Skip to main content
Log in

Simultaneous delivery of anti-miRNA and docetaxel with supramolecular self-assembled “chitosome” for improving chemosensitivity of triple negative breast cancer cells

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

At present, treating of triple negative breast cancer (TNBC) mainly depends on chemotherapy with more toxic side effects, but the effect is limited and it is highly prone to drug resistance. Gene therapy using anti-microRNAs maybe one of alternative therapeutic strategies. Due to the poor cell permeability and significant in vivo decomposition rate of anti-microRNAs, which limits their clinical application, we developed a core-shell supramolecular nanovector of “chitosome” that were self-assembled from the synthetic amphiphilic chitosan derivatives. The constructed chitosomes could co-load hydrophilic anti-miR-21 and hydrophobic docetaxel (DTX) into one combo nanocarrier with entrapment efficiency of more than 80%, as well as spherical morphology and average particle size of 90 nm. In comparison with the naked ones, anti-miR-21 encapsulated with chitosomes showed significantly increased cellular transfection and stability against degradation by nuclease in serum. Compared with DTX or anti-miR-21 formulations used alone, the co-delivery of the two drugs with the combo chitosome obtained improved chemosensitivity of TNBC cells to DTX treatment through their synergistic mechanisms. Taken together, the developed chitosome could be a promising candidate for simultaneous delivery of insoluble chemotherapeutic drugs and gene agents for TNBC therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schmadeka R, Harmon BE, Singh M. Triple-negative breast carcinoma: current and emerging concepts. Am J Clin Pathol. 2014;141:462–77.

    CAS  PubMed  Google Scholar 

  2. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13:674–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wahba HA, El-Hadaad HA. Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med. 2015;12:106–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalimutho M, Parsons K, Mittal D, López JA, Srihari S, Khanna KK. Trends. Pharmacol Sci. 2015;36:822–46.

    CAS  Google Scholar 

  5. O'Toole SA, Beith JM, Millar EK, West R, McLean A, Cazet A, et al. Therapeutic targets in triple negative breast cancer. J Clin Pathol. 2013;66:530–42.

    CAS  PubMed  Google Scholar 

  6. Mayer IA, Abramson VG, Lehmann BD, Pietenpol JA. New strategies for triple-negative breast cancer--deciphering the heterogeneity. Clin Cancer Res. 2014;20:782–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kalimutho M, Parsons K, Mittal D, Lopez JA, Srihari S, Khanna KK. Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends Pharmacol Sci. 2015;36:822–46.

    CAS  PubMed  Google Scholar 

  8. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15:321–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.

    CAS  PubMed  Google Scholar 

  10. Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C, et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature. 2015;518:107–10.

    CAS  PubMed  Google Scholar 

  11. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14:2348–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Costa PM, Cardoso AL, Custodia C, Cunha P, Pereira de Almeida L, Pedroso de Lima MC. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: a new multimodal gene therapy approach for glioblastoma. J Control Release. 2015;207:31–9.

    CAS  PubMed  Google Scholar 

  13. Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18:282–9.

    CAS  PubMed  Google Scholar 

  14. Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014;13:622–38.

    CAS  PubMed  Google Scholar 

  15. Ben-Shushan D, Markovsky E, Gibori H, Tiram G, Scomparin A, Satchi-Fainaro R. Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Deliv Transl Res. 2014;4:38–49.

    CAS  PubMed  Google Scholar 

  16. Godbey WT, Barry MA, Saggau P, Wu KK, Mikos AG. Poly(ethylenimine)-mediated transfection: a new paradigm for gene delivery. J Biomed Mater Res. 2000;51:321–8.

    CAS  PubMed  Google Scholar 

  17. Safinya CR, Ewert KK, Majzoub RN, Leal C. Cationic liposome-nucleic acid complexes for gene delivery and gene silencing. New J Chem. 2014;38:5164–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev. 2014;66:110–6.

    CAS  PubMed  Google Scholar 

  19. Ragelle H, Riva R, Vandermeulen G, Naeye B, Pourcelle V, Le Duff CS. Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J Control Release. 2014;176:54–63.

    CAS  PubMed  Google Scholar 

  20. Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V. Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev. 2013;65:1234–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiu YL, Ho YC, Chen YM, Peng SF, Ke CJ, Chen KJ. The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan. J Control Release. 2010;146:152–9.

    CAS  PubMed  Google Scholar 

  22. Liu CG, Desai KG, Chen XG, Park HJ. Linolenic acid-modified chitosan for formation of self-assembled nanoparticles. J Agric Food Chem. 2005;53:437–41.

    CAS  PubMed  Google Scholar 

  23. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.

    CAS  PubMed  Google Scholar 

  24. Orellano MS, Porporatto C, Silber JJ, Falcone RD, Correa NM. AOT reverse micelles as versatile reaction media for chitosan nanoparticles synthesis. Carbohydr Polym. 2017;171:85–93.

    CAS  PubMed  Google Scholar 

  25. Budker VG, Slattum PM, Monahan SD, Wolff JA. Entrapment and condensation of DNA in neutral reverse micelles. Biophys J. 2002;82:1570–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fishburn CS. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J Pharm Sci. 2008;97:4167–83.

    CAS  PubMed  Google Scholar 

  27. Zhang W, Cheng Q, Guo S, Lin D, Huang P, Liu J, et al. Gene transfection efficacy and biocompatibility of polycation/DNA complexes coated with enzyme degradable PEGylated hyaluronic acid. Biomaterials. 2013;34:6495–503.

    CAS  PubMed  Google Scholar 

  28. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.

    CAS  PubMed  Google Scholar 

  29. Fang Y, Xue J, Gao S, Lu A, Yang D, Jiang H, et al. Cleavable PEGylation: a strategy for overcoming the "PEG dilemma" in efficient drug delivery. Drug Deliv. 2017;24:22–32.

    CAS  PubMed  Google Scholar 

  30. Coulthard LG, Woodruff TM. Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J Immunol. 2015;194:3542–8.

    CAS  PubMed  Google Scholar 

  31. Minami S, Suzuki H, Okamoto Y, Fujinaga T, Shigemasa Y. Chitin and chitosan activate complement via the alternative pathway. Carbohydr Polym. 1998;36:151–5.

    CAS  Google Scholar 

  32. Cambon A, Figueroa-Ochoa E, Juarez J, Villar-Alvarez E, Pardo A, Barbosa S, et al. Complex self-assembly of reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) triblock copolymers with long hydrophobic and extremely lengthy hydrophilic blocks. J Phys Chem B. 2014;118:5258–69.

    CAS  PubMed  Google Scholar 

  33. Xiang S, Tong H, Shi Q, Fernandes JC, Jin T, Dai K, et al. Uptake mechanisms of non-viral gene delivery. J Control Release. 2012;158:371–8.

    CAS  PubMed  Google Scholar 

  34. Lonn P, Kacsinta AD, Cui XS, Hamil AS, Kaulich M, Gogoi K, et al. Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci Rep. 2016;6:32301.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010;62:12–27.

    CAS  PubMed  Google Scholar 

  36. Duceppe N, Tabrizian M. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv. 2010;7:1191–207.

    CAS  PubMed  Google Scholar 

  37. Ghanbari Safari M, Hosseinkhani S. Lipid composition of cationic nanoliposomes implicate on transfection efficiency. J Liposome Res. 2013;23:174–86.

    CAS  PubMed  Google Scholar 

  38. Hsu CY, Uludag H. Cellular uptake pathways of lipid-modified cationic polymers in gene delivery to primary cells. Biomaterials. 2012;33:7834–48.

    CAS  PubMed  Google Scholar 

  39. Di Leva G, Croce CM. miRNA profiling of cancer. Curr Opin Genet Dev. 2013);23:3–11.

    PubMed  PubMed Central  Google Scholar 

  40. Zhang BG, Li JF, Yu BQ, Zhu ZG, Liu BY, Yan M. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep. 2012;27:1019–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fang H, Xie J, Zhang M, Zhao Z, Wan Y, Yao Y. miRNA-21 promotes proliferation and invasion of triple-negative breast cancer cells through targeting PTEN. Am J Transl Res. 2017;9:953–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 2016;67:11–28.

    CAS  PubMed  Google Scholar 

  43. Abdel-Fatah TM, Perry C, Dickinson P, Ball G, Moseley P, Madhusudan S, et al. Bcl2 is an independent prognostic marker of triple negative breast cancer (TNBC) and predicts response to anthracycline combination (ATC) chemotherapy (CT) in adjuvant and neoadjuvant settings. Ann Oncol. 2013;24:2801–7.

    CAS  PubMed  Google Scholar 

  44. Sharifi S, Barar J, Hejazi MS, Samadi N. Roles of the Bcl-2/Bax ratio, caspase-8 and 9 in resistance of breast cancer cells to paclitaxel. Asian Pac J Cancer Prev. 2014;15:8617–22.

    PubMed  Google Scholar 

Download references

Funding

This research was funded by the Basic and Frontier Technology Research Projects from Science and Technology Department of Henan Province (No. 142300410271, the screening and analysis of specific microRNA expression in peripheral blood of patients with bone metastasis after breast cancer surgery).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suxia Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Xu, H., Huang, T. et al. Simultaneous delivery of anti-miRNA and docetaxel with supramolecular self-assembled “chitosome” for improving chemosensitivity of triple negative breast cancer cells. Drug Deliv. and Transl. Res. 11, 192–204 (2021). https://doi.org/10.1007/s13346-020-00779-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00779-4

Keywords

Navigation