Skip to main content

Advertisement

Log in

Breaking the niche: multidimensional nanotherapeutics for tumor microenvironment modulation

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Most of the current antitumor therapeutics were developed targeting the cancer cells only. Unfortunately, in the majority of tumors, this single-dimensional therapy is found to be ineffective. Advanced research has shown that cancer is a multicellular disorder. The tumor microenvironment (TME), which is made by a complex network of the bulk tumor cells and other supporting cells, plays a crucial role in tumor progression. Understanding the importance of the TME in tumor growth, different treatment modalities have been developed targeting these supporting cells. Recent clinical results suggest that simultaneously targeting multiple components of the tumor ecosystem with drug combinations can be highly effective. This type of “multidimensional” therapy has a high potential for cancer treatment. However, tumor-specific delivery of such multi-drug combinations remains a challenge. Nanomedicine could be utilized for the tumor-targeted delivery of such multidimensional therapeutics. In this review, we first give a brief overview of the major components of TME. We then highlight the latest developments in nanoparticle-based combination therapies, where one drug targets cancer cells and other drug targets tumor-supporting components in the TME for a synergistic effect. We include the latest preclinical and clinical studies and discuss innovative nanoparticle-mediated targeting strategies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8. https://doi.org/10.1038/nrc1098.

    Article  CAS  Google Scholar 

  2. Roy A, Li SD. Modifying the tumor microenvironment using nanoparticle therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(6):891–908. https://doi.org/10.1002/wnan.1406.

    Article  Google Scholar 

  3. Jain RK. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013;31(17):2205–18. https://doi.org/10.1200/JCO.2012.46.3653.

    Article  CAS  Google Scholar 

  4. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37. https://doi.org/10.1038/nm.3394.

    Article  CAS  Google Scholar 

  5. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761–73. https://doi.org/10.7150/jca.17648.

    Article  CAS  Google Scholar 

  6. Son B, Lee S, Youn H, Kim E, Kim W, Youn B. The role of tumor microenvironment in therapeutic resistance. Oncotarget. 2017;8(3):3933–45. https://doi.org/10.18632/oncotarget.13907.

    Article  Google Scholar 

  7. Li XY, Hu SQ, Xiao L. The cancer-associated fibroblasts and drug resistance. Eur Rev Med Pharmacol Sci. 2015;19(11):2112–9.

    Google Scholar 

  8. Hida K, Akiyama K, Ohga N, Maishi N, Hida Y. Tumour endothelial cells acquire drug resistance in a tumour microenvironment. J Biochem. 2013;153(3):243–9. https://doi.org/10.1093/jb/mvs152.

    Article  CAS  Google Scholar 

  9. Tardi PG, Dos Santos N, Harasym TO, Johnstone SA, Zisman N, Tsang AW, et al. Drug ratio-dependent antitumor activity of irinotecan and cisplatin combinations in vitro and in vivo. Mol Cancer Ther. 2009;8(8):2266–75. https://doi.org/10.1158/1535-7163.MCT-09-0243.

    Article  CAS  Google Scholar 

  10. Tardi P, Johnstone S, Harasym N, Xie S, Harasym T, Zisman N, et al. In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res. 2009;33(1):129–39. https://doi.org/10.1016/j.leukres.2008.06.028.

    Article  CAS  Google Scholar 

  11. Ma L, Kohli M, Smith A. Nanoparticles for combination drug therapy. ACS Nano. 2013;7(11):9518–25. https://doi.org/10.1021/nn405674m.

    Article  CAS  Google Scholar 

  12. Ribeiro Franco PI, Rodrigues AP, de Menezes LB, Pacheco MM. Tumor microenvironment components: Allies of cancer progression. Pathol Res Pract. 2020;216(1):152729. https://doi.org/10.1016/j.prp.2019.152729.

    Article  CAS  Google Scholar 

  13. Driskell RR, Lichtenberger BM, Hoste E, Kretzschmar K, Simons BD, Charalambous M, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504(7479):277–81. https://doi.org/10.1038/nature12783.

    Article  CAS  Google Scholar 

  14. Dumont N, Liu B, Defilippis RA, Chang H, Rabban JT, Karnezis AN, et al. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia. 2013;15(3):249–62. https://doi.org/10.1593/neo.121950.

    Article  CAS  Google Scholar 

  15. Wang FT, Sun W, Zhang JT, Fan YZ. Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer. Oncol Lett. 2019;17(3):3055–65. https://doi.org/10.3892/ol.2019.9973.

    Article  CAS  Google Scholar 

  16. Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. 2016;30(9):1002–19. https://doi.org/10.1101/gad.279737.116.

    Article  CAS  Google Scholar 

  17. Martin JD, Seano G, Jain RK. Normalizing Function of Tumor Vessels: Progress, Opportunities, and Challenges. Annu Rev Physiol. 2019;81:505–34. https://doi.org/10.1146/annurev-physiol-020518-114700.

    Article  CAS  Google Scholar 

  18. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(3):418–29. https://doi.org/10.1016/j.ccr.2012.01.007.

    Article  CAS  Google Scholar 

  19. Raskov H, Orhan A, Gaggar S, Gogenur I. Cancer-associated fibroblasts and tumor-associated macrophages in cancer and cancer immunotherapy. Front Oncol. 2021;11:668731. https://doi.org/10.3389/fonc.2021.668731.

    Article  Google Scholar 

  20. Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99–115. https://doi.org/10.1038/s41573-018-0004-1.

    Article  CAS  Google Scholar 

  21. Jiang T, Zhang B, Zhang L, Wu X, Li H, Shen S, et al. Biomimetic nanoparticles delivered hedgehog pathway inhibitor to modify tumour microenvironment and improved chemotherapy for pancreatic carcinoma. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1088–101. https://doi.org/10.1080/21691401.2018.1445093.

    Article  CAS  Google Scholar 

  22. Albrengues J, Bourget I, Pons C, Butet V, Hofman P, Tartare-Deckert S, et al. LIF mediates proinvasive activation of stromal fibroblasts in cancer. Cell Rep. 2014;7(5):1664–78. https://doi.org/10.1016/j.celrep.2014.04.036.

    Article  CAS  Google Scholar 

  23. Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159(1):80–93. https://doi.org/10.1016/j.cell.2014.08.007.

    Article  CAS  Google Scholar 

  24. Kohli AG, Kivimae S, Tiffany MR, Szoka FC. Improving the distribution of Doxil(R) in the tumor matrix by depletion of tumor hyaluronan. J Control Release. 2014;191:105–14. https://doi.org/10.1016/j.jconrel.2014.05.019.

    Article  CAS  Google Scholar 

  25. Chen B, Dai W, Mei D, Liu T, Li S, He B, et al. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system. J Control Release. 2016;241:68–80. https://doi.org/10.1016/j.jconrel.2016.09.014.

    Article  CAS  Google Scholar 

  26. Zinger A, Koren L, Adir O, Poley M, Alyan M, Yaari Z, et al. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano. 2019;13(10):11008–21. https://doi.org/10.1021/acsnano.9b02395.

    Article  CAS  Google Scholar 

  27. Han H, Hou Y, Chen X, Zhang P, Kang M, Jin Q, et al. Metformin-induced stromal depletion to enhance the penetration of gemcitabine-loaded magnetic nanoparticles for pancreatic cancer targeted therapy. J Am Chem Soc. 2020;142(10):4944–54. https://doi.org/10.1021/jacs.0c00650.

    Article  CAS  Google Scholar 

  28. Fang T, Zhang J, Zuo T, Wu G, Xu Y, Yang Y, et al. Chemo-photothermal combination cancer therapy with ROS Scavenging, extracellular matrix depletion, and tumor immune activation by telmisartan and diselenide-paclitaxel prodrug loaded nanoparticles. ACS Appl Mater Interfaces. 2020;12(28):31292–308. https://doi.org/10.1021/acsami.0c10416.

    Article  CAS  Google Scholar 

  29. Li X, Qin F, Yang L, Mo L, Li L, Hou L. Sulfatide-containing lipid perfluorooctylbromide nanoparticles as paclitaxel vehicles targeting breast carcinoma. Int J Nanomedicine. 2014;9:3971–85. https://doi.org/10.2147/IJN.S67343.

    Article  CAS  Google Scholar 

  30. Ernsting MJ, Hoang B, Lohse I, Undzys E, Cao P, Do T, et al. Targeting of metastasis-promoting tumor-associated fibroblasts and modulation of pancreatic tumor-associated stroma with a carboxymethylcellulose-docetaxel nanoparticle. J Control Release. 2015;206:122–30. https://doi.org/10.1016/j.jconrel.2015.03.023.

    Article  CAS  Google Scholar 

  31. Murakami M, Ernsting MJ, Undzys E, Holwell N, Foltz WD, Li SD. Docetaxel conjugate nanoparticles that target alpha-smooth muscle actin-expressing stromal cells suppress breast cancer metastasis. Can Res. 2013;73(15):4862–71. https://doi.org/10.1158/0008-5472.CAN-13-0062.

    Article  CAS  Google Scholar 

  32. Hoang B, Ernsting MJ, Roy A, Murakami M, Undzys E, Li SD. Docetaxel-carboxymethylcellulose nanoparticles target cells via a SPARC and albumin dependent mechanism. Biomaterials. 2015;59:66–76. https://doi.org/10.1016/j.biomaterials.2015.04.032.

    Article  CAS  Google Scholar 

  33. Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 2002;16(21):2743–8. https://doi.org/10.1101/gad.1025302.

    Article  CAS  Google Scholar 

  34. Cheng XB, Sato N, Kohi S, Koga A, Hirata K. 4-Methylumbelliferone inhibits enhanced hyaluronan synthesis and cell migration in pancreatic cancer cells in response to tumor-stromal interactions. Oncol Lett. 2018;15(5):6297–301. https://doi.org/10.3892/ol.2018.8147.

    Article  CAS  Google Scholar 

  35. Mohamad Anuar NN, Nor Hisam NS, Liew SL, Ugusman A. Clinical review: navitoclax as a pro-apoptotic and anti-fibrotic agent. Front Pharmacol. 2020;11: 564108. https://doi.org/10.3389/fphar.2020.564108.

    Article  CAS  Google Scholar 

  36. Kurelac I, Umesh Ganesh N, Iorio M, Porcelli AM, Gasparre G. The multifaceted effects of metformin on tumor microenvironment. Semin Cell Dev Biol. 2020;98:90–7. https://doi.org/10.1016/j.semcdb.2019.05.010.

    Article  CAS  Google Scholar 

  37. Yao Y, Zou R, Liu X, Jiang J, Huang Q, He Y, et al. Telmisartan but not valsartan inhibits TGF-beta-mediated accumulation of extracellular matrix via activation of PPARgamma. J Huazhong Univ Sci Technolog Med Sci. 2008;28(5):543–8. https://doi.org/10.1007/s11596-008-0512-z.

    Article  CAS  Google Scholar 

  38. Li S, Liquari P, McKee KK, Harrison D, Patel R, Lee S, et al. Laminin-sulfatide binding initiates basement membrane assembly and enables receptor signaling in Schwann cells and fibroblasts. J Cell Biol. 2005;169(1):179–89. https://doi.org/10.1083/jcb.200501098.

    Article  CAS  Google Scholar 

  39. Lee J, Byun J, Shim G, Oh YK. Fibroblast activation protein activated antifibrotic peptide delivery attenuates fibrosis in mouse models of liver fibrosis. Nat Commun. 2022;13(1):1516. https://doi.org/10.1038/s41467-022-29186-8.

    Article  CAS  Google Scholar 

  40. Kim MG, Shon Y, Kim J, Oh YK. Selective activation of anticancer chemotherapy by cancer-associated fibroblasts in the tumor microenvironment. J Natl Cancer Inst. 2017;109(1). https://doi.org/10.1093/jnci/djw186.

  41. Lv Y, Xu C, Zhao X, Lin C, Yang X, Xin X, et al. Nanoplatform assembled from a CD44-targeted Prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. ACS Nano. 2018;12(2):1519–36. https://doi.org/10.1021/acsnano.7b08051.

    Article  CAS  Google Scholar 

  42. Wu J, Akaike T, Hayashida K, Okamoto T, Okuyama A, Maeda H. Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases. Jpn J Cancer Res. 2001;92(4):439–51. https://doi.org/10.1111/j.1349-7006.2001.tb01114.x.

    Article  CAS  Google Scholar 

  43. Dong X, Liu HJ, Feng HY, Yang SC, Liu XL, Lai X, et al. Enhanced Drug Delivery by Nanoscale Integration of a Nitric Oxide Donor To Induce Tumor Collagen Depletion. Nano Lett. 2019;19(2):997–1008. https://doi.org/10.1021/acs.nanolett.8b04236.

    Article  CAS  Google Scholar 

  44. Ng HH, Shen M, Samuel CS, Schlossmann J, Bennett RG. Relaxin and extracellular matrix remodeling: Mechanisms and signaling pathways. Mol Cell Endocrinol. 2019;487:59–65. https://doi.org/10.1016/j.mce.2019.01.015.

    Article  CAS  Google Scholar 

  45. Mardhian DF, Storm G, Bansal R, Prakash J. Nano-targeted relaxin impairs fibrosis and tumor growth in pancreatic cancer and improves the efficacy of gemcitabine in vivo. J Control Release. 2018;290:1–10. https://doi.org/10.1016/j.jconrel.2018.09.031.

    Article  CAS  Google Scholar 

  46. Burri BJ, Edgington TS, Fair DS. Molecular interactions of the intrinsic activation complex of coagulation: binding of native and activated human factors IX and X to defined phospholipid vesicles. Biochem Biophys Acta. 1987;923(2):176–86.

    Article  CAS  Google Scholar 

  47. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274–88. https://doi.org/10.1016/j.immuni.2014.01.006.

    Article  CAS  Google Scholar 

  48. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 2014;5:75. https://doi.org/10.3389/fphys.2014.00075.

    Article  Google Scholar 

  49. Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012;33(3):119–26. https://doi.org/10.1016/j.it.2011.12.001.

    Article  CAS  Google Scholar 

  50. Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 2014;6(3):1670–90. https://doi.org/10.3390/cancers6031670.

    Article  Google Scholar 

  51. Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in cancer. Trends Immunol. 2019;40(4):310–27. https://doi.org/10.1016/j.it.2019.02.003.

    Article  CAS  Google Scholar 

  52. Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology. 2019;8(7):1596004. https://doi.org/10.1080/2162402X.2019.1596004.

    Article  Google Scholar 

  53. Ishiwata T, Hirose T, Hirama M, Miura K, Iwakami S, Tominaga S, et al. A feasibility study of zoledronic acid combined with carboplatin/nedaplatin plus paclitaxel in patients with non-small cell lung cancer with bone metastases. Tumori. 2011;97(5):568–72. https://doi.org/10.1700/989.10713.

    Article  CAS  Google Scholar 

  54. Sui D, Tang X, Ding J, Wang Y, Qin Y, Zhang N, et al. Sequential administration of sialic acid-modified liposomes as carriers for epirubicin and zoledronate elicit stronger antitumor effects with reduced toxicity. Int J Pharm. 2021;602:120552. https://doi.org/10.1016/j.ijpharm.2021.120552.

    Article  CAS  Google Scholar 

  55. Luo KP, Lian YF, Zhang M, Yu H, Wang GJ, Li J. Charge convertible biomimetic micellar nanoparticles for enhanced melanoma-targeted therapy through tumor cells and tumor-associated macrophages dual chemotherapy with IDO immunotherapy. Chem Eng J. 2021;412. ARTN 128659 https://doi.org/10.1016/j.cej.2021.128659.

  56. Sun JJ, Chen YC, Huang YX, Zhao WC, Liu YH, Venkataramanan R, et al. Programmable co-delivery of the immune checkpoint inhibitor NLG919 and chemotherapeutic doxorubicin via a redox-responsive immunostimulatory polymeric prodrug carrier. Acta Pharmacol Sin. 2017;38(6):823–34. https://doi.org/10.1038/aps.2017.44.

    Article  CAS  Google Scholar 

  57. Genard G, Lucas S, Michiels C. Reprogramming of tumor-associated macrophages with anticancer therapies: radiotherapy versus chemo- and immunotherapies. Front Immunol. 2017;8:828. https://doi.org/10.3389/fimmu.2017.00828.

    Article  CAS  Google Scholar 

  58. Keshavarz A, Pourbagheri-Sigaroodi A, Zafari P, Bagheri N, Ghaffari SH, Bashash D. Toll-like receptors (TLRs) in cancer; with an extensive focus on TLR agonists and antagonists. IUBMB Life. 2021;73(1):10–25. https://doi.org/10.1002/iub.2412.

    Article  CAS  Google Scholar 

  59. Ektate K, Munteanu MC, Ashar H, Malayer J, Ranjan A. Chemo-immunotherapy of colon cancer with focused ultrasound and Salmonella-laden temperature sensitive liposomes (thermobots). Sci Rep. 2018;8(1):13062. https://doi.org/10.1038/s41598-018-30106-4.

    Article  CAS  Google Scholar 

  60. Kuerban K, Gao X, Zhang H, Liu J, Dong M, Wu L, et al. Doxorubicin-loaded bacterial outer-membrane vesicles exert enhanced anti-tumor efficacy in non-small-cell lung cancer. Acta Pharm Sin B. 2020;10(8):1534–48. https://doi.org/10.1016/j.apsb.2020.02.002.

    Article  CAS  Google Scholar 

  61. Roy A, Singh MS, Upadhyay P, Bhaskar S. Combined chemo-immunotherapy as a prospective strategy to combat cancer: a nanoparticle based approach. Mol Pharm. 2010;7(5):1778–88. https://doi.org/10.1021/mp100153r.

    Article  CAS  Google Scholar 

  62. Roy A, Singh MS, Upadhyay P, Bhaskar S. Nanoparticle mediated co-delivery of paclitaxel and a TLR-4 agonist results in tumor regression and enhanced immune response in the tumor microenvironment of a mouse model. Int J Pharm. 2013;445(1–2):171–80. https://doi.org/10.1016/j.ijpharm.2013.01.045.

    Article  CAS  Google Scholar 

  63. van der Zanden SY, Luimstra JJ, Neefjes J, Borst J, Ovaa H. Opportunities for Small molecules in cancer immunotherapy. Trends Immunol. 2020;41(6):493–511. https://doi.org/10.1016/j.it.2020.04.004.

    Article  CAS  Google Scholar 

  64. Song C, Phuengkham H, Kim YS, Dinh VV, Lee I, Shin IW, et al. Syringeable immunotherapeutic nanogel reshapes tumor microenvironment and prevents tumor metastasis and recurrence. Nat Commun. 2019;10(1):3745. https://doi.org/10.1038/s41467-019-11730-8.

    Article  CAS  Google Scholar 

  65. Wang X, Li B, Jing H, Dong X, Leng X. MWCNT-mediated combinatorial photothermal ablation and chemo-immunotherapy strategy for the treatment of melanoma. J Mater Chem B. 2020;8(19):4245–58. https://doi.org/10.1039/c9tb02238d.

    Article  CAS  Google Scholar 

  66. Pawar VK, Singh Y, Sharma K, Shrivastav A, Sharma A, Singh A, et al. Doxorubicin hydrochloride loaded zymosan-polyethylenimine biopolymeric nanoparticles for dual ‘chemoimmunotherapeutic’ intervention in breast cancer. Pharm Res. 2017;34(9):1857–71. https://doi.org/10.1007/s11095-017-2195-2.

    Article  CAS  Google Scholar 

  67. Zhang R, Wan Y, Lv H, Li F, Lee CS. DTX@VTX NPs synergy PD-L1 immune checkpoint nanoinhibitor to reshape immunosuppressive tumor microenvironment for enhancing chemo-immunotherapy. J Mater Chem B. 2021;9(36):7544–56. https://doi.org/10.1039/d1tb00269d.

    Article  CAS  Google Scholar 

  68. Wang T, Mu W, Li F, Zhang J, Hou T, Pang X, et al. “Layer peeling” co-delivery system for enhanced RNA interference-based tumor associated macrophages-specific chemoimmunotherapy. Nanoscale. 2020;12(32):16851–63. https://doi.org/10.1039/d0nr04025h.

    Article  CAS  Google Scholar 

  69. Hornyak L, Dobos N, Koncz G, Karanyi Z, Pall D, Szabo Z, et al. The role of indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy. Front Immunol. 2018;9:151. https://doi.org/10.3389/fimmu.2018.00151.

    Article  CAS  Google Scholar 

  70. Meng X, Du G, Ye L, Sun S, Liu Q, Wang H, et al. Combinatorial antitumor effects of indoleamine 2,3-dioxygenase inhibitor NLG919 and paclitaxel in a murine B16–F10 melanoma model. Int J Immunopathol Pharmacol. 2017;30(3):215–26. https://doi.org/10.1177/0394632017714696.

    Article  CAS  Google Scholar 

  71. Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol. 2021;21(7):411–25. https://doi.org/10.1038/s41577-020-00491-x.

    Article  CAS  Google Scholar 

  72. Yong SB, Ramishetti S, Goldsmith M, Diesendruck Y, Hazan-Halevy I, Chatterjee S, et al. Dual-targeted lipid nanotherapeutic boost for chemo-immunotherapy of cancer. Adv Mater. 2022;34(13): e2106350. https://doi.org/10.1002/adma.202106350.

    Article  CAS  Google Scholar 

  73. Zhou Q, Liang J, Yang T, Liu J, Li B, Li Y, et al. Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer. EMBO Mol Med. 2022;14(1): e14502. https://doi.org/10.15252/emmm.202114502.

    Article  CAS  Google Scholar 

  74. Cheng WT, Ho HO, Lin SY, Liu DZ, Chen LC, Sheu MT. Carfilzomib and Paclitaxel co-loaded protein nanoparticles an effective therapy against pancreatic adenocarcinomas. Int J Nanomedicine. 2021;16:6825–41. https://doi.org/10.2147/IJN.S331210.

    Article  Google Scholar 

  75. Zhou DY, Qin J, Huang J, Wang F, Xu GP, Lv YT, et al. Zoledronic acid inhibits infiltration of tumor-associated macrophages and angiogenesis following transcatheter arterial chemoembolization in rat hepatocellular carcinoma models. Oncol Lett. 2017;14(4):4078–84. https://doi.org/10.3892/ol.2017.6717.

    Article  CAS  Google Scholar 

  76. Bohannon JK, Hernandez A, Enkhbaatar P, Adams WL, Sherwood ER. The immunobiology of toll-like receptor 4 agonists: from endotoxin tolerance to immunoadjuvants. Shock. 2013;40(6):451–62. https://doi.org/10.1097/SHK.0000000000000042.

    Article  CAS  Google Scholar 

  77. Lee JC, Lee EJ, Lee JH, Jun SH, Choi CW, Kim SI, et al. Klebsiella pneumoniae secretes outer membrane vesicles that induce the innate immune response. FEMS Microbiol Lett. 2012;331(1):17–24. https://doi.org/10.1111/j.1574-6968.2012.02549.x.

    Article  CAS  Google Scholar 

  78. Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA. Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer. 2006;95(3):272–81. https://doi.org/10.1038/sj.bjc.6603240.

    Article  CAS  Google Scholar 

  79. Murad YM, Clay TM. CpG oligodeoxynucleotides as TLR9 agonists: therapeutic applications in cancer. BioDrugs. 2009;23(6):361–75. https://doi.org/10.2165/11316930-000000000-00000.

    Article  CAS  Google Scholar 

  80. de Graaff P, Berrevoets C, Rsch C, Schols HA, Verhoef K, Wichers HJ, et al. Curdlan, zymosan and a yeast-derived beta-glucan reshape tumor-associated macrophages into producers of inflammatory chemo-attractants. Cancer Immunol Immunother. 2021;70(2):547–61. https://doi.org/10.1007/s00262-020-02707-4.

    Article  CAS  Google Scholar 

  81. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al. “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med. 2008;205(6):1261–8. https://doi.org/10.1084/jem.20080108.

    Article  CAS  Google Scholar 

  82. Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8(+) T cells. Oncoimmunology. 2013;2(12):e26968. https://doi.org/10.4161/onci.26968.

    Article  Google Scholar 

  83. Shen S, Li HJ, Chen KG, Wang YC, Yang XZ, Lian ZX, et al. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Nano Lett. 2017;17(6):3822–9. https://doi.org/10.1021/acs.nanolett.7b01193.

    Article  CAS  Google Scholar 

  84. Scheetz LM, Yu M, Li D, Castro MG, Moon JJ, Schwendeman A. Synthetic HDL nanoparticles delivering docetaxel and CpG for chemoimmunotherapy of colon adenocarcinoma. Int J Mol Sci. 2020;21(5). https://doi.org/10.3390/ijms21051777.

  85. Roy A, Chandra S, Mamilapally S, Upadhyay P, Bhaskar S. Anticancer and immunostimulatory activity by conjugate of paclitaxel and non-toxic derivative of LPS for combined chemo-immunotherapy. Pharm Res. 2012;29(8):2294–309. https://doi.org/10.1007/s11095-012-0756-y.

    Article  CAS  Google Scholar 

  86. Chi H, Li C, Zhao FS, Zhang L, Ng TB, Jin G, et al. Anti-tumor activity of toll-like receptor 7 agonists. Front Pharmacol. 2017;8:304. https://doi.org/10.3389/fphar.2017.00304.

    Article  CAS  Google Scholar 

  87. Kang T, Li Y, Wang Y, Zhu J, Yang L, Huang Y, et al. Modular engineering of targeted dual-drug nanoassemblies for cancer chemoimmunotherapy. ACS Appl Mater Interfaces. 2019;11(40):36371–82. https://doi.org/10.1021/acsami.9b11881.

    Article  CAS  Google Scholar 

  88. Prescott JA, Cook SJ. Targeting IKKbeta in cancer: challenges and opportunities for the therapeutic utilisation of IKKbeta inhibitors. Cells. 2018;7(9). https://doi.org/10.3390/cells7090115.

  89. Wang T, Zhang J, Hou T, Yin X, Zhang N. Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core-shell nanoparticles for enhanced tumor-localized chemoimmunotherapy. Nanoscale. 2019;11(29):13934–46. https://doi.org/10.1039/c9nr03374b.

    Article  CAS  Google Scholar 

  90. Tang J, Zhang R, Guo M, Zhou H, Zhao Y, Liu Y, et al. Gd-metallofullerenol drug delivery system mediated macrophage polarization enhances the efficiency of chemotherapy. J Control Release. 2020;320:293–303. https://doi.org/10.1016/j.jconrel.2020.01.053.

    Article  CAS  Google Scholar 

  91. Wei B, Pan J, Yuan R, Shao B, Wang Y, Guo X, et al. Polarization of tumor-associated macrophages by nanoparticle-loaded Escherichia coli combined with immunogenic cell death for cancer immunotherapy. Nano Lett. 2021;21(10):4231–40. https://doi.org/10.1021/acs.nanolett.1c00209.

    Article  CAS  Google Scholar 

  92. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29(6 Suppl 16):15–8. https://doi.org/10.1053/sonc.2002.37263.

    Article  CAS  Google Scholar 

  93. Lu C, Bonome T, Li Y, Kamat AA, Han LY, Schmandt R, et al. Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Res. 2007;67(4):1757–68. https://doi.org/10.1158/0008-5472.CAN-06-3700.

    Article  CAS  Google Scholar 

  94. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000;156(4):1363–80. https://doi.org/10.1016/S0002-9440(10)65006-7.

    Article  CAS  Google Scholar 

  95. di Tomaso E, Capen D, Haskell A, Hart J, Logie JJ, Jain RK, et al. Mosaic tumor vessels: cellular basis and ultrastructure of focal regions lacking endothelial cell markers. Cancer Res. 2005;65(13):5740–9. https://doi.org/10.1158/0008-5472.CAN-04-4552.

    Article  Google Scholar 

  96. De Val S, Black BL. Transcriptional control of endothelial cell development. Dev Cell. 2009;16(2):180–95. https://doi.org/10.1016/j.devcel.2009.01.014.

    Article  CAS  Google Scholar 

  97. Nagy JA, Dvorak AM, Dvorak HF. VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol. 2007;2:251–75. https://doi.org/10.1146/annurev.pathol.2.010506.134925.

    Article  CAS  Google Scholar 

  98. Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev. 2005;15(1):102–11. https://doi.org/10.1016/j.gde.2004.12.005.

    Article  CAS  Google Scholar 

  99. Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001;153(3):543–53. https://doi.org/10.1083/jcb.153.3.543.

    Article  CAS  Google Scholar 

  100. Kandalaft LE, Facciabene A, Buckanovich RJ, Coukos G. Endothelin B receptor, a new target in cancer immune therapy. Clin Cancer Res. 2009;15(14):4521–8. https://doi.org/10.1158/1078-0432.CCR-08-0543.

    Article  CAS  Google Scholar 

  101. Buckanovich RJ, Facciabene A, Kim S, Benencia F, Sasaroli D, Balint K, et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med. 2008;14(1):28–36. https://doi.org/10.1038/nm1699.

    Article  CAS  Google Scholar 

  102. Wieland E, Rodriguez-Vita J, Liebler SS, Mogler C, Moll I, Herberich SE, et al. Endothelial Notch1 activity facilitates metastasis. Cancer Cell. 2017;31(3):355–67. https://doi.org/10.1016/j.ccell.2017.01.007.

    Article  CAS  Google Scholar 

  103. Yamada K, Maishi N, Akiyama K, Towfik Alam M, Ohga N, Kawamoto T, et al. CXCL12-CXCR7 axis is important for tumor endothelial cell angiogenic property. Int J Cancer. 2015;137(12):2825–36. https://doi.org/10.1002/ijc.29655.

    Article  CAS  Google Scholar 

  104. Zhang L, Yang N, Park JW, Katsaros D, Fracchioli S, Cao G, et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res. 2003;63(12):3403–12.

    CAS  Google Scholar 

  105. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004;4(6):423–36. https://doi.org/10.1038/nrc1369.

    Article  CAS  Google Scholar 

  106. Ojha T, Pathak V, Shi Y, Hennink WE, Moonen CTW, Storm G, et al. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Adv Drug Deliv Rev. 2017;119:44–60. https://doi.org/10.1016/j.addr.2017.07.007.

    Article  CAS  Google Scholar 

  107. Dhillon S. Bevacizumab combination therapy: a review of its use in patients with epithelial ovarian, fallopian tube, or primary peritoneal cancer. BioDrugs. 2013;27(4):375–92. https://doi.org/10.1007/s40259-013-0043-4.

    Article  CAS  Google Scholar 

  108. Xu R, Xu C, Liu C, Cui C, Zhu J. Efficacy and safety of bevacizumab-based combination therapy for treatment of patients with metastatic colorectal cancer. Onco Targets Ther. 2018;11:8605–21. https://doi.org/10.2147/OTT.S171724.

    Article  CAS  Google Scholar 

  109. Singh MS, Goldsmith M, Thakur K, Chatterjee S, Landesman-Milo D, Levy T, et al. An ovarian spheroid based tumor model that represents vascularized tumors and enables the investigation of nanomedicine therapeutics. Nanoscale. 2020;12(3):1894–903. https://doi.org/10.1039/c9nr09572a.

    Article  CAS  Google Scholar 

  110. Kudo M. A new era in systemic therapy for hepatocellular carcinoma: atezolizumab plus bevacizumab combination therapy. Liver Cancer. 2020;9(2):119–37. https://doi.org/10.1159/000505189.

    Article  CAS  Google Scholar 

  111. Blay JY, Papai Z, Tolcher AW, Italiano A, Cupissol D, Lopez-Pousa A, et al. Ombrabulin plus cisplatin versus placebo plus cisplatin in patients with advanced soft-tissue sarcomas after failure of anthracycline and ifosfamide chemotherapy: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2015;16(5):531–40. https://doi.org/10.1016/S1470-2045(15)70102-6.

    Article  CAS  Google Scholar 

  112. Uckun FM, Cogle CR, Lin TL, Qazi S, Trieu VN, Schiller G et al. A Phase 1B Clinical Study of combretastatin A1 diphosphate (OXi4503) and cytarabine (ARA-C) in combination (oxa) for patients with relapsed or refractory acute myeloid leukemia. Cancers (Basel). 2019;12(1). https://doi.org/10.3390/cancers12010074.

  113. Wong PP, Demircioglu F, Ghazaly E, Alrawashdeh W, Stratford MR, Scudamore CL, et al. Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cancer Cell. 2015;27(1):123–37. https://doi.org/10.1016/j.ccell.2014.10.015.

    Article  CAS  Google Scholar 

  114. Black KL, Yin D, Ong JM, Hu J, Konda BM, Wang X, et al. PDE5 inhibitors enhance tumor permeability and efficacy of chemotherapy in a rat brain tumor model. Brain Res. 2008;1230:290–302. https://doi.org/10.1016/j.brainres.2008.06.122.

    Article  CAS  Google Scholar 

  115. Connell JJ, Chatain G, Cornelissen B, Vallis KA, Hamilton A, Seymour L, et al. Selective permeabilization of the blood-brain barrier at sites of metastasis. J Natl Cancer Inst. 2013;105(21):1634–43. https://doi.org/10.1093/jnci/djt276.

    Article  CAS  Google Scholar 

  116. Neijzen R, Wong MQ, Gill N, Wang H, Karim T, Anantha M, et al. Irinophore C, a lipid nanoparticulate formulation of irinotecan, improves vascular function, increases the delivery of sequentially administered 5-FU in HT-29 tumors, and controls tumor growth in patient derived xenografts of colon cancer. J Control Release. 2015;199:72–83. https://doi.org/10.1016/j.jconrel.2014.11.031.

    Article  CAS  Google Scholar 

  117. Darge HF, Hanurry EY, Birhan YS, Mekonnen TW, Andrgie AT, Chou HY et al. Multifunctional drug-loaded micelles encapsulated in thermo-sensitive hydrogel for in vivo local cancer treatment: Synergistic effects of anti-vascular and immuno-chemotherapy. Chem Eng J. 2021;406. ARTN 126879 https://doi.org/10.1016/j.cej.2020.126879.

  118. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436(7050):568–72. https://doi.org/10.1038/nature03794.

    Article  CAS  Google Scholar 

  119. Verreault M, Strutt D, Masin D, Anantha M, Yung A, Kozlowski P, et al. Vascular normalization in orthotopic glioblastoma following intravenous treatment with lipid-based nanoparticulate formulations of irinotecan (Irinophore C), doxorubicin (Caelyx(R)) or vincristine. BMC Cancer. 2011;11:124. https://doi.org/10.1186/1471-2407-11-124.

    Article  CAS  Google Scholar 

  120. Smolarczyk R, Czapla J, Jarosz-Biej M, Czerwinski K, Cichon T. Vascular disrupting agents in cancer therapy. Eur J Pharmacol. 2021;891:173692. https://doi.org/10.1016/j.ejphar.2020.173692.

    Article  CAS  Google Scholar 

  121. Zhang C, An T, Wang D, Wan G, Zhang M, Wang H, et al. Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(beta-amino ester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma. J Control Release. 2016;226:193–204. https://doi.org/10.1016/j.jconrel.2016.02.030.

    Article  CAS  Google Scholar 

  122. Hassan AY, Maulood IM, Salihi A. The vasodilatory mechanism of nitric oxide and hydrogen sulfide in the human mesenteric artery in patients with colorectal cancer. Exp Ther Med. 2021;21(3):214. https://doi.org/10.3892/etm.2021.9646.

    Article  CAS  Google Scholar 

  123. Kang Y, Kim J, Park J, Lee YM, Saravanakumar G, Park KM, et al. Tumor vasodilation by N-Heterocyclic carbene-based nitric oxide delivery triggered by high-intensity focused ultrasound and enhanced drug homing to tumor sites for anti-cancer therapy. Biomaterials. 2019;217:119297. https://doi.org/10.1016/j.biomaterials.2019.119297.

  124. Wei H, Wang F, Wang Y, Li T, Xiu P, Zhong J, et al. Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of pancreatic ductal adenocarcinoma via disrupting the YAP-TEAD complex. Cancer Sci. 2017;108(3):478–87. https://doi.org/10.1111/cas.13138.

    Article  CAS  Google Scholar 

  125. Jiang D, Xu M, Pei Y, Huang Y, Chen Y, Ma F, et al. Core-matched nanoassemblies for targeted co-delivery of chemotherapy and photosensitizer to treat drug-resistant cancer. Acta Biomater. 2019;88:406–21. https://doi.org/10.1016/j.actbio.2019.02.009.

    Article  CAS  Google Scholar 

  126. Guo P, Song S, Li Z, Tian Y, Zheng J, Yang X, et al. In vitro and in vivo evaluation of APRPG-modified angiogenic vessel targeting micelles for anticancer therapy. Int J Pharm. 2015;486(1–2):356–66. https://doi.org/10.1016/j.ijpharm.2015.03.067.

    Article  CAS  Google Scholar 

  127. Wicki A, Rochlitz C, Orleth A, Ritschard R, Albrecht I, Herrmann R, et al. Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin Cancer Res. 2012;18(2):454–64. https://doi.org/10.1158/1078-0432.CCR-11-1102.

    Article  CAS  Google Scholar 

  128. Gao H, Yang Z, Cao S, Xiong Y, Zhang S, Pang Z, et al. Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials. 2014;35(7):2374–82. https://doi.org/10.1016/j.biomaterials.2013.11.076.

    Article  CAS  Google Scholar 

  129. Zhang C, Song J, Lou L, Qi XJ, Zhao L, Fan B et al. Doxorubicin-loaded nanoparticle coated with endothelial cells-derived exosomes for immunogenic chemotherapy of glioblastoma. Bioeng Transl Med. 2020. https://doi.org/10.1002/btm2.10203.

  130. Qu H, Li R, Liu Z, Zhang J, Luo R. Prognostic value of cancer stem cell marker CD133 expression in non-small cell lung cancer: a systematic review. Int J Clin Exp Pathol. 2013;6(11):2644–50.

    Google Scholar 

  131. Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol. 2012;44(12):2144–51. https://doi.org/10.1016/j.biocel.2012.08.022.

    Article  CAS  Google Scholar 

  132. Doherty MR, Smigiel JM, Junk DJ, Jackson MW. Cancer stem cell plasticity drives therapeutic resistance. cancers (Basel). 2016;8(1). https://doi.org/10.3390/cancers8010008.

  133. Yiming L, Yunshan G, Bo M, Yu Z, Tao W, Gengfang L, et al. CD133 overexpression correlates with clinicopathological features of gastric cancer patients and its impact on survival: a systematic review and meta-analysis. Oncotarget. 2015;6(39):42019–27. https://doi.org/10.18632/oncotarget.5714.

    Article  Google Scholar 

  134. Wang L, Zuo X, Xie K, Wei D. The Role of CD44 and Cancer Stem Cells. Methods Mol Biol. 2018;1692:31–42. https://doi.org/10.1007/978-1-4939-7401-6_3.

    Article  CAS  Google Scholar 

  135. Satar NA, Fakiruddin KS, Lim MN, Mok PL, Zakaria N, Fakharuzi NA, et al. Novel triplepositive markers identified in human nonsmall cell lung cancer cell line with chemotherapy-resistant and putative cancer stem cell characteristics. Oncol Rep. 2018;40(2):669–81. https://doi.org/10.3892/or.2018.6461.

    Article  CAS  Google Scholar 

  136. Shouval R, Furie N, Raanani P, Nagler A, Gafter-Gvili A. Autologous hematopoietic stem cell transplantation for systemic sclerosis: a systematic review and meta-analysis. Biol Blood Marrow Transplant. 2018;24(5):937–44. https://doi.org/10.1016/j.bbmt.2018.01.020.

    Article  Google Scholar 

  137. Hu T, Zhou R, Zhao Y, Wu G. Integrin alpha6/Akt/Erk signaling is essential for human breast cancer resistance to radiotherapy. Sci Rep. 2016;6:33376. https://doi.org/10.1038/srep33376.

    Article  CAS  Google Scholar 

  138. Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell. 2011;9(1):50–63. https://doi.org/10.1016/j.stem.2011.06.005.

    Article  CAS  Google Scholar 

  139. Yamazaki H, Xu CW, Naito M, Nishida H, Okamoto T, Ghani FI, et al. Regulation of cancer stem cell properties by CD9 in human B-acute lymphoblastic leukemia. Biochem Biophys Res Commun. 2011;409(1):14–21. https://doi.org/10.1016/j.bbrc.2011.04.098.

    Article  CAS  Google Scholar 

  140. Codony-Servat J, Rosell R. Cancer stem cells and immunoresistance: clinical implications and solutions. Transl Lung Cancer Res. 2015;4(6):689–703. https://doi.org/10.3978/j.issn.2218-6751.2015.12.11.

    Article  CAS  Google Scholar 

  141. Suresh R, Ali S, Ahmad A, Philip PA, Sarkar FH. The Role of Cancer Stem Cells in Recurrent and Drug-Resistant Lung Cancer. Adv Exp Med Biol. 2016;890:57–74. https://doi.org/10.1007/978-3-319-24932-2_4.

    Article  Google Scholar 

  142. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(1):8. https://doi.org/10.1038/s41392-020-0110-5.

    Article  CAS  Google Scholar 

  143. Shen S, Xu X, Lin S, Zhang Y, Liu H, Zhang C, et al. A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat Nanotechnol. 2021;16(1):104–13. https://doi.org/10.1038/s41565-020-00793-0.

    Article  CAS  Google Scholar 

  144. Confeld MI, Mamnoon B, Feng L, Jensen-Smith H, Ray P, Froberg J, et al. Targeting the tumor core: hypoxia-responsive nanoparticles for the delivery of chemotherapy to pancreatic tumors. Mol Pharm. 2020;17(8):2849–63. https://doi.org/10.1021/acs.molpharmaceut.0c00247.

    Article  CAS  Google Scholar 

  145. Hubbard JM, Grothey A. Napabucasin: an update on the first-in-class cancer stemness inhibitor. Drugs. 2017;77(10):1091–103. https://doi.org/10.1007/s40265-017-0759-4.

    Article  CAS  Google Scholar 

  146. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in cancer immunotherapy. Mol Cancer. 2020;19(1):145. https://doi.org/10.1186/s12943-020-01258-7.

    Article  CAS  Google Scholar 

  147. Sulaiman A, McGarry S, El-Sahli S, Li L, Chambers J, Phan A, et al. Co-targeting bulk tumor and cscs in clinically translatable TNBC patient-derived xenografts via combination nanotherapy. Mol Cancer Ther. 2019;18(10):1755–64. https://doi.org/10.1158/1535-7163.MCT-18-0873.

    Article  CAS  Google Scholar 

  148. Ning ST, Lee SY, Wei MF, Peng CL, Lin SY, Tsai MH, et al. Targeting colorectal cancer stem-like cells with anti-CD133 antibody-conjugated SN-38 nanoparticles. ACS Appl Mater Interfaces. 2016;8(28):17793–804. https://doi.org/10.1021/acsami.6b04403.

    Article  CAS  Google Scholar 

  149. Wu MJ, Kim MR, Chen YS, Yang JY, Chang CJ. Retinoic acid directs breast cancer cell state changes through regulation of TET2-PKCzeta pathway. Oncogene. 2017;36(22):3193–206. https://doi.org/10.1038/onc.2016.467.

    Article  CAS  Google Scholar 

  150. Li Y, Han Q, Zhao H, Guo Q, Zhang J. Napabucasin reduces cancer stem cell characteristics in hepatocellular carcinoma. Front Pharmacol. 2020;11:597520. https://doi.org/10.3389/fphar.2020.597520.

    Article  CAS  Google Scholar 

  151. Qi D, Liu Y, Li J, Huang JH, Hu X, Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev. 2022;42(3):1037–63. https://doi.org/10.1002/med.21870.

    Article  CAS  Google Scholar 

  152. Wang Q, Yen YT, Xie C, Liu F, Liu Q, Wei J, et al. Combined delivery of salinomycin and docetaxel by dual-targeting gelatinase nanoparticles effectively inhibits cervical cancer cells and cancer stem cells. Drug Deliv. 2021;28(1):510–9. https://doi.org/10.1080/10717544.2021.1886378.

    Article  CAS  Google Scholar 

  153. Al Faraj A, Shaik AS, Ratemi E, Halwani R. Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J Control Release. 2016;225:240–51. https://doi.org/10.1016/j.jconrel.2016.01.053.

    Article  CAS  Google Scholar 

  154. Kim YJ, Liu Y, Li S, Rohrs J, Zhang R, Zhang X, et al. Co-eradication of breast cancer cells and cancer stem cells by cross-linked multilamellar liposomes enhances tumor treatment. Mol Pharm. 2015;12(8):2811–22. https://doi.org/10.1021/mp500754r.

    Article  CAS  Google Scholar 

  155. Lu Y, Zhu Y, Deng S, Chen Y, Li W, Sun J et al. Targeting the sonic hedgehog pathway to suppress the expression of the cancer stem cell (CSC)-related transcription factors and CSC-driven thyroid tumor growth. Cancers (Basel). 2021;13(3). https://doi.org/10.3390/cancers13030418.

  156. Hu K, Zhou H, Liu Y, Liu Z, Liu J, Tang J, et al. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale. 2015;7(18):8607–18. https://doi.org/10.1039/c5nr01084e.

    Article  CAS  Google Scholar 

  157. Choi DS, Blanco E, Kim YS, Rodriguez AA, Zhao H, Huang TH, et al. Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1. Stem Cells. 2014;32(9):2309–23. https://doi.org/10.1002/stem.1746.

    Article  CAS  Google Scholar 

  158. Sun R, Shen S, Zhang YJ, Xu CF, Cao ZT, Wen LP, et al. Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials. 2016;103:44–55. https://doi.org/10.1016/j.biomaterials.2016.06.038.

    Article  CAS  Google Scholar 

  159. Sun R, Liu Y, Li SY, Shen S, Du XJ, Xu CF, et al. Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials. 2015;37:405–14. https://doi.org/10.1016/j.biomaterials.2014.10.018.

    Article  CAS  Google Scholar 

  160. Soeny K, Bogacka B, Jones B, Bouillon T. Optimizing dose regimens and fixed dose combination ratios in clinical trials. J Biopharm Stat. 2016;26(3):432–51. https://doi.org/10.1080/10543406.2015.1052478.

    Article  Google Scholar 

  161. Wang L, Huang X, You X, Yi T, Lu B, Liu J, et al. Nanoparticle enhanced combination therapy for stem-like progenitors defined by single-cell transcriptomics in chemotherapy-resistant osteosarcoma. Signal Transduct Target Ther. 2020;5(1):196. https://doi.org/10.1038/s41392-020-00248-x.

    Article  CAS  Google Scholar 

  162. Chitkara D, Singh S, Kumar V, Danquah M, Behrman SW, Kumar N, et al. Micellar delivery of cyclopamine and gefitinib for treating pancreatic cancer. Mol Pharm. 2012;9(8):2350–7. https://doi.org/10.1021/mp3002792.

    Article  CAS  Google Scholar 

  163. Shin HC, Alani AW, Cho H, Bae Y, Kolesar JM, Kwon GS. A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Mol Pharm. 2011;8(4):1257–65. https://doi.org/10.1021/mp2000549.

    Article  CAS  Google Scholar 

  164. Alfayez M, Kantarjian H, Kadia T, Ravandi-Kashani F, Daver N. CPX-351 (vyxeos) in AML. Leuk Lymphoma. 2020;61(2):288–97. https://doi.org/10.1080/10428194.2019.1660970.

    Article  CAS  Google Scholar 

  165. Batist G, Gelmon KA, Chi KN, Miller WH Jr, Chia SK, Mayer LD, et al. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res. 2009;15(2):692–700. https://doi.org/10.1158/1078-0432.CCR-08-0515.

    Article  CAS  Google Scholar 

  166. Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R, et al. Combination delivery of TGF-beta inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater. 2012;11(10):895–905. https://doi.org/10.1038/nmat3355.

    Article  CAS  Google Scholar 

  167. Tang WL, Tang WH, Szeitz A, Kulkarni J, Cullis P, Li SD. Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery. Biomaterials. 2018;166:13–26. https://doi.org/10.1016/j.biomaterials.2018.03.004.

    Article  CAS  Google Scholar 

  168. Tang WL, Tang WH, Chen WC, Diako C, Ross CF, Li SD. Development of a Rapidly Dissolvable Oral Pediatric Formulation for Mefloquine Using Liposomes. Mol Pharm. 2017;14(6):1969–79. https://doi.org/10.1021/acs.molpharmaceut.7b00077.

    Article  CAS  Google Scholar 

  169. Tang WL, Chen WC, Roy A, Undzys E, Li SD. A simple and improved active loading method to efficiently encapsulate staurosporine into lipid-based nanoparticles for enhanced therapy of multidrug resistant cancer. Pharm Res. 2016;33(5):1104–14. https://doi.org/10.1007/s11095-015-1854-4.

    Article  CAS  Google Scholar 

  170. Kolishetti N, Dhar S, Valencia PM, Lin LQ, Karnik R, Lippard SJ, et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci U S A. 2010;107(42):17939–44. https://doi.org/10.1073/pnas.1011368107.

    Article  Google Scholar 

  171. Barua S, Mitragotri S. Synergistic targeting of cell membrane, cytoplasm, and nucleus of cancer cells using rod-shaped nanoparticles. ACS Nano. 2013;7(11):9558–70. https://doi.org/10.1021/nn403913k.

    Article  CAS  Google Scholar 

  172. Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96. https://doi.org/10.1016/j.addr.2019.04.008.

    Article  CAS  Google Scholar 

  173. Feng LZ, Dong ZL, Tao DL, Zhang YC, Liu Z. The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl Sci Rev. 2018;5(2):269–86. https://doi.org/10.1093/nsr/nwx062.

    Article  CAS  Google Scholar 

  174. Zhang J, Li J, Shi Z, Yang Y, Xie X, Lee SM, et al. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater. 2017;58:349–64. https://doi.org/10.1016/j.actbio.2017.04.029.

    Article  CAS  Google Scholar 

  175. Swetha KL, Maravajjala K, Sharma S, Chowdhury R, Roy A. Development of a tumor extracellular pH-responsive nanocarrier by terminal histidine conjugation in a star shaped poly(lactic-co-glycolic acid). Eur Polym J. 2021;147. ARTN 110337 https://doi.org/10.1016/j.eurpolymj.2021.110337.

  176. Ling D, Park W, Park SJ, Lu Y, Kim KS, Hackett MJ, et al. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc. 2014;136(15):5647–55. https://doi.org/10.1021/ja4108287.

    Article  CAS  Google Scholar 

  177. Zhang Y, Yang C, Wang W, Liu J, Liu Q, Huang F, et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016;6:21225. https://doi.org/10.1038/srep21225.

    Article  CAS  Google Scholar 

  178. Taleb M, Ding Y, Wang B, Yang N, Han X, Du C, et al. Dopamine delivery via pH-sensitive nanoparticles for tumor blood vessel normalization and an improved effect of cancer chemotherapeutic drugs. Adv Healthc Mater. 2019;8(18):e1900283. https://doi.org/10.1002/adhm.201900283.

    Article  CAS  Google Scholar 

  179. Wang X, Xu J, Xu X, Fang Q, Tang R. pH-sensitive bromelain nanoparticles by ortho ester crosslinkage for enhanced doxorubicin penetration in solid tumor. Mater Sci Eng C Mater Biol Appl. 2020;113:111004. https://doi.org/10.1016/j.msec.2020.111004.

    Article  CAS  Google Scholar 

  180. Dong Z, Feng L, Zhu W, Sun X, Gao M, Zhao H, et al. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials. 2016;110:60–70. https://doi.org/10.1016/j.biomaterials.2016.09.025.

    Article  CAS  Google Scholar 

  181. Paliwal SR, Paliwal R, Vyas SP. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv. 2015;22(3):231–42. https://doi.org/10.3109/10717544.2014.882469.

    Article  CAS  Google Scholar 

  182. Roux E, Lafleur M, Lataste E, Moreau P, Leroux JC. On the characterization of pH-sensitive liposome/polymer complexes. Biomacromol. 2003;4(2):240–8. https://doi.org/10.1021/bm025651x.

    Article  CAS  Google Scholar 

  183. Xu H, Li Y, Paxton JW, Wu Z. Co-Delivery Using pH-Sensitive Liposomes to Pancreatic Cancer Cells: the Effects of Curcumin on Cellular Concentration and Pharmacokinetics of Gemcitabine. Pharm Res. 2021;38(7):1209–19. https://doi.org/10.1007/s11095-021-03072-2.

    Article  CAS  Google Scholar 

  184. Kanamala M, Palmer BD, Jamieson SM, Wilson WR, Wu Z. Dual pH-sensitive liposomes with low pH-triggered sheddable PEG for enhanced tumor-targeted drug delivery. Nanomedicine (Lond). 2019;14(15):1971–89. https://doi.org/10.2217/nnm-2018-0510.

    Article  CAS  Google Scholar 

  185. Fang Y, Xue J, Gao S, Lu A, Yang D, Jiang H, et al. Cleavable PEGylation: a strategy for overcoming the “PEG dilemma” in efficient drug delivery. Drug Deliv. 2017;24(sup1):22–32. https://doi.org/10.1080/10717544.2017.1388451.

    Article  CAS  Google Scholar 

  186. Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan WE. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology. 2018;16(1):74. https://doi.org/10.1186/s12951-018-0398-2.

    Article  CAS  Google Scholar 

  187. Lu B, Xiao F, Wang Z, Wang B, Pan Z, Zhao W, et al. Redox-sensitive hyaluronic acid polymer prodrug nanoparticles for enhancing intracellular drug self-delivery and targeted cancer therapy. ACS Biomater Sci Eng. 2020;6(7):4106–15. https://doi.org/10.1021/acsbiomaterials.0c00762.

    Article  CAS  Google Scholar 

  188. Bai S, Ma X, Shi X, Shao J, Zhang T, Wang Y, et al. Smart unimolecular micelle-based polyprodrug with dual-redox stimuli response for tumor microenvironment: enhanced in vivo delivery efficiency and tumor penetration. ACS Appl Mater Interfaces. 2019;11(39):36130–40. https://doi.org/10.1021/acsami.9b13214.

    Article  CAS  Google Scholar 

  189. Wang X, Lin W, Zhang W, Li C, Sun T, Chen G, et al. Amphiphilic redox-sensitive NIR BODIPY nanoparticles for dual-mode imaging and photothermal therapy. J Colloid Interface Sci. 2019;536:208–14. https://doi.org/10.1016/j.jcis.2018.10.051.

    Article  CAS  Google Scholar 

  190. Petrelli A, Borsali R, Fort S, Halila S. Redox tunable delivery systems: sweet block copolymer micelles via thiol-(bromo)maleimide conjugation. Chem Commun (Camb). 2016;52(82):12202–5. https://doi.org/10.1039/c6cc07136h.

    Article  CAS  Google Scholar 

  191. Nguyen CT, Tran TH, Amiji M, Lu X, Kasi RM. Redox-sensitive nanoparticles from amphiphilic cholesterol-based block copolymers for enhanced tumor intracellular release of doxorubicin. Nanomedicine. 2015;11(8):2071–82. https://doi.org/10.1016/j.nano.2015.06.011.

    Article  CAS  Google Scholar 

  192. Zhang L, Liu W, Lin L, Chen D, Stenzel MH. Degradable disulfide core-cross-linked micelles as a drug delivery system prepared from vinyl functionalized nucleosides via the RAFT process. Biomacromol. 2008;9(11):3321–31. https://doi.org/10.1021/bm800867n.

    Article  CAS  Google Scholar 

  193. Fang Y, Lin X, Jin X, Yang D, Gao S, Shi K, et al. Design and fabrication of dual redox responsive nanoparticles with diselenide linkage combined photodynamically to effectively enhance gene expression. Int J Nanomedicine. 2020;15:7297–314. https://doi.org/10.2147/IJN.S266514.

    Article  CAS  Google Scholar 

  194. Baldwin AD, Kiick KL. Reversible maleimide-thiol adducts yield glutathione-sensitive poly(ethylene glycol)-heparin hydrogels. Polym Chem. 2013;4(1):133–43. https://doi.org/10.1039/C2PY20576A.

    Article  CAS  Google Scholar 

  195. Wu D, Fan YY, Yan HH, Li DD, Zhao Z, Chen XQ et al. Oxidation-sensitive polymeric nanocarrier-mediated cascade PDT chemotherapy for synergistic cancer therapy and potentiated checkpoint blockade immunotherapy. Chem Eng J. 2021;404. ARTN 126481 https://doi.org/10.1016/j.cej.2020.126481.

  196. Rajendrakumar SK, Venu A, Revuri V, George Thomas R, Thirunavukkarasu GK, Zhang J, et al. Hyaluronan-stabilized redox-sensitive nanoassembly for chemo-gene therapy and dual T1/T2 MR Imaging in drug-resistant breast cancer cells. Mol Pharm. 2019;16(5):2226–34. https://doi.org/10.1021/acs.molpharmaceut.9b00189.

    Article  CAS  Google Scholar 

  197. Xu F, Zhong H, Chang Y, Li D, Jin H, Zhang M, et al. Targeting death receptors for drug-resistant cancer therapy: Codelivery of pTRAIL and monensin using dual-targeting and stimuli-responsive self-assembling nanocomposites. Biomaterials. 2018;158:56–73. https://doi.org/10.1016/j.biomaterials.2017.12.018.

    Article  CAS  Google Scholar 

  198. Kang Y, Lu L, Lan J, Ding Y, Yang J, Zhang Y, et al. Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA. Acta Biomater. 2018;68:137–53. https://doi.org/10.1016/j.actbio.2017.12.028.

    Article  CAS  Google Scholar 

  199. Yuan CS, Deng ZW, Qin D, Mu YZ, Chen XG, Liu Y. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand? Acta Biomater. 2021;125:1–28. https://doi.org/10.1016/j.actbio.2021.02.030.

    Article  CAS  Google Scholar 

  200. Kumari R, Sunil D, Ningthoujam RS. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. J Control Release. 2020;319:135–56. https://doi.org/10.1016/j.jconrel.2019.12.041.

    Article  CAS  Google Scholar 

  201. Thambi T, Deepagan VG, Yoon HY, Han HS, Kim SH, Son S, et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials. 2014;35(5):1735–43. https://doi.org/10.1016/j.biomaterials.2013.11.022.

    Article  CAS  Google Scholar 

  202. Khatoon S, Han HS, Jeon J, Rao NV, Jeong DW, Ikram M et al. Hypoxia-Responsive Mesoporous Nanoparticles for Doxorubicin Delivery. Polymers (Basel). 2018;10(4). https://doi.org/10.3390/polym10040390.

  203. Kulkarni P, Haldar MK, You S, Choi Y, Mallik S. Hypoxia-Responsive Polymersomes for Drug Delivery to Hypoxic Pancreatic Cancer Cells. Biomacromol. 2016;17(8):2507–13. https://doi.org/10.1021/acs.biomac.6b00350.

    Article  CAS  Google Scholar 

  204. Li M, Zhao G, Su WK, Shuai Q. Enzyme-Responsive Nanoparticles for Anti-tumor Drug Delivery. Front Chem. 2020;8:647. https://doi.org/10.3389/fchem.2020.00647.

    Article  CAS  Google Scholar 

  205. Xu CF, Yu YL, Sun Y, Kong L, Yang CL, Hu M et al. Transformable Nanoparticle-Enabled Synergistic Elicitation and Promotion of Immunogenic Cell Death for Triple-Negative Breast Cancer Immunotherapy. Adv Funct Mater. 2019;29(45). ARTN 1905213 https://doi.org/10.1002/adfm.201905213.

  206. Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics. 2020;10(10):4557–88. https://doi.org/10.7150/thno.38069.

    Article  CAS  Google Scholar 

  207. Horsman MR. Tissue physiology and the response to heat. Int J Hyperthermia. 2006;22(3):197–203. https://doi.org/10.1080/02656730600689066.

    Article  Google Scholar 

  208. Pereira Gomes I, Aparecida Duarte J, Chaves Maia AL, Rubello D, Townsend DM, Branco de Barros AL et al. Thermosensitive Nanosystems Associated with Hyperthermia for Cancer Treatment. Pharmaceuticals (Basel). 2019;12(4). https://doi.org/10.3390/ph12040171.

  209. Zarrintaj P, Jouyandeh M, Ganjali MR, Hadavand BS, Mozafari M, Sheiko SS, et al. Thermo-sensitive polymers in medicine: A review. Eur Polym J. 2019;117:402–23. https://doi.org/10.1016/j.eurpolymj.2019.05.024.

    Article  CAS  Google Scholar 

  210. Sun S, Sun S, Sun Y, Wang P, Zhang J, Du W, et al. Bubble-Manipulated Local Drug Release from a Smart Thermosensitive Cerasome for Dual-Mode Imaging Guided Tumor Chemo-Photothermal Therapy. Theranostics. 2019;9(26):8138–54. https://doi.org/10.7150/thno.36762.

    Article  CAS  Google Scholar 

  211. Guo F, Yu M, Wang J, Tan F, Li N. Smart IR780 Theranostic Nanocarrier for Tumor-Specific Therapy: Hyperthermia-Mediated Bubble-Generating and Folate-Targeted Liposomes. ACS Appl Mater Interfaces. 2015;7(37):20556–67. https://doi.org/10.1021/acsami.5b06552.

    Article  CAS  Google Scholar 

  212. Zhao Y, Song Q, Yin Y, Wu T, Hu X, Gao X, et al. Immunochemotherapy mediated by thermosponge nanoparticles for synergistic anti-tumor effects. J Control Release. 2018;269:322–36. https://doi.org/10.1016/j.jconrel.2017.11.037.

    Article  CAS  Google Scholar 

  213. Grull H, Langereis S. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release. 2012;161(2):317–27. https://doi.org/10.1016/j.jconrel.2012.04.041.

    Article  CAS  Google Scholar 

  214. Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv Transl Res. 2021;11(4):1323–39. https://doi.org/10.1007/s13346-021-00963-0.

    Article  CAS  Google Scholar 

  215. Tharkar P, Varanasi R, Wong WSF, Jin CT, Chrzanowski W. Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. Front Bioeng Biotechnol. 2019;7:324. https://doi.org/10.3389/fbioe.2019.00324.

    Article  Google Scholar 

  216. Pucci C, Marino A, Sen O, De Pasquale D, Bartolucci M, Iturrioz-Rodriguez N, et al. Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells. Acta Biomater. 2021. https://doi.org/10.1016/j.actbio.2021.04.005.

    Article  Google Scholar 

  217. Thirunavukkarasu GK, Cherukula K, Lee H, Jeong YY, Park IK, Lee JY. Magnetic field-inducible drug-eluting nanoparticles for image-guided thermo-chemotherapy. Biomaterials. 2018;180:240–52. https://doi.org/10.1016/j.biomaterials.2018.07.028.

    Article  CAS  Google Scholar 

  218. Schleich N, Danhier F, Preat V. Iron oxide-loaded nanotheranostics: major obstacles to in vivo studies and clinical translation. J Control Release. 2015;198:35–54. https://doi.org/10.1016/j.jconrel.2014.11.024.

    Article  CAS  Google Scholar 

  219. Zhou XH, Wang LC, Xu YJ, Du WX, Cai XJ, Wang FJ, et al. A pH and magnetic dual-response hydrogel for synergistic chemo-magnetic hyperthermia tumor therapy. RSC Adv. 2018;8(18):9812–21. https://doi.org/10.1039/c8ra00215k.

    Article  CAS  Google Scholar 

  220. Chen Q, Liu L, Lu Y, Chen X, Zhang Y, Zhou W, et al. Tumor Microenvironment-Triggered Aggregated Magnetic Nanoparticles for Reinforced Image-Guided Immunogenic Chemotherapy. Adv Sci (Weinh). 2019;6(6):1802134. https://doi.org/10.1002/advs.201802134.

    Article  CAS  Google Scholar 

  221. Ahmad A, Gupta A, Ansari MM, Vyawahare A, Jayamurugan G, Khan R. Hyperbranched Polymer-Functionalized Magnetic Nanoparticle-Mediated Hyperthermia and Niclosamide Bimodal Therapy of Colorectal Cancer Cells. ACS Biomater Sci Eng. 2020;6(2):1102–11. https://doi.org/10.1021/acsbiomaterials.9b01947.

    Article  CAS  Google Scholar 

  222. Wang C, Yang J, Luo H, Wang K, Wang Y, Xiao ZX, et al. CancerTracer: a curated database for intrapatient tumor heterogeneity. Nucleic Acids Res. 2020;48(D1):D797–806. https://doi.org/10.1093/nar/gkz1061.

    Article  CAS  Google Scholar 

  223. Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, et al. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17–38. https://doi.org/10.1016/j.addr.2018.07.007.

    Article  CAS  Google Scholar 

  224. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 2000;60(5):1388–93.

    CAS  Google Scholar 

  225. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161(2):175–87. https://doi.org/10.1016/j.jconrel.2011.09.063.

    Article  CAS  Google Scholar 

  226. Achilles EG, Fernandez A, Allred EN, Kisker O, Udagawa T, Beecken WD, et al. Heterogeneity of angiogenic activity in a human liposarcoma: a proposed mechanism for “no take” of human tumors in mice. J Natl Cancer Inst. 2001;93(14):1075–81.

    Article  CAS  Google Scholar 

  227. Yu JL, Rak JW, Carmeliet P, Nagy A, Kerbel RS, Coomber BL. Heterogeneous vascular dependence of tumor cell populations. Am J Pathol. 2001;158(4):1325–34. https://doi.org/10.1016/S0002-9440(10)64083-7.

    Article  CAS  Google Scholar 

  228. Zhang L, Nishihara H, Kano MR. Pericyte-coverage of human tumor vasculature and nanoparticle permeability. Biol Pharm Bull. 2012;35(5):761–6. https://doi.org/10.1248/bpb.35.761.

    Article  CAS  Google Scholar 

  229. Kano MR, Komuta Y, Iwata C, Oka M, Shirai YT, Morishita Y, et al. Comparison of the effects of the kinase inhibitors imatinib, sorafenib, and transforming growth factor-beta receptor inhibitor on extravasation of nanoparticles from neovasculature. Cancer Sci. 2009;100(1):173–80. https://doi.org/10.1111/j.1349-7006.2008.01003.x.

    Article  CAS  Google Scholar 

  230. Gillies RJ, Schornack PA, Secomb TW, Raghunand N. Causes and effects of heterogeneous perfusion in tumors. Neoplasia. 1999;1(3):197–207. https://doi.org/10.1038/sj.neo.7900037.

    Article  CAS  Google Scholar 

  231. Walker C, Mojares E, Del Rio Hernandez A. Role of Extracellular Matrix in Development and Cancer Progression. Int J Mol Sci. 2018;19(10). https://doi.org/10.3390/ijms19103028.

  232. van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nanomedicine. Nat Nanotechnol. 2019;14(11):1007–17. https://doi.org/10.1038/s41565-019-0567-y.

    Article  CAS  Google Scholar 

  233. Pershina AG, Brikunova OY, Demin AM, Abakumov MA, Vaneev AN, Naumenko VA, et al. Variation in tumor pH affects pH-triggered delivery of peptide-modified magnetic nanoparticles. Nanomedicine. 2021;32:102317. https://doi.org/10.1016/j.nano.2020.102317.

    Article  CAS  Google Scholar 

  234. Ho L, Bokharaei M, Li SD. Current update of a thermosensitive liposomes composed of DPPC and Brij78. J Drug Target. 2018;26(5–6):407–19. https://doi.org/10.1080/1061186X.2017.1419361.

    Article  CAS  Google Scholar 

  235. Journe F, Chaboteaux C, Laurent G, Body JJ. Sequence-dependent synergistic effects of ibandronate in combination with antiestrogens on growth inhibition of estrogen receptor-positive breast cancer cells. Bone. 2006;38(3):S52–3. https://doi.org/10.1016/j.bone.2005.12.049.

    Article  Google Scholar 

  236. Lu D, Wientjes MG, Lu Z, Au JL. Tumor priming enhances delivery and efficacy of nanomedicines. J Pharmacol Exp Ther. 2007;322(1):80–8. https://doi.org/10.1124/jpet.107.121632.

    Article  CAS  Google Scholar 

  237. Raemdonck K, De Smedt SC. Lessons in simplicity that should shape the future of drug delivery. Nat Biotechnol. 2015;33(10):1026–7. https://doi.org/10.1038/nbt.3366.

    Article  CAS  Google Scholar 

  238. Garralda E, Paz K, Lopez-Casas PP, Jones S, Katz A, Kann LM, et al. Integrated next-generation sequencing and avatar mouse models for personalized cancer treatment. Clin Cancer Res. 2014;20(9):2476–84. https://doi.org/10.1158/1078-0432.CCR-13-3047.

    Article  CAS  Google Scholar 

  239. Ernsting MJ, Murakami M, Roy A, Li SD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release. 2013;172(3):782–94. https://doi.org/10.1016/j.jconrel.2013.09.013.

    Article  CAS  Google Scholar 

  240. de Jong M, Maina T. Of mice and humans: are they the same?–Implications in cancer translational research. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2010;51(4):501–4. https://doi.org/10.2967/jnumed.109.065706.

    Article  Google Scholar 

  241. De Guillebon E, Dardenne A, Saldmann A, Seguier S, Tran T, Paolini L, et al. Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination. Int J Cancer. 2020;147(6):1509–18. https://doi.org/10.1002/ijc.32889.

    Article  CAS  Google Scholar 

  242. Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000;21(3):505–15. https://doi.org/10.1093/carcin/21.3.505.

    Article  CAS  Google Scholar 

  243. Friedman G, Levi-Galibov O, David E, Bornstein C, Giladi A, Dadiani M, et al. Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4(+) and PDPN(+) CAFs to clinical outcome. Nat Cancer. 2020;1(7):692–708. https://doi.org/10.1038/s43018-020-0082-y.

    Article  CAS  Google Scholar 

  244. Jung JY, Kim HS, Roh MR, Roh HJ, Lee SY, Chung KY. The effect of imiquimod on matrix metalloproteinases and tissue inhibitors of metalloproteinases in malignant melanoma cell invasion. Ann Dermatol. 2014;26(3):363–73. https://doi.org/10.5021/ad.2014.26.3.363.

    Article  CAS  Google Scholar 

  245. Kim D, Wu Y, Oh Y-K. Chapter Seven - Targeting cancer-associated fibroblasts in immunotherapy. In: Amiji MM, Milane LS, editors. Systemic Drug Delivery Strategies. Academic Press; 2022. p. 163–209.

    Chapter  Google Scholar 

  246. Sharma M, Turaga RC, Yuan Y, Satyanarayana G, Mishra F, Bian Z et al. Simultaneously targeting cancer-associated fibroblasts and angiogenic vessel as a treatment for TNBC. J Exp Med. 2021;218(4). https://doi.org/10.1084/jem.20200712.

  247. Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: A review. J Cell Physiol. 2019;234(5):5683–99. https://doi.org/10.1002/jcp.27411.

    Article  CAS  Google Scholar 

  248. Li S, Jiang M, Wang L, Yu S. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement. Biomed Pharmacother. 2020;129:110389. https://doi.org/10.1016/j.biopha.2020.110389.

    Article  CAS  Google Scholar 

  249. Pu D, Yin L, Huang L, Qin C, Zhou Y, Wu Q, et al. Cyclooxygenase-2 Inhibitor: A Potential Combination Strategy With Immunotherapy in Cancer. Front Oncol. 2021;11:637504. https://doi.org/10.3389/fonc.2021.637504.

    Article  Google Scholar 

Download references

Funding

SDL and AR acknowledge funding support from Shastri Indo-Canadian Institute.

Author information

Authors and Affiliations

Authors

Contributions

Karnam Laxmi Swetha: Conceptualization; formal analysis; investigation; methodology; writing—original draft. Kavya Sree Maravajjala: Data curation; methodology; writing—original draft. Shyh-Dar Li: Funding acquisition; writing—review and editing. Manu Smriti Singh: Conceptualization; formal analysis; writing, original draft; writing, review and editing. Aniruddha Roy: Conceptualization; supervision; formal analysis; funding acquisition; writing, original draft, writing, review and editing.

Corresponding authors

Correspondence to Manu Smriti Singh or Aniruddha Roy.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Manuscript does not include any personal data.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swetha, K.L., Maravajjala, K.S., Li, SD. et al. Breaking the niche: multidimensional nanotherapeutics for tumor microenvironment modulation. Drug Deliv. and Transl. Res. 13, 105–134 (2023). https://doi.org/10.1007/s13346-022-01194-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01194-7

Keywords

Navigation