisolvent process: current status and future perspectives

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The low aqueous solubility and subsequently slow dissolution rate, as well as the poor bioavailability of several active pharmaceutical ingredients (APIs), are major challenges in the pharmaceutical industry. In this review, the particle engineering approaches using supercritical carbon dioxide (SC CO2) as an antisolvent are critically reviewed. The different SC CO2-based antisolvent processes, such as the gas antisolvent process (GAS), supercritical antisolvent process (SAS), and a solution-enhanced dispersion system (SEDS), are described. The effect of process parameters such as temperature, pressure, solute concentration, nozzle diameter, SC CO2 flow rate, solvent type, and solution flow rate on the average particle size, particle size distribution, and particle morphology is discussed from the fundamental perspective of the SAS process. The applications of the SAS process in different formulation approaches such as solid dispersion, polymorphs, cocrystallization, inclusion complexation, and encapsulation to enhance the dissolution rate, solubility, and bioavailability are critically reviewed. This review highlights some areas where the SAS process has not been adequately explored yet. This review will be helpful to researchers working in this area or planning to explore SAS process to particle engineering approaches to tackle the challenge of low solubility and subsequently slow dissolution rate and poor bioavailability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright Elsevier (2012)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Bakhbakhi Y, Asif M, Chafidz A, Ajbar A. Formation of biodegradable polymeric fine particles by supercritical antisolvent precipitation process. Polym Eng Sci. 2013;53:564–70.

    Article  CAS  Google Scholar 

  2. Natolino A, Da Porto C, Rodríguez-Rojo S, Moreno T, Cocero MJ. Supercritical antisolvent precipitation of polyphenols from grape marc extract. J Supercrit Fluids. 2016;118:54–63.

    Article  CAS  Google Scholar 

  3. Liu G, Wu Z, Zhang J, Gong L, Zhang Y, Deng S. Particle design of itraconazole by supercritical anti-solvent technology: processing-microstructure-solubility relationship. Chem Eng Process - Process Intensif. 2020;154:108013.

    Article  CAS  Google Scholar 

  4. Liu T, Müller RH, Möschwitzer JP. Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency. Drug Dev Ind Pharm. 2018;44:233–42.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Q, Feng Z, Ren W, Zhao Y, Dushkin AV, Su W. Preparation of olmesartan medoxomil solid dispersion with sustained release performance by mechanochemical technology. Drug Deliv Transl Res. 2022;12:589–602.

    Article  CAS  PubMed  Google Scholar 

  6. Wang K, Hao Y, Wang C, Zhao X, He X, Sun CC. Simultaneous improvement of physical stability, dissolution, bioavailability, and antithrombus efficacy of aspirin and ligustrazine through cocrystallization. Int J Pharm. 2022;616:121541.

    Article  CAS  PubMed  Google Scholar 

  7. Manne ASN, Hegde AR, Raut SY, Rao RR, Kulkarni VI, Mutalik S. Hot liquid extrusion assisted drug-cyclodextrin complexation: a novel continuous manufacturing method for solubility and bioavailability enhancement of drugs. Drug Deliv Transl Res. 2021;11:1273–87.

    Article  CAS  PubMed  Google Scholar 

  8. Ebrahimi A, Saffari M, Langrish T. Improving the dissolution rate of hydrophobic drugs through encapsulation in porous lactose as a new biocompatible porous carrier. Int J Pharm. 2017;521:204–13.

    Article  CAS  PubMed  Google Scholar 

  9. Al-Kassas R, Bansal M, Shaw J. Nanosizing techniques for improving bioavailability of drugs. J Control Release. 2017;260:202–12.

    Article  CAS  PubMed  Google Scholar 

  10. Kumar R, Thakur AK, Chaudhari P, Banerjee N. Particle size reduction techniques of pharmaceutical compounds for the enhancement of their dissolution rate and bioavailability. J Pharm Innov. 2022;17:333–52.

  11. Alias D, Yunus R, Chong GH, Che Abdullah CA. Single step encapsulation process of tamoxifen in biodegradable polymer using supercritical anti-solvent (SAS) process. Powder Technol. 2017;309:89–94.

    Article  CAS  Google Scholar 

  12. Kefeng X, Weiqiang W, Dedong H, Zhihui H, Yanpeng Q, Yan L. Preparation of cefquinome nanoparticles by using the supercritical antisolvent process. J Nanomater. 2015;2015:1–7.

  13. De MI, Reverchon E. Influence of pressure, temperature and concentration on the mechanisms of particle precipitation in supercritical antisolvent micronization. J Supercrit Fluids. 2011;58:295–302.

    Article  Google Scholar 

  14. Zhang J, Huang Y, Liu D, Gao Y, Qian S. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur J Pharm Sci. 2013;48:740–7.

    Article  CAS  PubMed  Google Scholar 

  15. García-Casas I, Montes A, Pereyra C, Martínez de la Ossa EJ. Generation of quercetin/cellulose acetate phthalate systems for delivery by supercritical antisolvent process. Eur J Pharm Sci. 2017;100:79–86.

    Article  PubMed  Google Scholar 

  16. Amani M, Ardestani NS, Majd NY. Utilization of supercritical CO2 gas antisolvent (GAS) for production of Capecitabine nanoparticles as anti-cancer drug: analysis and optimization of the process conditions. J CO2 Util. 2021;46:101465.

    Article  CAS  Google Scholar 

  17. Mukhopadhyay M, Dalvi SV. Partial molar volume fraction of solvent in binary (CO2-solvent) solution for solid solubility predictions. J Supercrit Fluids. 2004;29:221–30.

    Article  CAS  Google Scholar 

  18. Wubbolts FE, Bruinsma OSL, Van Rosmalen GM. Measurement and modelling of the solubility of solids in mixtures of common solvents and compressed gases. J Supercrit Fluids. 2004;32:79–87.

    Article  CAS  Google Scholar 

  19. Tenorio A, Jaeger P, Gordillo MD, Pereyra CM, De La Ossa EJM. On the selection of limiting hydrodynamic conditions for the supercritical antisolvent (SAS) process. Ind Eng Chem Res. 2009;48:9224–32.

    Article  CAS  Google Scholar 

  20. Zhao X, Chen X, Zu Y, Jiang R, Zhao D. Recrystallization and micronization of taxol using the supercritical antisolvent (SAS) process. Ind Eng Chem Res. 2012;51:9591–7.

    Article  CAS  Google Scholar 

  21. Reverchon E, Adami R, Caputo G, De Marco I. Spherical microparticles production by supercritical antisolvent precipitation: interpretation of results. J. Supercrit. Fluids. 2008;47:70–84.

  22. Chávez F, Debenedetti PG, Luo JJ, Dave RN, Pfeffer R. Estimation of the characteristic time scales in the supercritical antisolvent process. Ind Eng Chem Res. 2003;42:3156–62.

    Article  Google Scholar 

  23. Petit-Gas T, Boutin O, Raspo I, Badens E. Role of hydrodynamics in supercritical antisolvent processes. J Supercrit Fluids. 2009;51:248–55.

    Article  CAS  Google Scholar 

  24. Reverchon E, De Marco I. Supercritical antisolvent micronization of cefonicid: thermodynamic interpretation of results. J Supercrit Fluids. 2004;31:207–15.

    Article  CAS  Google Scholar 

  25. Chang SC, Hsu TH, Chu YH, Lin Hm, Lee MJ. Micronization of aztreonam with supercritical anti-solvent process. J Taiwan Inst Chem Eng. 2012;43:790–7.

    Article  CAS  Google Scholar 

  26. Rossmann M, Braeuer A, Dowy S, Gallinger TG, Leipertz A, Schluecker E. Solute solubility as criterion for the appearance of amorphous particle precipitation or crystallization in the supercritical antisolvent (SAS) process. J Supercrit Fluids. 2012;66:350–8.

    Article  CAS  Google Scholar 

  27. Pereira VJ, Matos RL, Cardoso SG, Soares RO, Santana GL, Costa GMN, et al. A new approach to select solvents and operating conditions for supercritical antisolvent precipitation processes by using solubility parameter and group contribution methods. J Supercrit Fluids. 2013;81:128–46.

    Article  CAS  Google Scholar 

  28. Sodeifian G, Sajadian SA, Derakhsheshpour R. CO2 utilization as a supercritical solvent and supercritical antisolvent in production of sertraline hydrochloride nanoparticles. J CO2 Util. 2022;55:101799.

    Article  CAS  Google Scholar 

  29. Azadeh S, Nowee SM, Kamali H. Gas anti-solvent coprecipitation of pyrazinamide-PVP composite particles from mixed organic solvents using supercritical CO2: effect of process parameters. J Supercrit Fluids. 2021;178:105386.

    Article  Google Scholar 

  30. Jafari D, Yarnezhad I, Nowee SM, Baghban SHN. Gas-antisolvent (GAS) crystallization of aspirin using supercritical carbon dioxide: experimental study and characterization. Ind Eng Chem Res. 2015;54:3685–96.

    Article  CAS  Google Scholar 

  31. Esfandiari N, Ghoreishi SM. Optimal thermodynamic conditions for ternary system (CO2, DMSO, ampicillin) in supercritical CO2 antisolvent process. J Taiwan Inst Chem Eng. 2015;50:31–6.

    Article  CAS  Google Scholar 

  32. Esfandiari N, Ghoreishi SM. Ampicillin nanoparticles production via supercritical CO2 gas antisolvent process. AAPS PharmSciTech. 2015;16:1263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Najafi M, Esfandiari N, Honarvar B, Aboosadi ZA. Experimental investigation on finasteride microparticles formation via gas antisolvent process. Korean Chem Eng Res. 2021;59:455–66.

    CAS  Google Scholar 

  34. Padrela L, Zeglinski J, Ryan KM. Insight into the role of additives in controlling polymorphic outcome: a CO2-antisolvent crystallization process of carbamazepine. Cryst Growth Des. 2017;17:4544–53.

    Article  CAS  Google Scholar 

  35. Long B, Verma V, Ryan KM, Padrela L. Generation and physicochemical characterization of posaconazole cocrystals using gas antisolvent (GAS) and supercritical solvent (CSS) methods. J Supercrit Fluids. 2021;170:105134.

    Article  CAS  Google Scholar 

  36. Dias JL, Rebelatto EA, Hotza D, Bortoluzzi AJ, Lanza M, Ferreira SRS. Production of quercetin-nicotinamide cocrystals by gas antisolvent (GAS) process. J Supercrit Fluids. 2022;188:105670.

    Article  CAS  Google Scholar 

  37. Esfandiari N, Ghoreishi SM. Kinetics modeling of ampicillin nanoparticles synthesis via supercritical gas antisolvent process. J Supercrit Fluids. 2013;81:119–27.

    Article  CAS  Google Scholar 

  38. Reverchon E, De Marco I, Torino E. Nanoparticles production by supercritical antisolvent precipitation: a general interpretation. J Supercrit Fluids. 2007;43:126–38.

    Article  CAS  Google Scholar 

  39. Chong GH, Yunus R, Choong TSY, Abdullah N, Spotar SY. Simple guidelines for a self-built laboratory-scale supercritical anti-solvent system. J Supercrit Fluids. 2011;60:69–74.

    Article  CAS  Google Scholar 

  40. Fernández-Ponce MT, Masmoudi Y, Djerafi R, Casas L, Mantell C, de la Ossa EM, et al. Particle design applied to quercetin using supercritical anti-solvent techniques. J Supercrit Fluids. 2015;105:119–27.

    Article  Google Scholar 

  41. Jaouhari T, Zhang F, Tassaing T, Fery-Forgues S, Aymonier C, Marre S, et al. Process intensification for the synthesis of ultra-small organic nanoparticles with supercritical CO2 in a microfluidic system. Chem Eng J. 2020;397:125333.

  42. Zhang F, Marre S, Erriguible A. Mixing intensification under turbulent conditions in a high pressure microreactor. Chem Eng J. 2020;382:122859.

    Article  CAS  Google Scholar 

  43. Jaouhari T, Marre S, Tassaing T, Fery-Forgues S, Aymonier C, Erriguible A. Investigating nucleation and growth phenomena in microfluidic supercritical antisolvent process by coupling in situ fluorescence spectroscopy and direct numerical simulation. Chem Eng Sci. 2022;248:117240.

    Article  CAS  Google Scholar 

  44. Jia J, Wang W, Gao Y, Zhao Y. Controlled morphology and size of curcumin using ultrasound in supercritical CO2 antisolvent. Ultrason Sonochem. 2015;27:389–94.

    Article  CAS  PubMed  Google Scholar 

  45. Zabihi F, Yang M, Leng Y, Zhao Y. PLGA-HPMC nanoparticles prepared by a modified supercritical anti-solvent technique for the controlled release of insulin. J Supercrit Fluids. 2015;99:15–22.

    Article  CAS  Google Scholar 

  46. Kakran M, Sahoo NG, Antipina MN, Li L. Modified supercritical antisolvent method with enhanced mass transfer to fabricate drug nanoparticles. Mater Sci Eng C. 2013;33:2864–70.

    Article  CAS  Google Scholar 

  47. Zabihi F, Xin N, Jia J, Chen T, Zhao Y. High yield and high loading preparation of curcumin-PLGA nanoparticles using a modified supercritical antisolvent technique. Ind Eng Chem Res. 2014;53:6569–74.

    Article  CAS  Google Scholar 

  48. Machmudah S, Winardi S, Wahyudiono, Kanda H, Goto M. Formation of fine particles from curcumin/PVP by the supercritical antisolvent process with a coaxial nozzle. ACS Omega. 2020;5:6705–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang Z, Zhang G, Hao G, Sun F, Wang W, Cao R, et al. Experimental study on the throttling effect of SC-CO2 containing ethanol system flowing through the coaxial annular nozzle and the prediction based on artificial neural network. Int J Thermophys. 2021;42:1–19.

  50. Jia J, Song N, Gai Y, Zhang L, Zhao Y. Release-controlled curcumin proliposome produced by ultrasound-assisted supercritical antisolvent method. J Supercrit Fluids. 2016;113:150–7.

    Article  CAS  Google Scholar 

  51. Ober CA, Kalombo L, Swai H, Gupta RB. Preparation of rifampicin/lactose microparticle composites by a supercritical antisolvent-drug excipient mixing technique for inhalation delivery. Powder Technol. 2013;236:132–8.

    Article  CAS  Google Scholar 

  52. Valor D, Montes A, García-Casas I, Fernández-Ponce MT, Pereyra C, de la Ossa EJM. Co-precipitation of fluorescein with extracts of mango leaves by supercritical antisolvent process. J Supercrit Fluids. 2020;162:104857.

    Article  CAS  Google Scholar 

  53. Sui X, Wei W, Yang L, Zu Y, Zhao C, Zhang L, et al. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process. Int J Pharm. 2012;423:471–9.

    Article  CAS  PubMed  Google Scholar 

  54. Miao H, Chen Z, Xu W, Wang W, Song Y, Wang Z. Preparation and characterization of naringenin microparticles via a supercritical anti-Solvent process. J Supercrit Fluids. 2018;131:19–25.

    Article  CAS  Google Scholar 

  55. Wu WY, Su CS. Recrystallization and production of spherical submicron particles of sulfasalazine using a supercritical antisolvent process. Crystals. 2018;8:295.

    Article  Google Scholar 

  56. Reverchon E, Caputo G, De Marco I. Role of phase behavior and atomization in the supercritical antisolvent precipitation. Ind Eng Chem Res. 2003;42:6406–14.

    Article  CAS  Google Scholar 

  57. Djerafi R, Masmoudi Y, Crampon C, Meniai A, Badens E. Supercritical anti-solvent precipitation of ethyl cellulose. J Supercrit Fluids. 2015;105:92–8.

    Article  CAS  Google Scholar 

  58. Li W, Liu G, Li L, Wu J, Lü Y, Jiang Y. Effect of process parameters on co-precipitation of paclitaxel and poly(L-lactic acid) by supercritical antisolvent process. Chinese J Chem Eng. 2012;20:803–13.

    Article  CAS  Google Scholar 

  59. Kodama T, Honda M, Machmudah S, Wahyudiono, Kanda H, Goto M. Crystallization of all trans-β-carotene by supercritical carbon dioxide antisolvent via co-axial nozzle. Eng J. 2018;22:25–38.

    Article  CAS  Google Scholar 

  60. Prosapio V, Reverchon E, De Marco I. Formation of PVP/nimesulide microspheres by supercritical antisolvent coprecipitation. J Supercrit Fluids. 2016;118:19–26.

    Article  CAS  Google Scholar 

  61. Park J, Cho W, Kang H, Lee BBJ, Kim TS, Hwang SJ. Effect of operating parameters on PVP/tadalafil solid dispersions prepared using supercritical anti-solvent process. J Supercrit Fluids. 2014;90:126–33.

    Article  CAS  Google Scholar 

  62. Montes A, Kin N, Gordillo MD, Pereyra C, De La Ossa EJM. Polymer-naproxen precipitation by supercritical antisolvent (SAS) process. J Supercrit Fluids. 2014;89:58–67.

    Article  CAS  Google Scholar 

  63. Kim SH, Kim HJ, Yeo SD. Crystallization of silibinin from organic solutions using supercritical and aqueous antisolvents. J Supercrit Fluids. 2014;85:102–9.

    Article  CAS  Google Scholar 

  64. Kalani M, Yunus R. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method. Int J Nanomedicine. 2012;7:2165–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zu Y, Zhang Q, Zhao X, Wang D, Li W, Sui X, et al. Preparation and characterization of vitexin powder micronized by a supercritical antisolvent (SAS) process. Powder Technol. 2012;228:47–55.

    Article  CAS  Google Scholar 

  66. Zhao X, Zu Y, Li Q, Wang M, Zu B, Zhang X, et al. Preparation and characterization of camptothecin powder micronized by a supercritical antisolvent (SAS) process. J Supercrit Fluids. 2010;51:412–9.

    Article  CAS  Google Scholar 

  67. Park CI, Shin MS, Kim H. Micronization of arbutine using supercritical anti-solvent. Korean J Chem Eng. 2008;25:581–4.

    Article  CAS  Google Scholar 

  68. Wang K, Zhao X, Zu Y, Li J, Zhang X, Sun W, et al. Ultrafine resveratrol particles: supercritical antisolvent preparation and evaluation in vitro and in vivo. Adv Mater Sci Eng. 2015;2015:1–10.

  69. Liu M, Liu Y, Ge Y, Zhong Z, Wang Z, Wu T, et al. Solubility, antioxidation, and oral bioavailability improvement of mangiferin microparticles prepared using the supercritical antisolvent method. Pharmaceutics. 2020;12:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vorobei AM, Pokrovskiy OI, Ustinovich KB, Parenago OO, Lunin VV, Miroshnichenko AG. Micronization of salbutamol sulfate by supercritical antisolvent precipitation: the effect of process parameters on the size and morphology of particles. Russ J Phys Chem B. 2018;12:1240–8.

    Article  CAS  Google Scholar 

  71. Liu G, Lin Q, Huang Y, Guan G, Jiang Y. Tailoring the particle microstructures of gefitinib by supercritical CO2 anti-solvent process. J CO2 Util. 2017;20:43–51.

    Article  CAS  Google Scholar 

  72. Matos RL, Lu T, Prosapio V, McConville C, Leeke G, Ingram A. Coprecipitation of curcumin/PVP with enhanced dissolution properties by the supercritical antisolvent process. J CO2 Util. 2019;30:48–62.

    Article  CAS  Google Scholar 

  73. Quintana SE, Hernández DM, Villanueva-Bermejo D, García-Risco MR, Fornari T. Fractionation and precipitation of licorice (Glycyrrhiza glabra L.) phytochemicals by supercritical antisolvent (SAS) technique. LWT. 2020;126:109315.

    Article  CAS  Google Scholar 

  74. Montes A, Wehner L, Pereyra C, Martínez de la Ossa EJ. Precipitation of submicron particles of rutin using supercritical antisolvent process. J Supercrit Fluids. 2016;118:1–10.

  75. Nerome H, Machmudah S, Wahyudiono, Fukuzato R, Higashiura T, Kanda H, et al. Effect of solvent on nanoparticle production of β-carotene by a supercritical antisolvent process. Chem Eng Technol. John Wiley & Sons, Ltd; 2016;39:1771–7.

  76. Patel JK, Sutariya VB. Micronisation of simvastatin by the supercritical antisolvent technique: in vitro-in vivo evaluation. J Microencapsul. 2015;32:193–200.

    Article  CAS  PubMed  Google Scholar 

  77. Kim MS, Jin SJ, Kim JS, Park HJ, Song HS, Neubert RHH, et al. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm. 2008;69:454–65.

    Article  CAS  PubMed  Google Scholar 

  78. Duta Lestari S, Machmudah S, Winardi S, Wahyudiono, Kanda H, Goto M. Particle micronization of curcuma mangga rhizomes ethanolic extract/biopolymer PVP using supercritical antisolvent process. J Supercrit Fluids. 2019;146:226–39.

    Article  CAS  Google Scholar 

  79. Prosapio V, De Marco I, Reverchon E. PVP/corticosteroid microspheres produced by supercritical antisolvent coprecipitation. Chem Eng J. 2016;292:264–75.

    Article  CAS  Google Scholar 

  80. Imperiale JC, Bevilacqua G, De Rosa PTV, Sosnik A. Production of pure indinavir free base nanoparticles by a supercritical anti-solvent (SAS) method. Drug Dev Ind Pharm. 2014;40:1607–15.

    Article  CAS  PubMed  Google Scholar 

  81. Kudryashova EV, Sukhoverkov KV, Deygen IM, Vorobei AM, Pokrovskiy OI, Parenago OO, et al. Moxifloxacin micronization via supercritical antisolvent precipitation. Russ J Phys Chem B. 2017;11:1153–62.

    Article  CAS  Google Scholar 

  82. Vorobei AM, Pokrovskiy OI, Ustinovich KB, Krotova LI, Parenago OO, Lunin VV. Effect of solvent type and concentration on size and morphology of arbidol microparticles obtained by supercritical antisolvent precipitation. Russ J Phys Chem B. 2016;10:1072–7.

    Article  CAS  Google Scholar 

  83. Li Y, Yu Y, Wang H, Zhao F. Effect of process parameters on the recrystallization and size control of puerarin using the supercritical fluid antisolvent process. Asian J Pharm Sci. 2016;11:281–91.

    Article  Google Scholar 

  84. Hong H, Suo Q, Li F, Wei X, Zhang J. Precipitation and characterization of chelerythrine microparticles by the supercritical antisolvent process. Chem Eng Technol. 2008;31:1051–5.

    Article  CAS  Google Scholar 

  85. Guamán-Balcázar MC, Montes A, Pereyra C, de la Ossa EM. Precipitation of mango leaves antioxidants by supercritical antisolvent process. J Supercrit Fluids. 2017;128:218–26.

    Article  Google Scholar 

  86. Kim DC, Yeo SD. Modification of indomethacin crystals using supercritical and aqueous antisolvent crystallizations. J Supercrit Fluids. 2016;108:96–103.

    Article  CAS  Google Scholar 

  87. Lestari SD, Machmudah S, Winardi S, Nurtono T, Wahyudiono, Kanda H, et al. Effect of solvent selection and nozzle geometry on Curcuma mangga micronization process using supercritical antisolvent: experiment and CFD simulation. Food Bioprod Process. 2020;123:367–77.

    Article  CAS  Google Scholar 

  88. García-Casas I, Montes A, Pereyra C, Martínez De La Ossa EJ. Co-precipitation of mangiferin with cellulose acetate phthalate by Supercritical antisolvent process. J CO2 Util. 2017;22:197–207.

  89. Osorio-Tobón JF, Carvalho PIN, Rostagno MA, Petenate AJ, Meireles MAA. Precipitation of curcuminoids from an ethanolic turmeric extract using a supercritical antisolvent process. J Supercrit Fluids. 2016;108:26–34.

    Article  Google Scholar 

  90. Anwar M, Ahmad I, Warsi MH, Mohapatra S, Ahmad N, Akhter S, et al. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process. Eur J Pharm Biopharm. 2015;96:162–72.

    Article  CAS  PubMed  Google Scholar 

  91. Montes A, Wehner L, Pereyra C, Martínez De La Ossa EJ. Generation of microparticles of ellagic acid by supercritical antisolvent process. J Supercrit Fluids. 2016;116:101–10.

  92. Montes A, Wehner L, Pereyra C, De La Ossa EJM. Mangiferin nanoparticles precipitation by supercritical antisolvent process. J Supercrit Fluids. 2016;112:44–50.

    Article  CAS  Google Scholar 

  93. Bakhbakhi Y, Asif M, Chafidz A, Ajbar A. Supercritical antisolvent synthesis of fine griseofulvin particles. Adv Powder Technol. 2013;24:1006–12.

    Article  CAS  Google Scholar 

  94. Boonnoun P, Nerome H, Machmudah S, Goto M, Shotipruk A. Supercritical anti-solvent micronization of marigold-derived lutein dissolved in dichloromethane and ethanol. J Supercrit Fluids. 2013;77:103–9.

    Article  CAS  Google Scholar 

  95. Liu G, Wang H, Jiang Y. Recrystallization and micronization of camptothecin by the supercritical antisolvent process: influence of solvents. Ind Eng Chem Res. 2013;52:15049–56.

    Article  CAS  Google Scholar 

  96. De Marco I, Prosapio V, Cice F, Reverchon E. Use of solvent mixtures in supercritical antisolvent process to modify precipitates morphology: cellulose acetate microparticles. J Supercrit Fluids. Elsevier B.V.; 2013;83:153–60.

  97. Ha ES, Kim JS, Lee SK, Sim WY, Jeong JS, Kim MS. Equilibrium solubility and solute-solvent interactions of carvedilol (Form I) in twelve mono solvents and its application for supercritical antisolvent precipitation. J Mol Liq. 2019;294:111622.

    Article  CAS  Google Scholar 

  98. Clercq S, Mouahid A, Gérard P, Badens E. Investigation of crystallization mechanisms for polymorphic and habit control from the supercritical antisolvent process. J Supercrit Fluids. 2018;141:29–38.

    Article  CAS  Google Scholar 

  99. Kudryashova EV, Deygen IM, Sukhoverkov KV, Filatova LY, Klyachko NL, Vorobei AM, et al. Micronization of levofloxacin by supercritical antisolvent precipitation. Russ J Phys Chem B. 2016;10:1201–10.

    Article  CAS  Google Scholar 

  100. Kim MS, Song HS, Park HJ, Hwang SJ. Effect of solvent type on the nanoparticle formation of atorvastatin calcium by the supercritical antisolvent process. Chem Pharm Bull. 2012;60:543–7.

    Article  CAS  Google Scholar 

  101. Ha ES, Park H, Lee SK, Sim WY, Jeong JS, Baek IH, et al. Pure Trans-resveratrol nanoparticles prepared by a supercritical antisolvent process using alcohol and dichloromethane mixtures: effect of particle size on dissolution and bioavailability in rats. Antioxidants. 2020;9:342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ha ES, Kim JS, Lee SK, Sim WY, Jeong JS, Kim MS. Solubility and modeling of telmisartan in binary solvent mixtures of dichloromethane and (methanol, ethanol, n-propanol, or n-butanol) and its application to the preparation of nanoparticles using the supercritical antisolvent technique. J Mol Liq. Elsevier; 2019;295:111719.

  103. Prosapio V, Reverchon E, De Marco I. Control of powders morphology in the supercritical antisolvent technique using solvent mixtures. Chem Eng Trans. 2015;43:763–8.

    Google Scholar 

  104. De Marco I, Rossmann M, Prosapio V, Reverchon E, Braeuer A. Control of particle size, at micrometric and nanometric range, using supercritical antisolvent precipitation from solvent mixtures: application to PVP. Chem Eng J. 2015;273:344–52.

    Article  Google Scholar 

  105. Montes A, Nunes A, Gordillo MD, Pereyra C, Duarte CMM, Martínez de la Ossa EJ. Amoxicillin and ethyl cellulose precipitation by two supercritical antisolvent processes. Chem Eng Technol. 2013;36:665–72.

  106. Dukhin SS, Zhu C, Dave R, Pfeffer R, Luo JJ, Chávez F, et al. Dynamic interfacial tension near critical point of a solvent-antisolvent mixture and laminar jet stabilization. Colloids Surf A Physicochem Eng Asp. 2003;229:181–99.

    Article  CAS  Google Scholar 

  107. Chinnarasu C, Montes A, Ponce MTF, Casas L, Mantell C, Pereyra C, et al. Precipitation of antioxidant fine particles from Olea europaea leaves using supercritical antisolvent process. J Supercrit Fluids. 2015;97:125–32.

    Article  CAS  Google Scholar 

  108. Yang L, Sun Z, Zu Y, Zhao C, Sun X, Zhang Z, et al. Physicochemical properties and oral bioavailability of ursolic acid nanoparticles using supercritical anti-solvent (SAS) process. Food Chem. 2012;132:319–25.

    Article  CAS  PubMed  Google Scholar 

  109. Carretier E, Badens E, Guichardon P, Boutin O, Charbit G. Hydrodynamics of supercritical antisolvent precipitation: characterization and influence on particle morphology. Ind Eng Chem Res. 2003;42:331–8.

    Article  CAS  Google Scholar 

  110. Majerik V, Horváth G, Szokonya L, Charbit G, Badens E, Bosc N, et al. Supercritical antisolvent versus coevaporation - preparation and characterization of solid dispersions. Drug Dev Ind Pharm. 2007;33:975–83.

    Article  CAS  PubMed  Google Scholar 

  111. Adeli E. The use of supercritical anti-solvent (SAS) technique for preparation of Irbesartan-Pluronic® F-127 nanoparticles to improve the drug dissolution. Powder Technol. 2016;298:65–72.

    Article  CAS  Google Scholar 

  112. Chhouk K, Wahyudiono, Kanda H, Kawasaki SI, Goto M. Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl mixer. Front Chem Sci Eng. 2017;12:184–93.

  113. Rossmann M, Braeuer A, Schluecker E. Supercritical antisolvent micronization of PVP and ibuprofen sodium towards tailored solid dispersions. J Supercrit Fluids. 2014;89:16–27.

    Article  CAS  Google Scholar 

  114. Ahn JB, Kim DH, Lee SE, Pyo YC, Park JS. Improvement of the dissolution rate and bioavailability of fenofibrate by the supercritical anti-solvent process. Int J Pharm. 2019;564:263–72.

    Article  CAS  PubMed  Google Scholar 

  115. Liu G, Gong L, Zhang J, Wu Z, Deng H, Deng S. Development of nimesulide amorphous solid dispersions via supercritical anti-solvent process for dissolution enhancement. Eur J Pharm Sci. 2020;152:105457.

    Article  CAS  PubMed  Google Scholar 

  116. Chen LF, Xu PY, Fu CP, Kankala RK, Chen AZ, Wang SB. Fabrication of supercritical antisolvent (SAS) process-assisted fisetin-encapsulated poly (vinyl pyrrolidone) (PVP) nanocomposites for improved anticancer therapy. Nanomaterials. 2020;10:322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zahran F, Cabañas A, Cheda JAR, Renuncio JAR, Pando C. Dissolution rate enhancement of the anti-inflammatory drug diflunisal by coprecipitation with a biocompatible polymer using carbon dioxide as a supercritical fluid antisolvent. J Supercrit Fluids. 2014;88:56–65.

    Article  CAS  Google Scholar 

  118. Majerik V, Charbit G, Badens E, Horváth G, Szokonya L, Bosc N, et al. Bioavailability enhancement of an active substance by supercritical antisolvent precipitation. J Supercrit Fluids. 2007;40:101–10.

    Article  CAS  Google Scholar 

  119. Pan YJ, Xu PY, Chen BQ, Fu CP, Kankala RK, Chen AZ, et al. Supercritical antisolvent process-assisted fabrication of chrysin-polyvinylpyrrolidone sub-microparticles for improved anticancer efficiency. J Supercrit Fluids. 2020;162:104847.

    Article  CAS  Google Scholar 

  120. Ha ES, Kim JS, Baek IH, Hwang SJ, Kim MS. Enhancement of dissolution and bioavailability of ezetimibe by amorphous solid dispersion nanoparticles fabricated using supercritical antisolvent process. J Pharm Investig. 2015;45:641–9.

    Article  CAS  Google Scholar 

  121. Prosapio V, Reverchon E, De Marco I. Coprecipitation of Polyvinylpyrrolidone/β-carotene by supercritical antisolvent processing. Ind Eng Chem Res. 2015;54:11568–75.

    Article  CAS  Google Scholar 

  122. Eun-Sol H, Jeong-Soo K, Jin-Wook Y, Yunjin J, Hyung RM, Min-Soo K. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process. Drug Des Devel Ther. 2015;9:4269–77.

    Google Scholar 

  123. Yoshida VMH, Balcão VM, Vila MMDC, Oliveira JM, Aranha N, Chaud MV, et al. Zidovudine - Poly(L-lactic acid) solid dispersions with improved intestinal permeability prepared by supercritical antisolvent process. J Pharm Sci. 2015;104:1691–700.

    Article  CAS  PubMed  Google Scholar 

  124. Ha ES, Choo GH, Baek IH, Kim MS. Formulation, characterization, and in vivo evaluation of celecoxib-PVP solid dispersion nanoparticles using supercritical antisolvent process. Molecules. 2014;19:20325–39.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kim M-S, Baek I. Fabrication and evaluation of valsartan-polymer-surfactant composite nanoparticles sing the supercritical antisolvent process. Int J Nanomedicine 2014;9:5167–76.

  126. Kim MS, Kim JS, Park HJ, Cho WK, Cha KH, Hwang SJ. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process. Int J Nanomedicine. 2011;6:2997–3009.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Won DH, Kim MS, Lee S, Park JS, Hwang SJ. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int J Pharm. 2005;301:199–208.

    Article  CAS  PubMed  Google Scholar 

  128. Franco P, De Marco I. Controlled-release antihistamines using supercritical antisolvent process. J Supercrit Fluids. 2021;171:105201.

    Article  CAS  Google Scholar 

  129. Franco P, Reverchon E, De Marco I. Zein/diclofenac sodium coprecipitation at micrometric and nanometric range by supercritical antisolvent processing. J CO2 Util. 2018;27:366–73.

    Article  CAS  Google Scholar 

  130. Cuadra IA, Zahran F, Martín D, Cabañas A, Pando C. Preparation of 5-fluorouracil microparticles and 5-fluorouracil/poly(L-lactide) composites by a supercritical CO2 antisolvent process. J Supercrit Fluids. 2019;143:64–71.

    Article  CAS  Google Scholar 

  131. Franco P, Reverchon E, De Marco I. PVP/ketoprofen coprecipitation using supercritical antisolvent process. Powder Technol. 2018;340:1–7.

    Article  CAS  Google Scholar 

  132. Franco P, Reverchon E, De Marco I. Production of zein/antibiotic microparticles by supercritical antisolvent coprecipitation. J Supercrit Fluids. 2019;145:31–8.

    Article  CAS  Google Scholar 

  133. De Marco I, Franco P. Production of eudragit/ampicillin microparticles by supercritical antisolvent coprecipitation. Chem Eng Trans. 2020;79:229–34.

    Google Scholar 

  134. Franco P, de Marco I. Eudragit: A novel carrier for controlled drug delivery in supercritical antisolvent coprecipitation. Polymers (Basel). 2020;12:234.

    Article  CAS  PubMed  Google Scholar 

  135. Ciou JM, Wang BC, Su CS, Liu JJ, Sheu MT. Measurement of solid solubility of warfarin in supercritical carbon dioxide and recrystallization study using supercritical antisolvent process. Adv Powder Technol. 2018;29:479–87.

    Article  CAS  Google Scholar 

  136. Rodrigues MA, Tiago JM, Duarte A, Geraldes V, Matos HA, Gomes AE. Polymorphism in pharmaceutical drugs by supercritical CO2 processing: clarifying the role of the antisolvent effect and atomization enhancement. Cryst Growth Des. 2016;16:6222–9.

    Article  CAS  Google Scholar 

  137. Chen HH, Su CS. Recrystallizing primidone through supercritical antisolvent precipitation. Org Process Res Dev. 2016;20:878–87.

    Article  CAS  Google Scholar 

  138. Rossmann M, Braeuer A, Leipertz A, Schluecker E. Manipulating the size, the morphology and the polymorphism of acetaminophen using supercritical antisolvent (SAS) precipitation. J Supercrit Fluids. 2013;82:230–7.

    Article  CAS  Google Scholar 

  139. Chen YM, Tang M, Chen YP. Recrystallization and micronization of sulfathiazole by applying the supercritical antisolvent technology. Chem Eng J. 2010;165:358–64.

    Article  CAS  Google Scholar 

  140. Varughese P, Li J, Wang W, Winstead D. Supercritical antisolvent processing of γ-indomethacin: effects of solvent, concentration, pressure and temperature on SAS processed Indomethacin. Powder Technol. 2010;201:64–9.

    Article  CAS  Google Scholar 

  141. Wu WY, Su CS. Modification of solid-state property of sulfasalazine by using the supercritical antisolvent process. J Cryst Growth. 2017;460:59–66.

    Article  CAS  Google Scholar 

  142. Huang Y, Wang H, Liu G, Jiang Y. New polymorphs of 9-nitro-camptothecin prepared using a supercritical anti-solvent process. Int J Pharm. 2015;496:551–60.

    Article  CAS  PubMed  Google Scholar 

  143. Chen HH, Su CS, Liu JJ, Sheu MT. Solid-state property modification and dissolution rate enhancement of tolfenamic acid by supercritical antisolvent process. J Supercrit Fluids. 2015;101:17–23.

    Article  CAS  Google Scholar 

  144. Li Y, Yang DJ, Zhou W, Chen SB, Chen SL. Recrystallization of puerarin using the supercritical fluid antisolvent process. J Cryst Growth. 2012;340:142–8.

    Article  CAS  Google Scholar 

  145. Park HJ, Kim MS, Lee S, Kim JS, Woo JS, Park JS, et al. Recrystallization of fluconazole using the supercritical antisolvent (SAS) process. Int J Pharm. 2007;328:152–60.

    Article  CAS  PubMed  Google Scholar 

  146. Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Didanosine polymorphism in a supercritical antisolvent process. J Pharm Sci. 2010;99:1885–1870.

    Google Scholar 

  147. Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453:101–25.

    Article  CAS  PubMed  Google Scholar 

  148. Cuadra IA, Cabañas A, Cheda JAR, Pando C. Polymorphism in the co-crystallization of the anticonvulsant drug carbamazepine and saccharin using supercritical CO2 as an anti-solvent. J Supercrit Fluids. 2018;136:60–9.

    Article  CAS  Google Scholar 

  149. Liu G, Li J, Deng S. Applications of supercritical anti-solvent process in preparation of solid multicomponent systems. Pharmaceutics. 2021;13:475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cuadra IA, Cabañas A, Cheda JAR, Martínez-Casado FJ, Pando C. Pharmaceutical co-crystals of the anti-inflammatory drug diflunisal and nicotinamide obtained using supercritical CO2 as an antisolvent. J CO2 Util. 2016;13:29–37.

    Article  CAS  Google Scholar 

  151. Zhao Z, Liu G, Lin Q, Jiang Y. Co-crystal of paracetamol and trimethylglycine prepared by a supercritical CO2 anti-solvent process. Chem Eng Technol. 2018;41:1122–31.

    Article  CAS  Google Scholar 

  152. Cuadra IA, Cabañas A, Cheda JAR, Türk M, Pando C. Cocrystallization of the anticancer drug 5-fluorouracil and coformers urea, thiourea or pyrazinamide using supercritical CO2 as an antisolvent (SAS) and as a solvent (CSS). J Supercrit Fluids. 2020;160:104813.

    Article  CAS  Google Scholar 

  153. Neurohr C, Erriguible A, Laugier S, Subra-Paternault P. Challenge of the supercritical antisolvent technique SAS to prepare cocrystal-pure powders of naproxen-nicotinamide. Chem Eng J. 2016;303:238–51.

    Article  CAS  Google Scholar 

  154. Hiendrawan S, Veriansyah B, Widjojokusumo E, Soewandhi SN, Wikarsa S, Tjandrawinata RR. Simultaneous cocrystallization and micronization of paracetamol-dipicolinic acid cocrystal by supercritical antisolvent (SAS). Int J Pharm Pharm Sci [Internet]. 2016 [cited 2022 May 19];8:89–98. Available from: https://www.researchgate.net/publication/287640829.

  155. Franco P, De Marco I. Formation of rutin–β-cyclodextrin inclusion complexes by supercritical antisolvent precipitation. Polymers (Basel). 2021;13:246.

    Article  CAS  PubMed  Google Scholar 

  156. Yan T, Ji M, Sun Y, Yan T, Zhao J, Zhang H, et al. Preparation and characterization of baicalein/hydroxypropyl-β-cyclodextrin inclusion complex for enhancement of solubility, antioxidant activity and antibacterial activity using supercritical antisolvent technology. J Incl Phenom Macrocycl Chem. 2020;96:285–95.

    Article  CAS  Google Scholar 

  157. Franco P, De Marco I. Preparation of non-steroidal anti-inflammatory drug/β-cyclodextrin inclusion complexes by supercritical antisolvent process. J CO2 Util. 2021;44:101397.

    Article  CAS  Google Scholar 

  158. Yan T, Tao Y, Wang X, Lv C, Miao G, Wang S, et al. Preparation, characterization and evaluation of the antioxidant capacity and antitumor activity of myricetin microparticles formated by supercritical antisolvent technology. J Supercrit Fluids. 2021;175:105290.

    Article  CAS  Google Scholar 

  159. Rosas MD, Piqueras CM, Piva GK, Ramírez-Rigo MV, Filho LC, Bucalá V. Simultaneous formation of inclusion complex and microparticles containing albendazole and β-cyclodextrin by supercritical antisolvent co-precipitation. J CO2 Util. 2021;47:101505.

    Article  CAS  Google Scholar 

  160. De Marco I, Franco P. Production of curcumin/β-cyclodextrin inclusion complexes by supercritical antisolvent process. Chem Eng Trans. 2021;86:775–80.

    Google Scholar 

  161. Sun J, Hong H, Zhu N, Han L, Suo Q. Response surface methodology to optimize the preparation of tosufloxacin tosylate/hydroxypropyl-β-cyclodextrin inclusion complex by supercritical antisolvent process. J Mol Struct. 2019;1198:126939.

  162. Huang Y, Zu Y, Zhao X, Wu M, Feng Z, Deng Y, et al. Preparation of inclusion complex of apigenin-hydroxypropyl-β-cyclodextrin by using supercritical antisolvent process for dissolution and bioavailability enhancement. Int J Pharm. 2016;511:921–30.

    Article  CAS  PubMed  Google Scholar 

  163. Nerome H, Machmudah S, Wahyudiono, Fukuzato R, Higashiura T, Youn YS, et al. Nanoparticle formation of lycopene/β-cyclodextrin inclusion complex using supercritical antisolvent precipitation. J Supercrit Fluids. 2013;83:97–103.

    Article  CAS  Google Scholar 

  164. Zhou R, Wang F, Guo Z, Zhao YL. Preparation and characterization of resveratrol/hydroxypropyl-β- cyclodextrin inclusion complex using supercritical antisolvent technology. J Food Process Eng. 2012;35:677–86.

    Article  CAS  Google Scholar 

  165. Jun SW, Kim MS, Kim JS, Park HJ, Lee S, Woo JS, et al. Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm. 2007;66:413–21.

    Article  CAS  PubMed  Google Scholar 

  166. Lee CW, Kim SJ, Youn YS, Widjojokusumo E, Lee YH, Kim J, et al. Preparation of bitter taste masked cetirizine dihydrochloride/β- cyclodextrin inclusion complex by supercritical antisolvent (SAS) process. J Supercrit Fluids. 2010;55:348–57.

    Article  CAS  Google Scholar 

  167. Cheng YS, Lu PM, Huang CY, Wu JJ. Encapsulation of lycopene with lecithin and α-tocopherol by supercritical antisolvent process for stability enhancement. J Supercrit Fluids. 2017;130:246–52.

    Article  CAS  Google Scholar 

  168. Benelli P, Rosso Comim SR, Vladimir Oliveira J, Pedrosa RC, Ferreira SRS. Phase equilibrium data of guaçatonga (Casearia sylvestris) extract + ethanol + CO2 system and encapsulation using a supercritical anti-solvent process. J Supercrit Fluids. 2014;93:103–11.

    Article  CAS  Google Scholar 

  169. Vallejo R, Gonzalez-Valdivieso J, Santos M, Rodriguez-Rojo S, Arias FJ. Production of elastin-like recombinamer-based nanoparticles for docetaxel encapsulation and use as smart drug-delivery systems using a supercritical anti-solvent process. J Ind Eng Chem. 2021;93:361–74.

    Article  CAS  Google Scholar 

  170. Guamán-Balcázar MC, Montes A, Pereyra C, Martínez de la Ossa E. Production of submicron particles of the antioxidants of mango leaves/PVP by supercritical antisolvent extraction process. J Supercrit Fluids. 2019;143:294–304.

  171. Saad S, Ahmad I, Kawish SM, Khan UA, Ahmad FJ, Ali A, et al. Improved cardioprotective effects of hesperidin solid lipid nanoparticles prepared by supercritical antisolvent technology. Colloids Surf B Biointerfaces. 2020;187:110628.

    Article  CAS  PubMed  Google Scholar 

  172. Valarini Junior O, Cardoso FAR, de Souza GBM, Machado Giufrida W, Cardozo-Filho L. Single step encapsulation process of ivermectin in biocompatible polymer using a supercritical antisolvent system process. Asia-Pacific J Chem Eng. 2021;16:2672.

    Article  Google Scholar 

  173. Ozkan G, Franco P, Capanoglu E, De Marco I. PVP/flavonoid coprecipitation by supercritical antisolvent process. Chem Eng Process Process Intensif. 2019;146:107689.

  174. Liu G, Hu M, Zhao Z, Lin Q, Wei D, Jiang Y. Enhancing the stability of astaxanthin by encapsulation in poly (l-lactic acid) microspheres using a supercritical anti-solvent process. Particuology. 2019;44:54–62.

    Article  CAS  Google Scholar 

  175. Karim FT, Ghafoor K, Ferdosh S, Al-Juhaimi F, Ali E, Yunus KB, et al. Microencapsulation of fish oil using supercritical antisolvent process. J Food Drug Anal. 2017;25:654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ahmad I, Akhter S, Anwar M, Zafar S, Sharma RK, Ali A, et al. Supercritical anti-solvent technique assisted synthesis of thymoquinone liposomes for radioprotection: formulation optimization, in-vitro and in-vivo studies. Int J Pharm. 2017;523:398–409.

    Article  CAS  PubMed  Google Scholar 

  177. Prosapio V, Reverchon E, De Marco I. Incorporation of liposoluble vitamins within PVP microparticles using supercritical antisolvent precipitation. J CO2 Util. 2017;19:230–7.

    Article  CAS  Google Scholar 

  178. Djerafi R, Swanepoel A, Crampon C, Kalombo L, Labuschagne P, Badens E, et al. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose. Eur J Pharm Sci. 2017;102:161–71.

    Article  CAS  PubMed  Google Scholar 

  179. Fraile M, Buratto R, Gómez B, Martín Á, Cocero MJ. Enhanced delivery of quercetin by encapsulation in poloxamers by supercritical antisolvent process. Ind Eng Chem Res. 2014;53:4318–27.

    Article  CAS  Google Scholar 

  180. Lee S, Kim MS, Kim JS, Park HJ, Woo JS, Lee BC, et al. Controlled delivery of a hydrophilic drug from a biodegradable microsphere system by supercritical anti-solvent precipitation technique. J Microencapsul. 2006;23:741–9.

    Article  CAS  PubMed  Google Scholar 

  181. Chen T, Ma Z, Qiu Z, Zhong Z, Xing L, Guo Q, et al. Characterization of excipients to improve pharmaceutical properties of sirolimus in the supercritical anti-solvent fluidized process. Int J Pharm. 2022;611:121240.

    Article  CAS  PubMed  Google Scholar 

  182. Matos RL, Lu T, McConville C, Leeke G, Ingram A. Analysis of curcumin precipitation and coating on lactose by the integrated supercritical antisolvent-fluidized bed process. J Supercrit Fluids. 2018;141:143–56.

    Article  CAS  Google Scholar 

  183. Zabihi F, Xin N, Li S, Jia J, Cheng T, Zhao Y. Polymeric coating of fluidizing nano-curcumin via anti-solvent supercritical method for sustained release. J Supercrit Fluids. Elsevier B.V.; 2014;89:99–105.

  184. Adami R, Reverchon E, Järvenpää E, Huopalahti R. Supercritical antisolvent micronization of nalmefene HCl on laboratory and pilot scale. Powder Technol. 2008;182:105–12.

    Article  CAS  Google Scholar 

  185. Gil-Ramírez A, Rodriguez-Meizoso I. Purification of natural products by selective precipitation using supercritical/gas antisolvent techniques (SAS/GAS). Sep Purif Rev. 2021;50:32–52.

  186. Villanueva-Bermejo D, Zahran F, Troconis D, Villalva M, Reglero G, Fornari T. Selective precipitation of phenolic compounds from Achillea millefolium L. extracts by supercritical anti-solvent technique. J Supercrit Fluids. 2017;120:52–8.

    Article  CAS  Google Scholar 

  187. Park SJ, Yeo SD. Recrystallization of phenylbutazone using supercritical fluid antisolvent process. Korean J Chem Eng. 2008;25:575–80.

    Article  CAS  Google Scholar 

  188. Chang SC, Lee MJ, Lin HM. Role of phase behavior in micronization of lysozyme via a supercritical anti-solvent process. Chem Eng J. 2008;139:416–25.

    Article  CAS  Google Scholar 

  189. Couto R, Chambon S, Aymonier C, Mignard E, Pavageau B, Erriguible A, et al. Microfluidic supercritical antisolvent continuous processing and direct spray-coating of poly(3-hexylthiophene) nanoparticles for OFET devices. Chem Commun. 2015;51:1008–11.

    Article  CAS  Google Scholar 

  190. Liu G, Wang W, Wang H, Jiang Y. Preparation of 10-hydroxycamptothecin proliposomes by the supercritical CO2 anti-solvent process. Chem Eng J. 2014;243:289–96.

    Article  CAS  Google Scholar 

  191. Karn PR, Jin S-E, Lee BJ, Sun BK, Kim M-S, Sung J-H, et al. Preparation and evaluation of cyclosporin A-containing proliposomes: a comparison of the supercritical antisolvent process with the conventional film method. Int J Nanomedicine. 2014;9:5079–91.

    PubMed  PubMed Central  Google Scholar 

  192. De Marco I. The supercritical antisolvent precipitation from a sustainable perspective: a life cycle assessment. J CO2 Util. 2022;55:101808.

    Article  Google Scholar 

  193. Rosa MTMG, Alvarez VH, Albarelli JQ, Santos DT, Meireles MAA, Saldaña MDA. Supercritical anti-solvent process as an alternative technology for vitamin complex encapsulation using zein as wall material: technical-economic evaluation. J Supercrit Fluids. 2019;159:104499.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge their respective organizations for permitting to do this work.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Rahul Kumar conceptualized and took the lead in writing this manuscript. Dr. Amit Kumar Thakur wrote the effect of process parameters. Dr. Raj Kuamr Arya and Anurag Kulabhi contributed to the applications of the SAS process. Dr. Gergely Kali and Kancharlapalli Chinaraga Pitchaiah did the editing and proof reading.

Corresponding author

Correspondence to Rahul Kumar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Thakur, A.K., Kali, G. et al. Particle preparation of pharmaceutical compounds using supercritical antisolvent process: current status and future perspectives. Drug Deliv. and Transl. Res. 13, 946–965 (2023). https://doi.org/10.1007/s13346-022-01283-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01283-7

Keywords

Navigation