Skip to main content

Advertisement

Log in

Investigation on solution-to-gel characteristic of thermosensitive and mucoadhesive biopolymers for the development of moxifloxacin-loaded sustained release periodontal in situ gels

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The objectives of present research were to develop and characterize thermosensitive and mucoadhesive polymer-based sustained release moxifloxacin in situ gels for the treatment of periodontal diseases. Poloxamer- and chitosan-based in situ gels are in liquid form at room temperature and transform into gel once administered into periodontal pocket due to raise in temperature to 37 °C. Besides solution-to-gel characteristic of polymers, their mucoadhesive nature aids the gel to adhere to mucosa in periodontal pocket for prolonged time and releases the drug in sustained manner. These formulations were prepared using cold method and evaluated for pH, solution-gel temperature, syringeability and viscosity. In vitro drug release studies were conducted using dialysis membrane at 37 °C and 50 rpm. Antimicrobial studies carried out against Aggregatibacter actinomycetemcomitans (A.A.) and Streptococcus mutans (S. Mutans) using agar cup-plate method. The prepared formulations were clear and pH was at 7.01–7.40. The viscosity of formulations was found to be satisfactory. Among the all, formulations comprising of 21% poloxamer 407 and 2% poloxamer 188 (P5) and in combination with 0.5% HPMC (P6) as well as 2% chitosan and 70% β-glycerophosphate (C6) demonstrated an ideal gelation temperature (33–37 °C) and sustained the drug release for 8 h. Formulations P6 and C6 showed promising antimicrobial efficacy with zone of inhibition of 27 mm for A.A. and 55 mm for S. Mutans. The developed sustained release in situ gel formulations could enhance patient’s compliance by reducing the dosing frequency and also act as an alternative treatment to curb periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim J, Amar S. Periodontal disease and systemic conditions: a bidirectional relationship. Odontology. 2006;94(1):10–21. https://doi.org/10.1007/s10266-006-0060-6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Auleep G, Ian CK, Ravi S, Priyadarshi SS, Haider A, Srikanth MV. Application of diverse natural polymers in the design of oral gels for the treatment of periodontal diseases. J Mater Sci Mater Med. 2017;28:39–47.

    Article  CAS  Google Scholar 

  3. Newman M, Takei H, Klokkevold P, Carranza F. Carranza’s clinical periodontology. 12th ed. Saunders: Elsevier; 2014.

    Google Scholar 

  4. Tariq M, Iqbal Z, Ali J, Baboota S, Talegaonkar S, Ahmad A, et al. Treatment modalities and evaluation models for periodontitis. Int J Pharm Investig. 2012;2(3):106–22. https://doi.org/10.4103/2230-973X.104394.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dodwad V, Vaish S, Chhokra M, Mahajan A. Magic bullet to treat periodontitis: a targeted approach. J Pharma Biomed Sci. 2012;20:1–5.

    Google Scholar 

  6. Slots J, Rams TE. Local delivery of antimicrobial agents in the periodontal pocket. Periodontology. 2000;10:139–59.

    Google Scholar 

  7. Joshi M, Bolma U, Dandagi P. Formulation and evaluation of cefuroxime axetil sol-gel for periodontitis. Int J Pharm Pharm Sci. 2014;6:498–503.

    CAS  Google Scholar 

  8. Ferreira SBD, DiasMoço T, Borghi-Pangoni FB, Junqueira MV, Bruschi ML. Rheological, mucoadhesive and textural properties of thermoresponsive polymer blends for biomedical applications. J Mech Behav Biomed Mater. 2016;55:164–78. https://doi.org/10.1016/j.jmbbm.2015.10.026.

    Article  CAS  Google Scholar 

  9. Devi DR, Sandhya P, Vedha Hari BN. Poloxamer: a novel functional molecule for drug delivery and gene therapy. J Pharma Sci Res. 2013;5:159–65.

    Google Scholar 

  10. Chonkar A, Nayak U, Udupa N. Smart polymers in nasal drug delivery. Indian J Pharm Sci. 2015;77(4):367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chenite A, Chaput C, Wang D, Combes C, Buschmann M, Hoemann C. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21(21):2155–61. https://doi.org/10.1016/S0142-9612(00)00116-2.

    Article  CAS  PubMed  Google Scholar 

  12. Ji Q, Deng J, Xing X, Yuan C, Yu X, Xu Q. Biocompatibility of a chitosan-based injectable thermosensitive hydrogel and its effects on dog periodontal tissue regeneration. Carbohydr Polym. 2010;82(4):1153–60. https://doi.org/10.1016/j.carbpol.2010.06.045.

    Article  CAS  Google Scholar 

  13. Khare A, Grover K, Pawar P, Singh I. Mucoadhesive polymers for enhancing retention in ocular drug delivery: a critical review. Rev Adhesion Adhesives. 2014;2(4):467–502. https://doi.org/10.7569/RAA.2014.097310.

    Article  CAS  Google Scholar 

  14. Gharge V, Pawar P. Recent trends in chitosan based nanotechnology: a reference to ocular drug delivery dystem. Int J Ophthalmol Visual Sci. 2017;2:98–105.

    Google Scholar 

  15. Madan M, Bajaj A, Lewis S, Udupa N, Baig JA. In situ forming polymeric drug delivery systems. Indian J Pharm Sci. 2009;71:242–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu L, Gao Q, Lu X, Zhou H. In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J Pharm Sci. 2016;11(6):673–83. https://doi.org/10.1016/j.ajps.2016.07.001.

    Article  Google Scholar 

  17. Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym. 2015;117:524–36. https://doi.org/10.1016/j.carbpol.2014.09.094.

    Article  CAS  PubMed  Google Scholar 

  18. Huang C, Chen Y, Lo Y, Lin Y. Development of chitosan/β-glycerophosphate/glycerol hydrogel as a thermosensitive coupling agent. Carohydr Polym. 2016;147:409–14. https://doi.org/10.1016/j.carbpol.2016.04.028.

    Article  CAS  Google Scholar 

  19. Kim SK, Nishimoto SK, Bumgardner JD, Haggard WO, Gaber MW, Yang Y. A chitosan/β-glycerophosphate thermos-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials. 2010;31(14):4157–66. https://doi.org/10.1016/j.biomaterials.2010.01.139.

    Article  CAS  PubMed  Google Scholar 

  20. Pereira RM, Andrade GSS, De Castro HF, Campos MGN. Performance of chitosan/glycerol phosphate hydrogel as a support for lipase immobilization. Mater Res. 2018. https://doi.org/10.1590/1980-5373-mr-2017-0091.

    Article  Google Scholar 

  21. Guentsch A, Jentsch H, Pfister W, Hoffmann T, Eick S. Moxifloxacin as an adjunctive antibiotic in the treatment of severe chronic periodontitis. J Periodontol. 2008;79(10):1894–903. https://doi.org/10.1902/jop.2008.070493.

    Article  CAS  PubMed  Google Scholar 

  22. Garala K, Joshi P, Shah M, Ramkishan A, Patel J. Formulation and evaluation of periodontal in situ gel. Int J Pharm Investig. 2013;3(1):29–41. https://doi.org/10.4103/2230-973X.108961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sapra P, Patel D, Soniwala M, Chavda J. Development and optimization of in situ periodontal gel containing levofloxacin for the treatment of periodontal diseases. J Sci Innov Res. 2013;2:607–26.

    Google Scholar 

  24. Thorat YS, Sarvagod AM, Kulkarni SV, Hosmani AH. Treatment of mouth ulcer by curcumin loaded thermoreversible mucoadhesive gel: a technical note. Int J Pharm Pharm Sci. 2015;7:399–402.

    CAS  Google Scholar 

  25. Chung YM, Kevin LS, Anna G, Jeong B. Sol–gel transition temperature of PLGA-g-PEG aqueous solutions. Biomacromolecules. 2002;3(3):511–6. https://doi.org/10.1021/bm0156431.

    Article  CAS  PubMed  Google Scholar 

  26. Nair SC, Anoop KR. Design and in vitro evaluation of controlled release satranidazole subgingival films for periodontitis therapy. Int J Pharm Sci Rev Res. 2014;24:8–14.

    Google Scholar 

  27. Rawat S, Warade S, Lahoti S. In situ gel formulation of ornidazole for the treatment of periodontal disease. Cur Pharma Res. 2010;1:60–9.

    Article  Google Scholar 

  28. Chenite A, Buschmann M, Wang D, Chaput C, Kandani N. Rheological characterization of thermogelling chitosan/glycerol-phosphate solutions. Carohydr Polym. 2001;46(1):39–47. https://doi.org/10.1016/S0144-8617(00)00281-2.

    Article  CAS  Google Scholar 

  29. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23(12):2709–28. https://doi.org/10.1007/s11095-006-9104-4.

    Article  CAS  Google Scholar 

  30. Liu W, Kang C, Kong M, Li Y, Su J, Yi A, et al. Controlled release behaviors of chitosan/α, β-glycerophosphate thermo-sensitive hydrogels. Front Mater Sci. 2012;6(3):250–8. https://doi.org/10.1007/s11706-012-0169-1.

    Article  Google Scholar 

  31. Pundir RK, Jain P. Comparative studies on the antimicrobial activity of black pepper (piper nigrum) and turmeric (curcuma longa) extracts. Int J App Biol Pharma Technol. 2010;1:492–501.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank International Medical University (IMU), Kuala Lumpur, Malaysia for providing the research grant (BDS I1-12(01)2015) and laboratory facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Sheshala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheshala, R., Quah, S.Y., Tan, G.C. et al. Investigation on solution-to-gel characteristic of thermosensitive and mucoadhesive biopolymers for the development of moxifloxacin-loaded sustained release periodontal in situ gels. Drug Deliv. and Transl. Res. 9, 434–443 (2019). https://doi.org/10.1007/s13346-018-0488-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0488-6

Keywords

Navigation