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Abstract
There is a growing number of biomolecules, including peptides, proteins, monoclonal antibodies and RNA, that could be 
potentially used for the treatment of central nervous system (CNS) diseases. However, the realization of their potential is 
being hampered by the extraordinary difficulties these complex biomolecules have to reach the brain in therapeutically 
meaningful amounts. Nose-to-brain (N-to-B) delivery is now being investigated as a potential option for the direct transport 
of biomolecules from the nasal cavity to different brain areas. Here, we discuss how different technological approaches 
enhance this N-to-B transport, with emphasis on those that have shown a potential for clinical translation. We also analyse 
how the physicochemical properties of nanocarriers and their modification with cell-penetrating peptides (CPPs) and target-
ing ligands affect their efficacy as N-to-B carriers for biomolecules.
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Introduction

Numerous neurological diseases, including Alzheimer’s 
disease, Parkinson’s disease, ischemic stroke and multiple 
sclerosis, among others, have a great prevalence in society. 
Estimations indicate that the number of people affected by 
these disorders is growing worldwide, also related to the 
increased longevity of the population. Apart from the devas-
tating consequences these diseases have in public health, the 
economic cost associated with their treatment and palliative 
care is also a matter of great concern [1–3]. The therapeutic 
effect several biomolecules have shown offers a promising 
opportunity to treat these diseases. For example, insulin has 
been investigated at the clinical level (up to Phase 3, after 
intranasal administration) as a treatment for the cognitive 

decline in Alzheimer’s disease [4]. A more critical exam-
ple is the recently approved monoclonal antibody, aducan-
amab (commercialized as Aduhelm), which was approved 
for the treatment of Alzheimer’s disease [5–8]. However, 
despite this recent successful result, their difficult access 
to the central nervous system (CNS) is an important obsta-
cle for the full exploitation of these biomolecules [9]. The 
brain is protected by highly restrictive barriers, such as the 
blood–brain barrier (BBB) and the blood-cerebrospinal fluid 
barrier (BCSFB) [10–12], which are fundamental for the 
maintenance of the homeostasis of the CNS, and for the 
prevention of potential toxic compounds. However, as such, 
this defence mechanism represents an extraordinary barrier 
for the transport of drugs to the brain [13, 14]. Moreover, 
the high metabolic activity of these barriers may contribute 
to the degradation of the drug molecules transported across 
them [15, 16]. For decades, researchers have explored a vari-
ety of technological approaches to facilitate the transport of 
biomolecules across these barriers; however, such achieve-
ment remains elusive [17, 18]. An alternative approach to 
reach the brain that is gaining increasing attention makes 
use of the nose-to-brain (N-to-B) route. Interestingly, the 
first studies, exploring this modality of administration 
using a dye in a rabbit model, were carried out in 1937 [19]. 
From then on, significant knowledge on the mechanisms of 
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transport of molecules across the N-to-B barriers has been 
generated. As a consequence, it is known that drugs depos-
ited on the olfactory mucosa can be delivered directly into 
the brain through the olfactory or trigeminal nerves [20, 21]. 
In line with this knowledge, multiple clinical trials are being 
conducted, some of them with promising results [22, 23]. 
Moreover, in the past few decades, nanotechnology has been 
positioned as a promising strategy for enhancing the N-to-B 
transport of therapeutic biomolecules [12, 14, 24–29].

Based on this background information, researchers, 
including members of our group, have published a number of 
review articles covering different N-to-B delivery strategies 
[14, 28–31]. Our objective in this article is not to expand the 
content of previous reviews, but to concentrate on the N-to-B 
delivery of biologicals, an emerging field that is expected to 
gain significant relevance in the near future. Hence, we criti-
cally analyse the N-to-B drug delivery options for biologicals 
with emphasis on those based on nanotechnology. Moreover, 
we disclose our understanding of the critical features for nano-
systems to function as carriers to overcome the N-to-B barrier.

Challenges and barriers 
for the nose‑to‑brain delivery 
of biomolecules

Pathways for the nose‑to‑brain delivery 
of biomolecules

The mucosa protecting the nasal cavity can be divided 
into two main anatomical regions, the respiratory epithe-
lium and the olfactory epithelium (Fig. 1). The respira-
tory epithelium comprises a major part of the nasal cavity, 
and it is considered the principal entry from the nose to 
the blood stream [24, 25]. It presents a high degree of 

vascularization, receiving its blood supply from the maxil-
lary artery [24]. This mucosa consists of a ciliated epithe-
lium covered by a thick mucus layer [24, 25, 32, 33]. On 
the other hand, the olfactory epithelium is located on the 
upper region of the nasal cavity, separated from the CNS 
by the cribriform plate and the lamina propria and is also 
protected by a mucus layer [34–36]. This region is highly 
innervated by the olfactory sensory neurons that connect 
directly with the olfactory bulb [25, 35]. More detailed 
information regarding nasal cavity anatomy and physiol-
ogy can be found in previous reviews [29, 36, 37].

Drugs administered intranasally can reach the brain indi-
rectly, upon systemic absorption through the respiratory 
epithelium and subsequent transport across the BBB, or 
directly, across the olfactory epithelium and the olfactory 
nerves. The indirect transport involving systemic absorption 
is irrelevant for macromolecules due to the complexity of 
the multiple barriers associated to the systemic biodistribu-
tion and transport across the BBB [27, 38–40]. However, 
the N-to-B route involving the transport across the olfac-
tory mucosa offers a straight-forward access to the brain, as 
illustrated in Fig. 2 [25, 27]. Three mechanisms have been 
described for the N-to-B transport: direct internalization into 
the olfactory nerve, leading to axonal transport; paracellular 
transport between epithelial cells and across channels near 
olfactory nerves; and transcellular transport across cells of 
the olfactory epithelium [20, 21, 36, 41, 42]. Following these 
mechanisms, drugs reach the olfactory bulb, from where 
they can be distributed into the brain [14, 43, 44].

On the other hand, the trigeminal nerve pathway, a less 
explored route, involves the axonal transport through the 
trigeminal nerves that innervate both respiratory and olfac-
tory epithelium [45, 46]. The trigeminal nerves synapse at 
the trigeminal ganglion, entry the brainstem and are directed 
to the caudal and rostral regions of the brain [45, 47, 48].

Fig. 1   Schematic representation 
of the olfactory and trigeminal 
nerve position in the nasal 
cavity, and pathways to differ-
ent CNS areas. Created with 
BioRender.com
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Main challenges in the nose‑to‑brain transport 
of biomolecules

Despite the increasing evidence acquired on the potential 
of the N-to-B drug delivery, the use of this strategy for the 
delivery of biomolecules must still face significant challenges 
before it is proved effective. The factors that influence the 
N-to-B transport of biomolecules include the physicochemi-
cal attributes of the biologicals themselves, and the intrinsic 
anatomical and physiological barriers of the nasal cavity [31, 
49].

The main physicochemical properties influencing the pas-
sive diffusion of drugs from N-to-B are molecular weight 
and lipophilicity. Biomolecules, such as peptides, proteins, 
or nucleic acids, with a size larger than 300 Da and great 
hydrophilicity, present a lower N-to-B transport when com-
pared to smaller, more lipophilic molecules [46, 50]. There-
fore, these molecules are mainly expected to be transported 
through a receptor-mediated mechanism of transport, such 
as specific insulin receptors, which are overexpressed in the 
olfactory bulb and the hypothalamus; or oxytocin receptors, 
present in high density in the amygdala and hippocampus 
[51–56].

On the other hand, there are significant anatomical and 
physiological barriers preventing the access of drugs from 
nose to brain. First, the access to the olfactory region, located 
on the posterior and upper region of the nasal cavity, is not 
easy and requires the use of specialized delivery devices 
[57–59]. Second, the surface area of the olfactory mucosa 
is relatively small compared to the whole nasal mucosa 
[60, 61]. Third, the olfactory epithelium presents long non-
mobile cilia that, in combination with the mucus secretion 
and the presence of metabolic enzymes, hinders the N-to-B 
transport [12, 61–64]. Fourth, the transport across the epi-
thelium by the different mechanisms highlighted above is 
highly restricted for water-soluble biomolecules, unless they 
can use specialized transporters, such as the dopamine active 
transporter or the glucose transporter, among others [65–68].

Finally, the low dosing volume that can be administered 
(e.g. a maximal dose of 0.4 mL for humans, a recommended 
maximum volume of 0.03 mL for mice) is a limitation when 
using this route and implies the need for highly optimized 
formulations if a sufficient dose to produce therapeutic 
effects is to reach the brain [69, 70].

Clinical scenario of nose‑to‑brain transport 
of biomolecules

The clinical trials, specifically aimed at the N-to-B delivery 
of biomolecules, collected in a ClinicalTrials.gov database, 
are summarized in Fig. 3 [71]. Among the 196 clinical trials 
analysed, more than 67% refer to the administration of bio-
molecules in the form of a simple aqueous solution. The most 
clinically tested biomolecule is oxytocin, currently in a Phase 4 
study for the indication of autism spectrum disorder and schizo-
phrenia, in Phase 3 for the treatment of Prader-Willi syndrome 
(PWS) and in Phase 2 for the treatment of dementia and obesity.

The intranasal administration of an insulin aqueous 
solution has also been widely studied in up to Phase 2/3 
clinical trials, as a therapy for Alzheimer’s disease, mild 
cognitive impairment, diabetes, insulin resistance, and 
Parkinson’s disease, among other conditions. Regard-
ing the indication of Alzheimer’s disease, initial studies 
reported improvements in memory and changes in Aβ45 
levels [72]. However, subsequent clinical trials were not 
conclusive for this indication [4, 73]. Additional clini-
cal trials are currently being conducted to elucidate the 
correlation between administering intranasal insulin and 
both Alzheimer’s disease and mild cognitive impairment. 
Other highly prevalent diseases extensively studied in 
clinical trials are diabetes and insulin resistance. Inter-
estingly, clinical studies with participants who presented 
high hypothalamic insulin sensitivity demonstrated that 
the insulin performance in the brain enhanced pancreatic 
insulin secretion [74, 75].

Fig. 2   Possible main pathways 
for N-to-B transport (in green, 
olfactory pathway; and in red, 
trigeminal pathway) [29]. Cre-
ated with BioRender.com
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Another relevant biomacromolecule currently in clini-
cal trials is vasopressin. Mainly used for social psychology 
and communication, and pain perception, it shows promis-
ing results in an early phase 1 clinical trial [76–78].

To conclude, more than 130 clinical trials with a diversity 
of biomolecules have been carried out over the last 20 years. 
However, so far, only oxytocin has reached the final phase 
4 clinical trial. In this scenario, it is becoming apparent that 
an improvement on the access of these biomolecules to the 
brain is necessary to achieve conclusive results about their 
potency in the treatment of different brain conditions.

Technological approaches for nose‑to‑brain 
delivery of biomolecules

The increasing interest on the N-to-B delivery of biomol-
ecules is exemplified not only by the significant number of 
clinical trials being performed, but also by the numerous 

preclinical studies published presenting evidence of the 
N-to-B transport (Fig. 4) [79, 80]. A significant increase in 
the number of publications has been observed from 2010 
henceforth. Although the majority of the studies reported 
refer to simple aqueous solutions of biomolecules, there 
is an increasing number of publications on delivery strate-
gies for enhancing the N-to-B transport, including penetra-
tion enhancers, delivery carriers or a combination of both 
[29, 31, 44, 81–84].

In the following section, we critically analyse the formu-
lation and delivery strategies explored for the N-to-B deliv-
ery of biomolecules.

Mucoadhesion and penetration enhancement

The use of mucoadhesive polymers has been explored as 
a way to increase the contact of drugs with the olfactory 
mucosa and their subsequent diffusion across the olfac-
tory epithelium [12, 25, 32]. However, the enhancement 

Fig. 3   Summary of the clinical trials involving N-to-B drug delivery of biomacromolecules

Fig. 4   Number of publications 
of nose-to-brain administra-
tion of biomacromolecules 
(Scopus and PubMed database. 
Keywords: ‘nose-to-brain + pep-
tide’, ‘nose-to-brain + protein’, 
‘nose-to-brain + RNA’)
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of N-to-B transport of large molecules by use of bioadhe-
sive materials has not been fully validated and only a few 
examples illustrate this potential mechanism. For example, 
some authors have reported that the chemical conjugation of 
hyaluronate, a derivative of hyaluronic acid, with FG loop 
peptide, a neural cell adhesion molecule-mimetic peptide 
that is able to decrease the oxidative stress in ischemic epi-
sodes, protected the peptide against enzymatic degradation 
and enhanced its N-to-B delivery [85]. This conclusion was 
based on the fact that, when using a dose 20 times lower, 
the hyaluronate conjugate treatment resulted in an infarcted 
brain area similar to the one shown after treatment with the 
free FG loop peptide. The authors attributed this positive 
result to the mucoadhesive properties of hyaluronate; how-
ever, the mechanism underlying the transport of the peptide 
linked to HA remains unclear.

Another mucoadhesive polymer that has been investi-
gated for its potential to increase the N-to-brain access to 
biomolecules is chitosan, a polysaccharide extensively stud-
ied as mucoadhesive and cell penetration agent for N-to-B 
delivery of small molecules [86, 87]. For example, solutions 
of chitosan and brain-derived neurotrophic factor (BDNF) 
reported a 13-fold increase in the accumulation of the pro-
tein in the hippocampus [88]. This increased accumulation 
has been ascribed to the mucoadhesive and penetration 
enhancement capacity of chitosan.

Overall, while the use of mucoadhesive polymers has 
been largely reported as a way to enhance the retention of 
small molecules in the nasal cavity, the translation of the 
enhanced retention into enhanced adsorption has not been 
sufficiently validated for biomolecules. This is understand-
able as the retention of the molecules at the mucosal barrier 
does not guarantee their subsequent transport to the brain.

The use of penetration enhancers, specially cell penetra-
tion peptides (CPPs), is receiving an increasing attention in 
N-to-B delivery [26, 89]. CPPs are short, positive charge 
peptides, able to penetrate cellular barriers and facilitate the 
internalization of co-administered drugs, without the need 
of interactions with specific receptors [90–92]. Among 
them, penetratin or pAnt(43–58), a 16-amino-acid peptide 
that corresponds with the third helix of the Antennapedia 
homeodomain, a homeoprotein of Drosophila melanogaster, 
has been the most frequently used [93–95]. Penetratin has 
two isomers with different cell-penetrating properties: 
L-penetratin and D-penetratin. In a study where both iso-
mers were nasally administered together with radio-labelled 
insulin to rats, the levels of insulin detected in the anterior 
portion of the CSF were higher for L-penetratin [96]. This 
result was further confirmed in Alzheimer’s disease model 
mice, where co-administration of insulin with L-penetratin 
reported slower memory loss progression in comparison 
with the co-administration of insulin with D-penetratin or 
with the single administration of insulin [97]. Furthermore, 

differences between both isomers were determined after 
being co-administered with exedin-4 in Alzheimer’s disease 
model mice: only L-penetratin was able to enhance the N-to-
B delivery of exedin-4 [98].

In other studies, CPPs were covalently linked to the bio-
molecule of interest. For example, low molecular weight 
protamine (LMWP) was linked to various proteins, i.e. 
bovine serum albumin (BSA), horseradish peroxidase (HRP) 
and β-galactosidase. The resulting protein conjugates were 
found to have a greater access to the brain, as compared to 
the non-conjugated biomolecules [99]. Similarly, the con-
jugation of a nine-arginine peptide to Green Fluorescent 
Protein (GFP) was reported to facilitate the delivery of GFP 
to the brain [100].

Finally, surfactants have also been proposed as excipients 
to increase the permeation of molecules across the olfactory 
mucosa. For example, Pluronic® P85 fused to the protein 
leptin was reported to enhance its transmembrane penetra-
tion and resulted in a higher activation of leptin receptors in 
the brain than when free leptin was used [101]. Similarly, 
the surfactant n-tridecyl-β-D-maltoside was also found to 
increase the permeation of the neuropeptide hexarelin to the 
brain following nasal administration [102].

Overall, these studies are an indication of the potential 
interest of penetration and permeation enhancers in combi-
nation with biomolecules for improving the N-to-B transport 
of these biological drugs.

Nanotechnological approaches

Recently a number of nanotechnologies have been inves-
tigated for their capacity to enhance the transport of bio-
molecules across the olfactory mucosa. Different transport 
mechanisms can be followed by nanoparticles and their asso-
ciated molecules when travelling from nose to brain (Fig. 5). 
These hypothetical mechanisms are as follows: (A) nano-
particles containing drugs and penetration enhancers may 
cross the olfactory epithelium by a paracellular pathway and 
may, or may not, release drugs and penetration enhancers in 
their way to the brain; (B) nanoparticles containing drugs 
and penetration enhancers may cross the olfactory epithe-
lium by a transcellular way and may, or may not, release 
drugs and penetration enhancers in their way to the brain; 
and (C) nanoparticles may be taken up by axons and undergo 
intra-axonal transport into the olfactory nerve. Nanoparticles 
crossing the multiple barriers are adequate for RNA deliv-
ery, whereas nanoparticles releasing the drug molecules and 
penetration enhancers at the different levels may be adequate 
for the delivery of proteins and peptides. This is because 
the site of action of the peptides and proteins drugs may be 
located at the extracellular level. However, in the particular 
case of nucleic acids, they need to be protected while being 
transported until their internalization inside the brain cells.
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The most common transcellular (B) and intra-neuronal 
(C) approach that nanoparticles undergo to access the dif-
ferent protective layers of the brain is transcytosis. This 
phenomenon may involve adsorptive or charge-dependent 
mechanisms; or receptor-mediated internalization, being this 
last method more specific and efficient to target the CNS. 
This mechanism of transport would allow the nanoparticles 
to undergo through endocytosis, intracellular vesicular traf-
ficking and exocytosis inside the different cellular barriers, 
aiming to reach their side of action [103–105].

The capacity of nanoparticles to work as carriers for the 
transport across the different barriers is obviously depend-
ent not only on their physicochemical properties but also on 
their surface composition, which may influence their bioad-
hesive behaviour, penetration properties or endocytic uptake 
(Fig. 6). Below we describe critical information that may 
guide subsequent advances in the development of N-to-B 
nanomedicines.

Influence of physicochemical properties of nanocarriers

Even though the literature does not give a clear guidance 
in terms of which physicochemical properties are the most 
suitable for enhancing the N-to-B transport, it is reasonable 
to assume that particle size and surface charge may have 

a fundamental role in the ability of nanocarriers to reach 
the CNS. Regarding particle size, it is generally accepted 
that the physiological characteristics of the N-to-B pathways 
determine the critical size for the nanoparticles (NPs) to 
be transported through the N-to-B pathway. For example, 
with regard to the trans-neuron pathway, given that the axons 
diameter in humans is 100–700 nm, it has been hypothesized 
that carriers larger than this would not be able to use this 
route of transport. Based on the fact that the dimension of 
axons varies between 100 and 200 nm in different animal 
species [29, 36, 43, 106], the majority of the nanocarriers 
disclosed for N-to-B delivery have been designed to have a 
size between 50 and 150 nm (Tables 3–5). However, as the 
trans-neuron transport is not the only N-to-B pathway, other 
nanocarriers with a mean size of 270 nm, or even 440 nm, 
have also shown some positive results in in  vivo stud-
ies [107–109]. For example, using polysorbate-80 coated 
polystyrene NPs, it was observed that particle diameters of 
100 nm showed more than a fourfold greater brain uptake 
than the same system with a 180 nm mean size. In a separate 
study, different sizes of polyethylene glycol-polylactic acid 
(PEG-PLA) NPs were developed; according to their results, 
mean diameters of 100 nm showed greater brain accumu-
lation and, in consequence, enhanced therapeutic effect, 
than nanosystems of 500 nm, in an epilepsy rat model after 

Fig. 5   Schematic representation of the possible mechanisms of trans-
port of nanoparticles (round black), drug molecules (blue spots) 
across the different barriers. Nanoparticles containing drugs and pen-
etration enhancers may cross the olfactory epithelium by a paracel-
lular (A) or transcellular pathway (B) and may, or may not, release 
drugs and penetration enhancers (red spots) in their way to the brain. 
Nanoparticles may be taken up by axons and undergo intra-axonal 
transport into the olfactory nerve (C). Nanoparticles crossing the 

multiple barriers without releasing their cargo are adequate for RNA 
delivery, whereas nanoparticles releasing the drug molecules and 
penetration enhancers at the different levels may be adequate for the 
delivery of proteins and peptides. The transneuronal transport (C) 
is expected to play a significant role in the delivery of RNA-loaded 
nanocarriers, whereas the transepithelial transport maybe also be ade-
quate for peptides and proteins. Created with BioRender.com
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intranasal administration [110]. In a more recent study on 
the biodistribution of nanoemulsions with different diameter, 
it was concluded, using fluorescence imaging, that nano-
systems with a diameter of 100 nm were capable to follow 
both olfactory and trigeminal pathways, while nanocarriers 
with a larger particle size were not detected on the olfactory 
bulb [111]. Finally, a report aimed at exploring the influence 
of the particles chitosan-coated polystyrene NPs (160 and 
280 nm) showed that, irrespective of their size, their trans-
port to the brain was negligible [112].

A literature analysis of the influence of the surface charge 
on the capacity of nanocarriers to overcome the N-to-B bar-
rier leads to the conclusion that it is the chemical composi-
tion of the surface, rather than its charge, the main factor 
influencing the interaction and transport of nanoparticles 
across the olfactory mucosa. In fact, different nanocarriers 
with surface charges from + 57 to − 30 mV have shown sig-
nificant efficacy in enhancing N-to-B delivery of different 
biomolecules [108, 113–115]. For example, chitosan (posi-
tive charge)- and polysorbate-80 (negative charge)-coated 
polystyrene NPs were investigated for their transport across 
the murine olfactory epithelium. The fluorescence imaging 
results showed that negatively charged nanocarriers were 
internalized in the olfactory epithelium in a greater extent 
than the positively charged ones. This might be attributed 
to the retention of chitosan nanocarriers in the mucus layer 
of the nasal cavity [43, 112]. In a more recent study, the 
brain distribution of fluorescent positive (chitosan-coated 
poly(lactic-glycolic acid) (PLGA) NPs) and negative (PLGA 
NPs) nanocarriers was followed after intranasal administra-
tion. Even though both NPs were found in different areas 
of the brain, the trigeminal pathway seems to be the area 
mainly responsible for the transport of positively charged 
nanosystems while the negative NPs seem to be transported 

primarily by the olfactory pathway. Importantly, these dif-
ferences on the main N-to-B pathway followed could also 
be attributed to the difference in particle size observed in 
positive (213 nm) and negative (118 nm) NPs [116]. Fur-
ther studies comparing nanocarriers with different surface 
charges but maintaining similar particle diameters should be 
performed to confirm this hypothesis.

Overall, it is clear that the physicochemical properties 
of nanosystems influence the success of N-to-B delivery 
of biomolecules, but no clear conclusions can be reached 
regarding the limits in particle size or surface charge that are 
more favourable to enhance the N-to-B transport.

Bioadhesive nanoparticles

Although the interest on increasing the bioadhesion or 
mucoadhesion of nanocarriers to enhance the N-to-B deliv-
ery of biomolecules is still being elucidated, examples of 
the incorporation of adhesive regents into nanosystems to 
facilitate N-to-B transport of biomolecules are highlighted 
in the literature.

Only a few manuscripts have reported the potential posi-
tive role of mucoadhesion in the N-to-B transport of nano-
structures. For example, some studies reported the incorpo-
ration within in situ-forming gels of radioactively labelled 
siRNA complexed into dendriplexes. After intranasal admin-
istration of these Carbopol-containing dendriplexes, the 
radio-labelled accumulation in the brain detected was greater 
than the one obtained when using dendriplex or free siRNA 
[117]. Other materials have been used for the development 
of nanogels, such as poly(N-vinyl pyrrolidone) (PVP), that 
seem to depict certain mucoadhesive properties [118]. PVP-
based nanogels have been studied for the delivery of insulin 
to the brain. After intranasal administration in mice, twofold 

Fig. 6   Nanotechnological 
approaches for the N-to-B 
delivery of biomolecules. Incor-
poration of biomolecules (e.g. 
peptides, proteins and nucleic 
acids) into different nanosys-
tems can enhance their effective 
N-to-B transport, which is 
driven by (A) the physicochemi-
cal properties of the nanocar-
riers; (B) their bioadhesive 
nature; (C) their surface modifi-
cation with different permeation 
or penetration enhancers; or (D) 
their surface functionalization 
with targeting ligands. Created 
with BioRender.com
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greater fluorescent levels were detected in the brain, com-
pared with the N-to-B administration of free insulin [119].

Despite these results, it is still unclear what the role of 
bioadhesion or mucoadhesion on enhancing the delivery 
of biomolecules to the brain may be. As mentioned in this 
review article, mucoadhesion properties increase the resi-
dence time in the nasal cavity and the further delivery of 
small molecules to the brain, but the same principle does 
not apply to biomolecules. In fact, as indicated for chitosan, 
the mucoadhesive properties of nanoparticles and gels may 
promote their retention at the mucus level. Further studies 
need to be performed in order to conclusively elucidate the 
role of bioadhesion and mucoadhesion on the nanocarrier-
mediated N-to-B transport of biomolecules.

Nanoparticles containing penetration or permeation 
enhancers

Based on the observed fact that the co-administration of per-
meation enhancers or CPPs with biomolecules can enhance 
their N-to-B transport, some authors have proposed the idea 
of incorporating CPP as a constituent of nanoparticles. For 
example, as shown in Table 1, a few studies have used a 
covalent linkage of CPPs to the nanoparticles. In some cases, 
a 13 amino acid truncate version of the trans-activator of 
transcription (Tat) protein of human immunodeficiency virus 
(HIV-1) was used [120–122]. The benefit of Tat in terms of 
enhancing the N-to-B transport was assessed upon covalent 
linking to insulin-loaded PLGA NPs. The brain accumula-
tion of fluorescently labelled Tat-modified NPs, measured 
by fluorescence microscopy, was 6 times greater than the 
one obtained using the non-modified NPs [123]. The same 
approach was applied to PEG-poly (ɛ-caprolactone) (PEG-
PCL) nanomicelles, loaded with different types of siRNA. 
In all cases, both the therapeutic effect and the brain bio-
distribution were greater when nanomicelles were modified 
with Tat than with plain nanomicelles [124–126]. The influ-
ence of the Tat density on the surface of PEG-PLA nanomi-
celles in their transport across the olfactory mucosa was also 
explored in a different study. The authors determined that 
micelles with a Tat surface density of 10% were able to get 

through trigeminal nerves at a higher extent than those with 
a lower Tat density. Nanosystems were also observed in the 
olfactory nerves, but their presence was mainly attributed 
to their small size, because regardless of the Tat surface 
density, the mean diameter size was 20–35 nm [127].

A different CPPs mentioned above, LMWP, was also con-
jugated to fluorescently labelled PEG-PLA NPs. The modi-
fied NPs showed a greater brain distribution into cerebrum, 
cerebellum, olfactory tract and olfactory bulb, also including 
olfactory and trigeminal nerves, in comparison with non-
modified NPs [128]. These results correlate with previously 
discussed studies where LMWP were directly fused with dif-
ferent proteins, which enhanced their N-to-B transport [99].

Another CPP used to study the brain biodistribution of 
fluorescent-dextran-loaded nanomicelles upon nasal admin-
istration was a basic peptide composed of arginine, histi-
dine and cysteine (CH2R4H2C). The micelles were based 
on a hydrophobic derivative (stearyl modification) or on a 
hydrophilic derivative (PEG-PCL modification) of the CPP. 
Micelles made with C16-CPP showed accumulation in the 
olfactory bulb, with no relevant distribution to other brain 
areas; whereas micelles made of CPP-PEG-PLC showed a 
broad distribution in the brain. Even though authors con-
cluded that the brain distribution of the hydrophilic deriv-
ative suggested that their uptake is mediated by both the 
olfactory and the trigeminal pathways, this could be also 
be explained by the positive effect of the PEGylation of the 
polymer leading to an enhanced diffusion across the brain 
stroma [129].

Our group has also used a hydrophobic derivative of 
octarginine (C12-r8) to form nanocomplexes with miRNA. 
The resulting nanocomplexes were subsequently enveloped 
with an amphiphilic polymer, poly(glutamic acid)-PEG 
(PGA-PEG). These enveloped nanocomplexes (ENCPs) 
were found to transport miRNA to the brain and to modulate 
its mRNA targets [130].

Importantly, despite the positive results in terms of 
enhanced transport achieved with the incorporation of CPPs 
to the nanocarriers, it should be kept in mind that the amount 
of these compounds may need to be limited in order to avoid 
potential immunogenicity problems [131, 132].

Table 1   Examples of selected 
nanosystems modified with 
CPPs for N-to-B delivery

LMWP low molecular weight protamine, PEG-PCL PEG-poly(ɛ-caprolactone), PEG-PLA PEG-polylactic 
acid, PLGA poly(lactic-glycolic acid), PEG-PLA PEG-polylactic acid

Nanosystem Cell-penetrating peptide Animal model Ref

PLGA NPs Tat Mice [123]
PEG-PCL nanomicelles Tat Rat [124–126]
PEG-PLA nanomicelles Tat Rat [127]
PGA-PLA NPs LMWP Rat [128]
Nanomicelles CH2R4H2C Rat [129]
Nanocomplexes C12-r8 Mice [130]
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In addition to the so-called CPPs, cationic polymers, 
notably chitosan, have also been explored for their penetra-
tion-enhancing properties in the form of nanoparticles. Chi-
tosan nanoparticles have been used for the N-to-B delivery 
of different kinds of siRNA as commented in the following 
section [113, 133]. Hybrid nanocarriers, combining chitosan 
with manganese or with gold NPs (AuNPs), have also been 
proven to enhance the delivery of multiple types of RNA to 
different brain areas [134, 135]. Moreover, chitosan has been 
used as a coating material for pre-formed nanocarriers. For 
example, different studies using nanostructured lipid carri-
ers coated with chitosan and containing human insulin-like 
neurotrophic growth factor-I (hIFG-1) or glial cell-derived 
neurotrophic factor (GDNF) reported an important accumu-
lation of these factors in the brain, as well as a significant 
therapeutic effect. Unfortunately, these studies failed to use 
the adequate comparators (nanocarriers without chitosan) 
and, hence, the specific role of chitosan in these formulations 
could not be assessed [136, 137]. Trimethyl-chitosan (TMC), 
a chitosan derivative with enhanced adhesion properties, was 
used in the form of a nanocomplex with the neuropeptide, 
leucine-enkephalin (Leu-Enk). After intranasal administra-
tion, the increased delivery to the brain was explained by the 
electrostatic interaction of the cationic nanoparticles with 
the brain capillaries, although this qualitative information is 
very speculative and obtained from a microscopic observa-
tion of sections of the mouse brain. The mechanism of action 
of chitosan for the enhancement of permeation of nanocar-
rier is still to be elucidated [107].

In addition to these biomaterials, either peptides or poly-
mers, recognized as penetration or permeation-enhancing 
agents, we must note that the use of surfactants is expected 
to play a role in the penetration of the nanoparticles into the 
olfactory mucosa. Overall, these reports are an indication of 
the potential interest of combining CPPs and other penetra-
tion enhancers with NPs.

Nanoparticles functionalized with targeting ligands

Covalent modification of the nanocarriers’ surface with tar-
geting ligands offers an interesting possibility to optimize 
the N-to-B delivery, as summarized in Table 2. According 
to our records, the first targeting ligand to be incorporated 
onto nanocarriers was wheat germ agglutinin (WGA), a 
lectin with specific binding to N-acetyl-D-glucosamine and 
sialic acid, present on the surface of the epithelial cells of 
the olfactory mucosa [138–140]. Initial studies on the func-
tionality of PEG-PLA NPs containing vasoactive intestinal 
peptide reported a significantly higher brain accumula-
tion, in comparison with the one found using unmodified 
NPs [141]. Further studies intended to elucidate the brain 

biodistribution of these nanocarriers, indicated that the accu-
mulation was particularly noticeable in the olfactory bulb, 
which suggested their transport through the olfactory path-
way [142]. WGA-functionalized PEG-PLA nanoparticles 
were also applied to the N-to-B transport of miRNA-132. 
The results obtained using fluorescence imaging showed an 
enhanced accumulation of the functionalized DiR-labelled 
nanocarriers, both in Alzheimer’s disease mice and ischemic 
rat models [143]. WGA-functionalized PEG-PLA NPs were 
also applied to the N-to-B delivery of the NR2B9c peptide, 
in an ischemic stroke rat model [144]. This study found a 
greater reduction on the infarcted area when compared to the 
one obtained for the unmodified nanocarrier.

Besides WGA, other lectins have been proven to facili-
tate the N-to-B delivery of biomolecules by modifying the 
surface of the nanocarriers. For example, Solanum tuber-
sum lectin (STL), a glycoprotein that binds to N-acetyl-D-
glucosamine of the nasal cavity epithelium [140, 145], has 
been reported to enhance the transport of PEG-PLGA NPs 
loaded with a fluorescent probe to the brain. Indeed, the 
brain uptake measured by fluorescence imaging was 2.5-fold 
greater compared to the unmodified NPs [146]. Additionally, 
the same group loaded basic fibroblast growth factor (bFGF) 
into PEG-PLGA NPs functionalized with STL. This study 
showed a threefold increase of the AUC of bFGF, when 
compared to unmodified nanocarriers [147].

Despite these positive results, lectins have been reported 
to exhibit a certain immunotoxicity and this fact has encour-
aged researchers to explore small lectin-like peptides. For 
example, Odorranalectin (OL), a 1.7 kDa small peptide 
originally obtained from frog skin, which was found to 

Table 2   Examples of selected nanosystems modified with targeting 
ligands for N-to-B delivery

Au-Fe2O3  gold-iron oxide, AuNPs  gold nanoparticles, Lf  lacto-
ferrin, NPs  nanoparticles, OL  odorralectin, PEG-PCL  PEG-poly 
(ɛ-caprolactone), PEG-PLA  PEG-polylactic acid  PEG-PLGA  PEG-
poly(lactic-glycolic acid), PLGA poly(lactic-glycolic acid), RVG29 rabies 
virus glycoprotein, STL  Solanum tuberosum lectin, WGA​  wheat germ 
agglutinin

Nanosystem Targeting ligand Animal model Ref

PEG-PLA NPs WGA​ Mice/Rats [141–143]
PEG-PLGA NPs WGA​ Rats [144]
PEG-PLGA NPs STL Rats [146, 147]
PEG-PLGA NPs OL Mice/Rats [149, 150]
Cubosomes OL Rats [151]
PEG-PCL NPs Lf Mice [155]
PEG-PLGA NPs RVG29 Rat [157]
Au-Fe2O3 NPs T7 Mice [134]
AuNPs D1 Rat [158]
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specifically bind to L-fucose overexpressed in the olfactory 
epithelium [145, 148], was used to functionalize PEG-PLA 
nanoparticles. Using fluorescence imaging, it was observed 
that the transport of fluorescently labelled functionalized 
NPs was superior than the one obtained with the unmodi-
fied nanocarrier [149]. Moreover, the same authors ana-
lysed the potential of this system for the N-to-B delivery 
of the peptide urocortin, which is indicated in the treatment 
of neurological disorders. The in vivo results obtained in 
a Parkinson’s disease mice model showed a neurological 
recovery, which was associated to the significant transport 
of urocortin [150]. Similar brain biodistribution results were 
obtained with PEGylated cubosomes functionalized with OL 
and loaded with Gly14-Humanin (S14G-HN). An increase 
in the drug concentration in the brain as well as a signifi-
cant enhancement of the therapeutic effect after the surface 
modification was observed [151].

One of the most frequently used targeting moieties that 
has been incorporated on the surface of nanoparticles is 
the glycoprotein lactoferrin (Lf), a ligand of the lactoferrin 
receptor (LfR) highly expressed in brain endothelial cells 
and neurons [152–154]. The results of an in vivo fluores-
cence imaging study using fluorescently labelled PEG-PCL 
NPs indicated that Lf enhanced the accumulation of the 
NPs in the brain. Moreover, when these Lf-functionalized 
PEG-PCL NPs were applied to the N-to-B delivery of NAP 
peptide, a greater neuroprotective effect after ligand modi-
fication was reported [155].

Other peptidic moieties have been used for enhancing 
N-to-B delivery. A small portion of the rabies virus gly-
copeptide (RVG29), responsible for the cellular entry and 
virus fusion, efficiently binds to the nicotinic acetylcholine 
receptor (NAchR), that is present in CNS cells [156]. It has 
been proven that RVG29 in combination with PEG-PLGA 
NPs significantly enhances brain delivery of miRNA-124. 
Curiously, both RVG29 and PEG are needed to obtain the 
highest miRNA accumulation and therapeutic effect [157].

Inorganic NPs have also been modified with different 
targeting peptides. T7 peptide (Ac-Cys-His-Ala-Ile-Tyr-
Pro-Arg-CONH2) in combination with gold-iron oxide NPs 
(Au-Fe2O3 NPs) showed greater accumulation in the brain 
than unmodified nanosystem. The same result was obtained 
when using a modification of D1 peptide (Gln-Ser-His-Tyr-
Arg-His-Ile-Ser-Pro-Ala-Gln-Val) of gold NPs (AuNPs), 
even though comparison with the unmodified carrier was 
not reported [158].

More relevant studies have been developed to check the 
efficacy of targeting ligands. These studies were mainly per-
formed using fluorescent or radio-labelled probes, or small 
molecules [159–163]. They concluded that specific ligands, 
i.e. lectins, glycoproteins, and glycopeptides, with affinity 
for epithelial cells or neurone receptors enhance the N-to-B 
transport of nanoparticles loaded with biomolecules.

Illustrative nanotechnologies 
for nose‑to‑brain delivery of biomolecules

As reported in the previous section, different types of nanocar-
riers have been designed to improve the protection of biomol-
ecules from degradation and their N-to-B transport [164–166]. 
Here, we describe a number of selected nanotechnology-based 
formulations containing specific biomolecules (peptides, pro-
teins and nucleic acids) that were found to be effective in the 
treatment of neurological diseases.

Peptides

The delivery of peptides to the brain is a topic that has 
attracted increasing attention over the past decades, due 
to their pharmacological value for the treatment of CNS 
diseases, including neurodegenerative diseases, cancer or 
ischemic strokes [167–169]. Nanotechnology offers the 
possibility to overcome the challenges that peptides face to 
achieve N-to-B transport (Table 3) [28, 170].

Most of the in vivo studies involving the use of peptides 
loaded onto nanocarriers were aimed at the treatment of 
Alzheimer’s disease (AD). The goal of the early studies, 
performed in 2007, was to investigate the potential of WGA-
functionalized PEG-PLA NPs to enhance the transport of 
the vasoactive intestinal peptide. The results showed that the 
peptide concentration in the brain was 7 times higher when 
associated to the NPs as compared to the free peptide [141]. 
A peptide named humanin derivative was associated to 
PEGylated cubosomes (93 nm) functionalized with OL pep-
tide. The results obtained by fluorescence imagining in an 
AD rat model indicated that the OL functionalization led to 
a 2.6-fold increase in the access of cubosomes to the brain. 
This increased brain delivery translated into a significant 
enhancement of the therapeutic effect [151]. The NAP neu-
ropeptide was loaded into Lf-functionalized PEG-PCL NPs, 
of 90 nm, and the N-to-B transport was assessed by fluores-
cence imagining in an AD rat model. The results indicated 
that the Lf functionalization of the NPs led to their enhanced 
transport to the brain, which correlated with a deceleration 
of memory loss [155]. Recently, some authors reported 
that simple nanogels made of PVP with a particle size of 
90 nm and negative surface charge could be used for the 
enhanced delivery of insulin to the brain. The accumulation 
of fluorescent-labelled insulin in the brain was visualized by 
fluorescence microscopy and its activity was measured by 
Akt activation levels, in an AD mice model [119]. Although 
the authors hypothesized different potential mechanisms for 
the transport of the nanogels across the N-to-B barriers, the 
study did not provide direct and quantitative evidence of the 
mechanisms involved in the transport.
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Some peptides have also been explored for the treatment 
of Parkinson’s disease (PD). For example, the urocortin pep-
tide, capable of restoring nigrostriatal function, was loaded 
into PEG-PLGA NPs functionalized with OL and admin-
istered intranasally in a PD model. The results reported a 
six- and threefold increase in the therapeutic effect in com-
parison with intranasal administration of the free peptide 
or the unmodified NP, respectively [150]. A peptide named 
substance P, intended to protect dopamine neurons from 
neurotoxicity, was loaded into gelatin-cored nanostructured 
lipid carriers (NLCs) (170 nm, negative surface charge) and 
assayed in a PD rat model. The results obtained following 
nasal administration, showed an increase in the efficacy, 
assessed by quantifying rotational behaviour and levels of 
proteins related to PD [114].

Some peptides associated to nanocarriers have also been 
proposed for the treatment of epilepsy. For example, the anti-
convulsant thyrotropin-releasing hormone (TRH) was associ-
ated to WGA-functionalized PLA NPs (100 nm) and labelled 
with a fluorescent marker. Following nasal administration to 
epileptic rats, the NPs were found to be able to reach the brain 
and suppress seizures [110]. The NR2BPc peptide, of potential 
interest for the treatment of ischemia and prevention of strokes, 
was loaded into WGA-functionalized PLA-PEG NPs (140 nm, 
and negative surface charge). Following intranasal administra-
tion of this formulation to an ischemic rat model, a significant 
reduction in the size of the infarcted area was reported [144].

The peptide leucine-enkaphalin, associated to trimethyl 
chitosan NPs (> 400 nm, positive charge) was explored for 
pain relief purposes. The peptide was labelled with a fluores-
cent tag for the evaluation of its biodistribution. Following 
intranasal administration, an increased antinociceptive effect 
was reported, along with higher brain accumulation for the 
nanoformulation, as compared to the free drug [107].

Finally, cyclosporine-A (CsA), which has been reported 
to exhibit neuroprotective properties, has been formulated 
as a nanoemulsion (270 nm and a positive surface charge) 
made of flax-seed oil, also known for its neuronal regulating 
characteristics. A significant brain accumulation of CsA was 
observed following intranasal administration, a fact that was 
attributed to a direct N-to-B uptake [108].

Proteins

The nanotechnological strategies adapted for proteins are 
similar to those used for peptides (Table 4) [171, 172]. The 
most frequently tested protein as a cargo of different nano-
carriers is basic fibroblast growth factor (bFGF), which 
depicts neuroprotective effects in different brain-related 
diseases. For example, bFGF associated to functionalized 
STL-PEG-PLGA NPs (120 nm and negative surface charge) 
was administered intranasally in an AD mice model. The 
results showed that loaded NPs enhanced 1.5 times the AUC 
of radio-labelled-bFGF compared to free protein, and the 
modification with the targeting ligand further increases the 
value of AUC up to 3 times more, as described above [147]. 
The same protein, bFGF encapsulated into gelatin NLC (128 
and negative surface), containing phospholipids, cholesterol, 
and Poloxamer 118, was tested in an ischemia rat model. The 
results highlighted a 1.5 times greater protein accumulation 
in different brain areas, when compared with intravenous 
administration, as well as enhanced therapeutic response 
[173]. The same nanocarrier was used to deliver bFGF for 
the treatment of PD. The results showed high protein lev-
els in different areas of the brain, including the olfactory 
bulb and striatum, and enhancement of their therapeutic 
effect after intranasal administration in a PD rat model, as 

Table 3   Overview of selected nanocarrier systems for peptide N-to-B delivery

AD Alzheimer’s disease, CsA cyclosporine-A, Lf lactoferrin, NCL nanostructured lipid carriers, NPs, nanoparticles, OL odorranalectin, PD Par-
kinson’s disease, PEG-PCL PEG-poly (ɛ-caprolactone), PEG-PLA PEG-polylactic acid, PEG-PLGA PEG-poly(lactic-glycolic acid), PLA poly-
lactic acid, PVP poly(N-vinyl pyrrolidone), SP substance P, TRP thyrotropin-releasing hormone, VIP vasoactive intestinal peptide, WGA​ wheat 
germ agglutinin

Nanosystem Peptide cargo Disease Size (nm) Z-Pot (mV) Targeting 
molecule

Animal model Ref

PEG-PLA NPs VIP AD  ~ 120 - WGA​ Mice [141]
PEGylted cubosomes S14G-HN (humanin derivative) AD 93  − 14 OL Rats [151]
PEG-PCL NAP AD 88  − 24 Lf Mice [155]
PVP nanogels Insulin AD 90  − 25 - Mice [119]
PEG-PLGA Urocortin PD 115  − 20 OL Rats [150]
Gelatin NLC SP PD 172  − 30 - Rats [114]
D,L-PLA NPs TRH Epilepsy 108 - - Rats [110]
PEG-PLGA NR2B9c Ischemia 139  − 23 WGA​ Rats [144]
N-trimethyl chitosan NPs Leucine-enkephalin Pain 443  + 15 - Mice [107]
Oil-in-water nanoemulsion CsA - 272  + 57 - Rats [108]
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compared with free protein and intravenous administration 
of the nanoencapsulated protein [115].

The glial cell-derived neurotrophic factor (GDNF), also 
applied to Parkinson’s disease, has been entrapped in chi-
tosan NLCs, using a combination of solid and liquid lipids. 
Their intranasal administration in PD model rats resulted in 
a meaningful behavioural improvement [137]. These authors 
fluorescently labelled these nanosystems for studying the 
N-to-B transport of human insulin-like neurotrophic growth 
factor-I (hIFG-I). The fluorescent images indicated a high 
accumulation in the brain, with diffusion and penetration 
into different brain areas. Moreover, NLCs were strongly 
detected in the olfactory tract, a result that was attributed to 
the mucoadhesive properties of chitosan [136].

The brain-derived neurotrophic factor (BDNF), encapsu-
lated into PEG-PLA polymersomes (270 nm and a negative 
surface charge) was co-administered with simvastatin intra-
nasally in a neuro-inflammation mice model. The results 
showed a significant reduction of cytokine levels and micro-
glial activation in different brain areas when both drugs are 
co-administered, compared to single-drug nanoencapsulated 
administration [109].

Monoclonal antibodies

Among the different protein-based therapies, monoclonal 
antibodies (mAbs) have gained particular attention over the 
past decades, resulting in an increasing amount of thera-
peutic antibodies on clinical trials and even in the market 
[174–176]. Interestingly, FDA recently approved the use of 
a monoclonal antibody, aducanumab (marked as Aduhelm), 
for the treatment of AD, thus paving the way to further 
development of antibody-based treatments for CNS condi-
tions [7, 8]. Despite the interest of mAbs for the treatment 
of neurological diseases, to our knowledge, the use of nano-
technology for the N-to-B delivery of these molecules has 
not been explored. The only report we have found makes 
use of the mAb anti-EPH3 as a targeting ligand attached to 
PLGA NPs coated with trimethyl chitosan. This approach 

relies on the fact that anti-EPH3 targets a membrane receptor 
overexpressed in the stroma and vasculature of gliomas. The 
NPs were loaded with temozolomide and administered intra-
nasally in a glioma rat model. Higher brain accumulation of 
NPs was determined by fluorescence imaging after they were 
functionalized with anti-EPH3 antibody, compared with 
unfunctionalized NPs. Moreover, median survival time and 
apoptosis of glioma cells was significantly enhanced upon 
treatment with the functionalized NPs [177].

RNA (siRNA, miRNA)

Among the different types of biomolecules, RNA constructs 
may be one of the more challenging to be delivered through 
N-to-B pathways [178, 179]. In addition to the challenges 
described for the delivery of peptides and proteins, the RNA 
molecules need to reach the intracellular space in order to 
execute their action. To achieve this, RNA molecules must 
remain associated to the NPs until reaching the intracellular 
target and the NPs must be able to cross intact the N-to-B 
barriers (as shown in Fig. 5) [180, 181]. Considering all 
these requirements, different nanocarriers had been designed 
for the efficient N-to-B transport of nucleic acids (Table 5).

Among the different types of RNAs, siRNA has received 
the greatest attention for the treatment of neurological 
pathologies and, hence, for the N-to-B delivery. One of the 
first nanocarriers developed for the delivery of siRNA mol-
ecules (including FAM-siRNA, siRNA Raf-1 and siRNA 
TFN-α) was the Tat-modified PEG-PCL nanomicelles (size 
of 50–160  nm and positive surface charge) [124–126]. 
This nanocarrier could efficiently transfer the FAM-siRNA 
molecules into the olfactory and trigeminal nerves [124]. 
Further studies with the same nanosystems involved the 
encapsulation of both siRNA Raf-1 and camptothecin 
(CPT) for the treatment of glioblastoma. The in vivo results 
showed a significant accumulation of fluorescent siRNA in 
the brain, which translated into a greater survival time and 
tumour reduction [125]. Similarly, siRNA Gal-1-loaded 
chitosan NPs (140 nm and positive surface charge) were 

Table 4   Overview of selected nanocarrier systems for proteins N-to-B delivery

AD Alzheimer’s disease, BDNF brain-derived neurotrophic factor, bFGF basic fibroblast growth factor, CS chitosan, GDNF glial cell-derived 
neurotrophic factor, hIFG-1 human insulin-like neurotrophic growth factor-I, NLC nanostructured lipid carriers, NPs nanoparticles, PD Parkin-
son’s disease, PEG-PLA PEG-polylactic acid, PEG-PLGA PEG-poly(lactic-glycolic acid), STL Solanum tuberosum lectin

Nanosystem Peptide cargo Disease Size (nm) Z-Pot (mV) Targeting 
molecule

Animal model Ref

PEG-PLGA NPs bFGF AD 120  − 32 STL Rat [147]
Gelatin NLCs bFGF Ischemia 128  − 15 - Rat [173]
Gelatin NLCs bFGF PD 172  − 28 - Rat [115]
CS NLCs GDNF PD 137  + 30 - Rat [137]
CS NLCs hIFG-1 - 114  + 28 - Mice [136]
PEG-PLA polymersomes BDNF Neuro-inflammation 270  − 20 - Mice [109]
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administered intranasally in a glioblastoma mice model. 
The results showed an overall increase in the survival rate 
of mice, affecting the tumour microenvironment composi-
tion, polarization of macrophages, or tumour vasculature. 
Moreover, the combination of siRNA Gal-1-loaded chitosan 
NPs with temozolomide or PD-1 blocking resulted in a sig-
nificant synergic effect, increasing survival rate [133, 182].

The use of siRNA-loaded NPs for the treatment of a neu-
rodegenerative disease, i.e. Huntington’s disease (HD), has 
also been explored. siRNA anti-huntingtin (HTT)-loaded 
chitosan-modified NPs were administered intranasally in 
a HD mice model. Hydrophobic modifications of siRNA 
led to a minor silencing effect in some brain areas, whereas 
hydrophobic modified siRNA-loaded chitosan NPs led to a 
reduction in the HTT mRNA and protein levels [113].

Finally, siRNA TNF-α-loaded Tat- modified PEG-
PCL nanomicelles (62 nm and positive surface charge) 
were administered intranasally in an ischemic stroke mice 
model, and the result of this treatment was a reduction of the 
infarcted area [126].

Different nanocarriers had been explored for the deliv-
ery of different types of miRNA for the treatment of diverse 
CNS conditions. For example, PEG-PLGA NPs, chemically 
modified with RVG29, were developed for the intranasal 
delivery of miR-124 in an ischemia rat model. Interestingly, 
both targeting ligand and PEG chain were identified as key 
elements for the successful delivery of miRNA to the brain, 
significantly improving the modulation of its target mRNAs 
and the neurobehavioural score along with a reduction in the 
infarcted brain area [157]. In a different study, the potency of 
miR-132 for the treatment of AD and ischemia was evaluated 
in mice and rats, respectively. miR-132 was complexed with 
spermidine, and the resulting complex was encapsulated onto 
PEG-PLA NPs (191 nm and negative surface charge) chemi-
cally modified with WGA. In an AD mice model, significant 
improvement in terms of behaviour as well as decreasing Aβ 

levels were reported. Moreover, enhanced neurobehavioural 
score and reduction on infarcted brain area were achieved 
on an ischemic rat model, proving the promising effect of 
miR-132 for the treatment of different CNS conditions [143].

An enveloped nanocomplexes (ENCPs) technology was 
developed in our lab, consisting on miRNA-132 complexed 
to r8-C12 and enveloped with PEG-polyglutamic acid (PGA) 
(96 nm, neutral surface charge). This formulation resulted in a 
significant modulation of mRNA targets in the olfactory bulb 
and the hippocampus after intranasal administration [130].

Combination of miR-100 and antimir-32 had shown 
potential for the treatment of glioblastoma. In this case, 
both miRNAs have been incorporated onto gold-iron oxide 
NPs, functionalized with T7 peptide and β-cyclodextrin 
chitosan. The combination of intranasal administration of 
loaded gold-iron oxide NPs with systemic administration 
of temozolomide (TMZ) led to an increase in the survival 
time and magnetic resonance imaging properties, showing 
potential as a theragnostic agent [134].

In conclusion, different nanocarriers have been used 
that showed efficient nucleic acid delivery to the brain after 
intranasal administration. Overall, the tendency observed is 
that functionalized nanocarriers with targeting ligands or 
CPPs exhibit a greater performance compared to the non-
functionalized ones.

Conclusion and future perspectives

Neurological disorders and the possible therapeutic strat-
egies that would address them have been a subject of 
increased interest over the last decades. Among the differ-
ent possibilities to successfully access the CNS, the main 
difficulty in this line of study, the use of nanocarriers has 
shown some potential for the direct N-to-B transport. Since 
the first successful attempt reported by Gao et al. in 2007, 

Table 5   Overview of selected nanocarrier systems for RNA N-to-B delivery

AD Alzheimer’s disease, Au-Fe2O3  gold-iron oxide, CS  chitosan, FAM  6-carboxyfluorescein-aminohexyl, Gal-1 Galectin-1, HD Huntington’s 
disease, HTT huntingtin, NCXs nanocomplexes, NPs nanoparticles, PEG-PCL PEG-poly (ɛ-caprolactone), PEG-PGA PEG-polyglutamic acid, 
PEG-PLA PEG-polylactic acid, PEG-PLGA PEG-poly(lactic-glycolic acid), r8-C12 octaarginine-lauric acid, TNF-α tumour necrosis factor-α

Nanosystem RNA cargo Disease Size (nm) Z-Pot (mV) Targeting molecule Animal model Ref

PEG-PCL nanomicelles FAM-siRNA - 50  + 10 Tat Rat [124]
PEG-PCL nanomicelles siRNA Raf-1 Gioblastoma 160  + 9 Tat Rat [125]
CS NPs siRNA Gal-1 Glioblastoma 141  + 32 - Mice [133, 182]
PEG-PCL nanomiclles siRNA TNF-α Ischemia 62  + 19 Tat Rat [126]
CS NPs siRNA HTT HD 104–205  + 43–55 - Mice [113]
PEG-PLGA NPs miR-124 Ischemia 204 - RVG29 Rat [157]
PEG-PLA NPs miR-132 AD/Ischemia 191 -25 WGA​ Mice/

Rat
[143]

PEG-PGA—r8-C12 NCXs miR-132 AD 96  + 4 - Mice [130]
Au-Fe2O3 NPs miR-100 and antimiR-32 Glioblastoma 50  + 4 T7 Mice [134]
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a variety of nanotechnological approaches have been devel-
oped and tested in animal models [141]. These approaches 
could be particularly beneficial for the N-to-B delivery of 
biomolecules, given that their access to the brain following 
systemic administration has proved extremely difficult so far.

In order to develop potential nanocarriers for the N-to-B 
transport of biomolecules, it is fundamental to take into con-
sideration the different barriers that must be overcome and the 
way that nanocarriers can be specifically designed to overcome 
them. With regard to the physicochemical characteristics of the 
nanosystems, there is certain evidence that a small particle size 
correlates with an improved delivery of cargo from the nasal 
cavity to the brain. The majority of the nanocarriers explored 
present a mean diameter between 50–200 nm; however, the 
smaller ones have, apparently, a greater chance to be trans-
ported to the brain. On the other hand, the influence of the sur-
face charge in the N-to-B performance of nanocarriers is not 
that clear, although the majority of the nanocarriers reported 
to date exhibit a negative or neutral charge. Finally, the surface 
composition of the nanocarriers has an impact on their N-to-B 
transport. Of note, the use of permeation-enhancing molecules 
and the addition of PEGylated compounds have been reported 
to impact this transport. Moreover, the combination of these 
strategies with targeting ligands has also been reported as a 
promising strategy.

However, despite these promising findings and studies, 
none of these technologies intended for N-to-B delivery of 
biomolecules has reached the clinical development phase. 
This is understandable if we take into account the reduced 
number of in vivo studies performed to assess the value 
of these technologies. Moreover, an important drawback 
found in most of the relevant articles reporting in vivo 
results is the use of fluorescence imaging to confirm the 
presence of the drug in the brain after nasal administration. 
This type of imaging can be, in some cases, misleading 
and not a reliable quantitative approach for the determina-
tion of the amount of cargo delivered to the brain. Only a 
few studies have done a real quantification of the drug in 
different areas of the brain, to demonstrate the presence of 
the drug, and further studies need to be performed in order 
to confirm an adequate delivery. Importantly, it is not only 
fundamental to ensure an adequate transport of the mac-
romolecules to the desired brain areas, but to ensure the 
maintenance of their functionality. In this regard, it would 
be critical to generate additional knowledge on the assess-
ment of the pharmacokinetics and biodistribution of the 
therapeutic molecules in addition to their biological effect.

In conclusion, N-to-B transport of biomolecules has 
been shown to be a potential alternative for the delivery of 
drug-loaded nanocarriers in sufficient amount to depict a 
therapeutic effect for the treatment of different neurologi-
cal conditions. However, the application in the clinic of a 
combination of nanotechnology and N-to-B delivery is still 

at very early stages. To facilitate this promising translation, 
more studies to elucidate the suitable characteristics that 
a nanosystem must possess to be a successful carrier must 
be performed in more conclusive animal models, such as 
macaques. Furthermore, more conclusive data is needed 
regarding the pharmacodynamics and pharmacokinetics of 
the different pathways followed, as well as the biodistribu-
tion of the biomolecules in the brain.
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