Skip to main content

Advertisement

Log in

A method for evaluating drug penetration and absorption through isolated buccal mucosa with highly accuracy and reproducibility

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The purpose of the project is to establish a standardized operation method of the in vitro permeability model to maximize mucosal integrity and viability. The model drug lidocaine permeability, 20 kDa fluorescein isothiocyanate-dextran, H&E staining, and mucosal viability were used as evaluation indicators. Firstly, the buccal mucosae of rats, rabbits, dogs, porcine, and humans were analyzed by H&E staining and morphometric analysis to compare the differences. Then, we studied a series of operation methods of isolated mucosa. The buccal mucosae were found to retain their integrity in Kreb’s bicarbonate ringer solution at 4 °C for 36 h. Under the long-term storage method with program cooling, freezing at −80 °C, thawing at 37 °C, and using cryoprotectants of 20% glycerol and 20% trehalose, mucosal integrity and biological viability can be maintained for 21 days. The heat separation method was used to prepare a permeability model with a mucosal thickness of 500 μm, which was considered to be the optimal operation. In summary, this study provided an experimental basis for the selection and operation of in vitro penetration models, standardized the research process of isolated mucosa, and improved the accuracy of permeability studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Karavasili C, Eleftheriadis GK, Gioumouxouzis C, Andriotis EG, Fatouros DG. Mucosal drug delivery and 3D printing technologies: a focus on special patient populations. Adv Drug Deliv Rev. 2021;176: 113858. https://doi.org/10.1016/j.addr.2021.113858.

    Article  CAS  PubMed  Google Scholar 

  2. Akl MA, Hady MA, Sayed OM. Buccal mucosal accumulation of dapoxetine using supersaturation, co-solvent and permeation enhancing polymer strategy. J Drug Deliv Sci Technol. 2020;55:101411. https://doi.org/10.1016/j.jddst.2019.101411.

    Article  CAS  Google Scholar 

  3. Yang Z, Sotthivirat S, Wu Y, Lalloo A, Nissley B, Manser K. Application of in vitro transmucosal permeability, dose number, and maximum absorbable dose for biopharmaceutics assessment during early drug development for intraoral delivery. Int J Pharm. 2016;503:78–89. https://doi.org/10.1016/j.ijpharm.2016.02.033.

    Article  CAS  PubMed  Google Scholar 

  4. Mura P, Orlandini S, Cirri M, Maestrelli F, Mennini N, Casella G, Furlanetto S. A preliminary study for the development and optimization by experimental design of an in vitro method for prediction of drug buccal absorption. Int J Pharm. 2018;547:530–6. https://doi.org/10.1016/j.ijpharm.2018.06.032.

    Article  CAS  PubMed  Google Scholar 

  5. Majid H, Bartel A, Burckhardt BB. Development, validation and standardization of oromucosal ex-vivo permeation studies for implementation in quality-controlled environments. J Pharm Biomed Anal. 2021;194: 113769. https://doi.org/10.1016/j.jpba.2020.113769.

    Article  CAS  PubMed  Google Scholar 

  6. Pinto S, Pintado ME, Sarmento B. In vivo, ex vivo and in vitro assessment of buccal permeation of drugs from delivery systems. Expert Opin Drug Deliv. 2020;17:33–48. https://doi.org/10.1080/17425247.2020.1699913.

    Article  CAS  PubMed  Google Scholar 

  7. De Caro V, Giannola LI, Di Prima G. Solid and semisolid innovative formulations containing miconazole-loaded solid lipid microparticles to promote drug entrapment into the buccal mucosa. Pharmaceutics. 2021;13:1361. https://doi.org/10.3390/pharmaceutics13091361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang S, Zuo A, Guo J. Types and evaluation of in vitro penetration models for buccal mucosal delivery. J Drug Deliv Sci Technol. 2021;61: 102122. https://doi.org/10.1016/j.jddst.2020.102122.

    Article  CAS  Google Scholar 

  9. Patel VF, Liu F, Brown MB. Modeling the oral cavity: in vitro and in vivo evaluations of buccal drug delivery systems. J Control Release. 2012;161:746–56. https://doi.org/10.1016/j.jconrel.2012.05.026.

    Article  CAS  PubMed  Google Scholar 

  10. Tian Y, Orlu M, Woerdenbag HJ, Scarpa M, Kiefer O, Kottke D, Sjöholm E, Öblom H, Sandler N, Hinrichs WLJ, Frijlink HW, Breitkreutz J, Visser JC. Oromucosal films: from patient centricity to production by printing techniques. Expert Opin Drug Deliv. 2019;16:981–93. https://doi.org/10.1080/17425247.2019.1652595.

    Article  CAS  PubMed  Google Scholar 

  11. Şenel S, Özdoğan AI, Akca G. Current status and future of delivery systems for prevention and treatment of infections in the oral cavity, Drug Deliv. Transl Res. 2021;11:1703–34. https://doi.org/10.1007/s13346-021-00961-2.

    Article  Google Scholar 

  12. del Consuelo ID, Pizzolato G-P, Falson F, Guy RH, Jacques Y. Evaluation of pig esophageal mucosa as a permeability barrier model for buccal tissue. Eur J Pharm Sci. 2005;594:2777–88. https://doi.org/10.1002/jps.20409.

    Article  CAS  Google Scholar 

  13. Caon T, Simões CMO. Effect of freezing and type of mucosa on ex vivo drug permeability parameters. AAPS PharmSciTech. 2011;12:587–92. https://doi.org/10.1208/s12249-011-9621-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Franz-Montan M, Serpe L, Martinelli CCM, da Silva CB, dos Santos CP, Novaes PD, Volpato MC, de Paula E, Lopez RFV, Groppo FC. Evaluation of different pig oral mucosa sites as permeability barrier models for drug permeation studies. Eur J Pharm Sci. 2016;81:52–9. https://doi.org/10.1016/j.ejps.2015.09.021.

    Article  CAS  PubMed  Google Scholar 

  15. Kulkarni U, Mahalingam R, Pather I, Li X, Jasti B. Porcine buccal mucosa as in vitro model: effect of biological and experimental variables. J Pharm Sci. 2010;99:1265–77. https://doi.org/10.1002/jps.21907.

    Article  CAS  PubMed  Google Scholar 

  16. Elliott GD, Wang S, Fuller BJ. Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology. 2017;76:74–91. https://doi.org/10.1016/j.cryobiol.2017.04.004.

    Article  CAS  PubMed  Google Scholar 

  17. Lee TW, Lee GW, An S, Seong K, Lee JS, Yang SY. Enhanced cellular cryopreservation by biopolymer-associated suppression of RhoA / ROCK Signaling Pathway. Materials (Basel). 2021;14:6056. https://doi.org/10.3390/ma14206056.

    Article  CAS  Google Scholar 

  18. Ali P, Fucich D, Shah AA, Hasan F, Chen F. Cryopreservation of cyanobacteria and eukaryotic microalgae using exopolysaccharide extracted from a glacier bacterium. Microorganisms. 2021;9:395. https://doi.org/10.3390/microorganisms9020395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rao W, Huang H, Wang H, Zhao S, Dumbleton J, Zhao G, He X. Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS Appl Mater Interfaces. 2015;7:5017–28. https://doi.org/10.1021/acsami.5b00655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Vries ME, Boddé HE, Verhoef JC, Ponec M, Ine W, Craane HM, Junginger HE. Localization of the permeability barrier inside porcine buccal mucosa: a combined in vitro study of drug permeability, electrical resistance and tissue morphology. Int J Pharm. 1991;76:25–35.

    Article  Google Scholar 

  21. Pather SI, Rathbone MJ, Şenel S. Current status and the future of buccal drug delivery systems. Expert Opin Drug Deliv. 2008;5:531–42. https://doi.org/10.1517/17425247.5.5.531.

    Article  CAS  PubMed  Google Scholar 

  22. Makarenko VD, Belyaev VA, Prokhorov NN, Shatilo SP, Galichenko NE, Chernov VY, Mukhin MY. Effect of modifying microadditions on the corrosion resistance of welded joints in oil and gas pipelines. Weld Int. 2001;15:723–8. https://doi.org/10.1080/09507110109549431.

    Article  Google Scholar 

  23. Sawant PD, Luu D, Ye R, Buchta R. Drug release from hydroethanolic gels. Effect of drug’s lipophilicity (logP), polymer-drug interactions and solvent lipophilicity. Int J Pharm. 2010;396:45–52. https://doi.org/10.1016/j.ijpharm.2010.06.008.

    Article  CAS  PubMed  Google Scholar 

  24. Clitherow KH, Murdoch C, Spain SG, Handler AM, Colley HE, Stie MB, Nielsen HM, Janfelt C, Hatton PV, Jacobsen J. Mucoadhesive electrospun patch delivery of lidocaine to the oral mucosa and investigation of spatial distribution in a tissue using MALDI-mass spectrometry imaging. Mol Pharm. 2019;16:3948–56. https://doi.org/10.1021/acs.molpharmaceut.9b00535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hsu YW, Somma J, Newman MF, Mathew JP. Population pharmacokinetics of lidocaine administered during and after cardiac surgery. J Cardiothorac Vasc Anesth. 2011;25:931–6. https://doi.org/10.1053/j.jvca.2011.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Junginger HE, Hoogstraate JA, Verhoef JC. Recent advances in buccal drug delivery and absorption - in vitro and in vivo studies. J Control Release. 1999;62:149–59. https://doi.org/10.1016/S0168-3659(99)00032-2.

    Article  CAS  PubMed  Google Scholar 

  27. Goswami T, Jasti BR, Li X. Estimation of the theoretical pore sizes of the porcine oral mucosa for permeation of hydrophilic permeants. Arch Oral Biol. 2009;54:577–82. https://doi.org/10.1016/j.archoralbio.2009.03.001.

    Article  CAS  PubMed  Google Scholar 

  28. Salama AH, Elmotasem H, Salama AAA. Nanotechnology based blended chitosan-pectin hybrid for safe and efficient consolidative antiemetic and neuro-protective effect of meclizine hydrochloride in chemotherapy induced emesis. Int J Pharm. 2020;584: 119411. https://doi.org/10.1016/j.ijpharm.2020.119411.

    Article  CAS  PubMed  Google Scholar 

  29. Nicolazzo JA, Finnin BC. In vivo and in vitro models for assessing drug absorption across the buccal mucosa. In: Ehrhardt C, Kim KJ, editors. Drug Absorption Studies. Boston: Springer; 2008. https://doi.org/10.1007/978-0-387-74901-3_4.

    Chapter  Google Scholar 

  30. Rahbarian M, Mortazavian E, Dorkoosh FA, Tehrani MR. Preparation, evaluation and optimization of nanoparticles composed of thiolated triethyl chitosan: a potential approach for buccal delivery of insulin. J Drug Deliv Sci Technol. 2018;44:254–63. https://doi.org/10.1016/j.jddst.2017.12.016.

    Article  CAS  Google Scholar 

  31. Imbert D, Cullander C. Buccal mucosa in vitro experiments: I. Confocal imaging of vital staining and MTT assays for the determination of tissue viability. J Control Release. 1999;58:39–50. https://doi.org/10.1016/s0168-3659(98)00143-6.

    Article  CAS  PubMed  Google Scholar 

  32. Wang JY, Xing Y, Li MY, Zhang ZH, Jin HL, Ma J, Lee JJ, Zhong Y, Zuo HX, Jin X. Panaxadiol inhibits IL-1β secretion by suppressing zinc finger protein 91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs in macrophages. J Ethnopharmacol. 2022;283: 114715. https://doi.org/10.1016/j.jep.2021.114715.

    Article  CAS  PubMed  Google Scholar 

  33. Wang S, Gao Z, Liu L, Li M, Zuo A, Guo J. Preparation, in vitro and in vivo evaluation of chitosan-sodium alginate-ethyl cellulose polyelectrolyte film as a novel buccal mucosal delivery vehicle. Eur J Pharm Sci. 2022;168: 106085. https://doi.org/10.1016/j.ejps.2021.106085.

    Article  CAS  PubMed  Google Scholar 

  34. Amores S, Domenech J, Colom H, Calpena AC, Clares B, Gimeno Á, Lauroba J. An improved cryopreservation method for porcine buccal mucosa in ex vivo drug permeation studies using Franz diffusion cells. Eur J Pharm Sci. 2014;60:49–54. https://doi.org/10.1016/j.ejps.2014.04.017.

    Article  CAS  PubMed  Google Scholar 

  35. Gajdošová M, Vetchý D, Muselík J, Gajdziok J, Juřica J, Vetchá M, Hauptman K, Jekl V. Bilayer mucoadhesive buccal films with prolonged release of ciclopirox olamine for the treatment of oral candidiasis: In vitro development, ex vivo permeation testing, pharmacokinetic and efficacy study in rabbits. Int J Pharm. 2021;592:120086. https://doi.org/10.1016/j.ijpharm.2020.120086.

    Article  CAS  PubMed  Google Scholar 

  36. Diaz-Del Consuelo I, Jacques Y, Pizzolato GP, Guy RH, Falson F. Comparison of the lipid composition of porcine buccal and esophageal permeability barriers. Arch Oral Biol. 2005;50:981–7. https://doi.org/10.1016/j.archoralbio.2005.04.008.

    Article  CAS  PubMed  Google Scholar 

  37. Tedder RS, Zuckerman MA, Goldstone AH, Hawkins AE, Fileding A, Briggs EM, Irwin D, Gorman AM, Patterson KG, Linch DC, Heptonstall J, Brink NS. Hepatitis B transmission from contaminated cryopreservation tank. Lancet. 1995;346:137–40. https://doi.org/10.1016/S0140-6736(95)91207-X.

    Article  CAS  PubMed  Google Scholar 

  38. Sa G, Xiong X, Wu T, Yang J, He S, Zhao Y. Histological features of oral epithelium in seven animal species: as a reference for selecting animal models. Eur J Pharm Sci. 2016;81:10–7. https://doi.org/10.1016/j.ejps.2015.09.019.

    Article  CAS  PubMed  Google Scholar 

  39. Okafor NI, Ngoepe M, Noundou XS, Krause RWM. Nano-enabled liposomal mucoadhesive films for enhanced efavirenz buccal drug delivery. J Drug Deliv Sci Technol. 2019;54:101312. https://doi.org/10.1016/j.jddst.2019.101312.

    Article  CAS  Google Scholar 

  40. Nicolazzo JA, Reed BL, Finnin BC. The effect of various in vitro conditions on the permeability characteristics of the buccal mucosa. Sci J Pharm. 2003;92:2399–410. https://doi.org/10.1002/jps.10505.

    Article  CAS  Google Scholar 

  41. Song YC, Chen ZZ, Mukherjee N, Lightfoot FG, Taylor MJ, Brockbank KG, Sambanis A. Vitrification of tissue engineered pancreatic substitute. Transplant Proc. 2005;37:253–5. https://doi.org/10.1016/j.transproceed.2004.11.027.

    Article  CAS  PubMed  Google Scholar 

  42. Wang G, Yu X, Lu Z, Yang Y, Xia Y, Lai PFH, Ai L. Optimal combination of multiple cryoprotectants and freezing-thawing conditions for high lactobacilli survival rate during freezing and frozen storage. Lwt. 2019;99:217–23. https://doi.org/10.1016/j.lwt.2018.09.065.

    Article  CAS  Google Scholar 

  43. Douglas R. Macfarlane, Devitrification in glass-forming aqueous solutions. Cryobiology. 1986;23:230–44. https://doi.org/10.1016/0011-2240(86)90049-0.

    Article  Google Scholar 

  44. Uchida T, Furukawa M, Kikawada T, Yamazaki K, Gohara K. Trehalose uptake and dehydration effects on the cryoprotection of CHO–K1 cells expressing TRET1. Cryobiology. 2019;90:30–40. https://doi.org/10.1016/j.cryobiol.2019.09.002.

    Article  CAS  PubMed  Google Scholar 

  45. Oliva J, Florentino A, Bardag-Gorce F, Niihara Y. Vitrification and storage of oral mucosa epithelial cell sheets. J Tissue Eng Regen Med. 2019;13:1153–63. https://doi.org/10.1002/term.2864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pegg DE. Principles of cryopreservation. Methods Mol Biol. 2009;368:39–57. https://doi.org/10.3109/9780203092873.002.

    Article  Google Scholar 

  47. Marxen E, Axelsen MC, Pedersen AML, Jacobsen J. Effect of cryoprotectants for maintaining drug permeability barriers in porcine buccal mucosa. Int J Pharm. 2016;511:599–605. https://doi.org/10.1016/j.ijpharm.2016.07.014.

    Article  CAS  PubMed  Google Scholar 

  48. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2012;64:128–37. https://doi.org/10.1016/j.addr.2012.09.032.

    Article  Google Scholar 

  49. Fricano C, Röttinger E, Furla P, Barnay-Verdier S. Cnidarian cell cryopreservation: a powerful tool for cultivation and functional assays. Cells. 2020;9(12):2541. https://doi.org/10.3390/cells9122541.

    Article  CAS  PubMed Central  Google Scholar 

  50. Yi X, Liu M, Luo Q, Zhuo H, Cao H, Wang J, Han Y. Toxic effects of dimethyl sulfoxide on red blood cells, platelets, and vascular endothelial cells in vitro. FEBS Open Bio. 2017;7:485–94. https://doi.org/10.1002/2211-5463.12193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schiozer WA, Gemperli R, Mühlbauer W, Munhoz AM, Ferreira MC. An outcome analysis and long-term viability of cryopreserved cultured epidermal allografts: assessment of the conservation of transplantable human skin allografts. Acta Cir Bras. 2013;28:824–32. https://doi.org/10.1590/s0102-86502013001200004.

    Article  PubMed  Google Scholar 

  52. Maral T, Borman H, Arslan H, Demirhan B, Akinbingol G, Haberal M. Effectiveness of human amnion preserved long-term in glycerol as a temporary biological dressing. Burns. 1999;25:625–35. https://doi.org/10.1016/S0305-4179(99)00072-8.

    Article  CAS  PubMed  Google Scholar 

  53. Ruber P, Mart E, Castaño C, Garc J, Bernal B, Toledano-d A, Esteso MC, Paula B, Antonio L, Santiago-moreno J. Sperm cryopreservation in American flamingo seminal plasma removal. Animals. 2021;11:203. https://doi.org/10.3390/ani11010203.

    Article  Google Scholar 

  54. Lohmann W, Fowler CF, Moss AJ Jr, Perkins WH. Some remarks about the effect of glycerol on cells during freezing and thawing: electronspin resonance investigations concerning this effect. Experientia. 1963;5:290. https://doi.org/10.1007/BF02151816.

    Article  Google Scholar 

  55. Hammerstedt RH, Graham JK, Nolan JP. Cryopreservation of mammalian sperm: what we ask them to survive. J Androl. 1990;11:73–88. https://doi.org/10.1002/j.1939-4640.1990.tb01583.x.

    Article  CAS  PubMed  Google Scholar 

  56. Wündrich K, Paasch U, Leicht M, Glander HJ. Activation of caspases in human spermatozoa during cryopreservation - an immunoblot study. Cell Tissue Bank. 2006;7:81–90. https://doi.org/10.1007/s10561-005-0276-7.

    Article  CAS  PubMed  Google Scholar 

  57. Uchida T, Takeya S, Nagayama M, Gohar K. Freezing properties of disaccharide solutions: inhibition of hexagonal ice crystal growth and formation of cubic ice. Cryst Mater Sci Mod Artif Nat Cryst. 2012. https://doi.org/10.5772/29694.

    Article  Google Scholar 

  58. Uchida T, Nagayama M, Gohara K. Trehalose solution viscosity at low temperatures measured by dynamic light scattering method: Trehalose depresses molecular transportation for ice crystal growth. J Cryst Growth. 2009;311:4747–52. https://doi.org/10.1016/j.jcrysgro.2009.09.023.

    Article  CAS  Google Scholar 

  59. De Araújo JSM, Volpato MC, Muniz BV, Xavier GGA, Martinelli CCM, Lopez RFV, Groppo FC, Franz-Montan M. Resistivity technique for the evaluation of the integrity of buccal and esophageal epithelium mucosa for in vitro permeation studies: swine buccal and esophageal mucosa barrier models. Pharmaceutics. 2021;13(5):643. https://doi.org/10.3390/pharmaceutics13050643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Consuelo I, Falson F, Guy R, Jacques Y. Transport of fentanyl through pig buccal and esophageal epithelia in vitro: Influence of concentration and vehicle pH. Pharm Res. 2005;22:1525–9. https://doi.org/10.1007/s11095-005-6020-y.

    Article  CAS  Google Scholar 

  61. Kulkarni UD, Mahalingam R, Li X, Pather I, Jasti B. Effect of experimental temperature on the permeation of model diffusants across porcine buccal mucosa. AAPS PharmSciTech. 2011;12:579–86. https://doi.org/10.1208/s12249-011-9624-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Law S, Wertz PW, Swartzendruber DC, Squier CA. Regional variation in content, composition and organization of porcine epithelial barrier lipids revealed by thin-layer chromatography and transmission electron microscopy. Arch Oral Biol. 1995;40:1085–91. https://doi.org/10.1016/0003-9969(95)00091-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yanji Guangming Meat Factory and Yanji Dongxing Slaughterhouse for providing animal mucosae.

Funding

This work was supported by National Natural Science Foundation of China (82073778), Higher Education Discipline Innovation Project (111 Project D18012), and Natural Science Foundation of Yanbian University. (602020043).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Jianpeng Guo, Along Zuo, and Zhonggao Gao. Methodology, Shuangqing Wang. Validation, Shuangqing Wang and Lei Liu. Formal analysis, Shuangqing Wang, Saige Meng, Yuling Wang, and Daofeng Liu. Investigation, Lei Liu, Saige Meng, Yuling Wang, and Daofeng Liu. Resources, Jianpeng Guo, Along Zuo, and Zhonggao Gao. Data curation, Shuangqing Wang. Writing–original draft preparation–Shuangqing Wang and Saige Meng. Writing–review and editing–Jianpeng Guo, Along Zuo, and Zhonggao Gao. Visualization, Shuangqing Wang. Supervision, Jianpeng Guo, Along Zuo, and Zhonggao Gao. Project administration, Jianpeng Guo. Funding acquisition, Zhonggao Gao and Along Zuo. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zhonggao Gao, Along Zuo or Jianpeng Guo.

Ethics declarations

Ethics approval and consent to participate

All experiments were carried out in accordance with the Institutional Animal Care and Use Committee of Yanbian University Hospital. Informed consent was obtained from all individual participants included in the study.

Consent for publication

The authors affirm that human research participants provided informed consent for publication of the images in Fig. 1A.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Histological analysis of common buccal mucosa

• Glycerol and trehalose – an excellent combination of cryoprotectants

• Evaluation methods of mucosal integrity and biological viability

• The standardized operation of the in vitro permeability model

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, L., Meng, S. et al. A method for evaluating drug penetration and absorption through isolated buccal mucosa with highly accuracy and reproducibility. Drug Deliv. and Transl. Res. 12, 2875–2892 (2022). https://doi.org/10.1007/s13346-022-01151-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01151-4

Keywords

Navigation