Skip to main content

Advertisement

Log in

Toxicity profiling of several common RNAi-based nanomedicines: a comparative study

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

RNAi-based nanomedicine platforms (RNPs) have progressed from tools to study gene expression in vitro into clinical trials. Numerous RNPs strategies have been documented with an efficient ability to condense RNAi payloads and induce potent gene silencing. Moreover, some of these RNPs have been explored in various animal models, and some have even made it to the clinic. Still, there is lack of a clinically approved RNAi-based delivery strategy most probably due to unpredicted clinical toxicity. In this study, we prepared common RNPs such as cationic liposomes, polyamines, and hyaluronan-coated lipid-based nanoparticles and tested these strategies for global toxicity parameters such as changes in bodyweight, liver enzyme release, and hematological profiling. We found that polyamines such as polyethyleneimine and Poly-l-lysine released high levels of liver enzymes into the serum and reduced C57BL/6 mice bodyweight upon three intravenous injections. In addition, these polyamines dramatically reduced the total number of leukocytes, suggesting an immune suppression mechanism, while cationic liposomes, which also increased liver enzymes levels in the serum, elevated the total number of leukocytes probably by activation of Toll-like receptors 2 and 4. Coating the liposomes with hyaluronan, a hydrophilic glycosaminoglycan, provided a protective layer and did not induce adverse effects upon multiple intravenous injections. These findings suggest that there is an urgent need to develop gold standards for nanotoxicity in the field of RNAi that will be embraced by the RNAi community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sledz CA, Williams BR. RNA interference in biology and disease. Blood. 2005;106(3):787–94. Pubmed Central PMCID: 1895153. Epub 2005/04/14. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Peer D, Lieberman J. Special delivery: targeted therapy with small RNAs. Gene Ther. 2011;18(12):1127–33. PubMed PMID: 21490679. Epub 2011/04/15. eng.

    Article  CAS  PubMed  Google Scholar 

  3. Daka A, Peer D. RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev. 2012;64(13):1508–21. PubMed PMID: 22975009.

    Article  CAS  PubMed  Google Scholar 

  4. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6(6):443–53. PubMed PMID: 17541417.

    Article  PubMed  Google Scholar 

  5. Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol. 2010;28(11):570–9. PubMed PMID: ISI:000283703300005. English.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao S, Dagnaes-Hansen F, Nielsen EJ, Wengel J, Besenbacher F, Howard KA, et al. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther. 2009;17(7):1225–33. PubMed PMID: 19401674. Pubmed Central PMCID: 2835214. Epub 2009/04/30. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hobel S, Loos A, Appelhans D, Schwarz S, Seidel J, Voit B, et al. Maltose- and maltotriose-modified, hyperbranched poly(ethylene imine)s (OM-PEIs): Physicochemical and biological properties of DNA and siRNA complexes. J Control Release. 2011;149(2):146–58. PubMed PMID: ISI:000287115200008. English.

    Article  PubMed  Google Scholar 

  8. Meyer M, Philipp A, Oskuee R, Schmidt C, Wagner E. Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc. 2008;130(11):3272-+. PubMed PMID: ISI:000253951900020. English.

    Article  CAS  PubMed  Google Scholar 

  9. Ma Z, Li J, He F, Wilson A, Pitt B, Li S. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun. 2005;330(3):755–9. PubMed PMID: 15809061. Epub 2005/04/06. eng.

    Article  CAS  PubMed  Google Scholar 

  10. Sioud M, Sorensen DR. Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun. 2003;312(4):1220–5. PubMed PMID: 14652004. Epub 2003/12/04. eng.

    Article  CAS  PubMed  Google Scholar 

  11. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008;26(5):561–9. PubMed PMID: ISI:000255756800029. English.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ozpolat B, Sood AK, Lopez-Berestein G. Nanomedicine based approaches for the delivery of siRNA in cancer. J Intern Med. 2010;267(1):44–53. PubMed PMID: 20059643. Epub 2010/01/12. eng.

    Article  CAS  PubMed  Google Scholar 

  13. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005;23(8):1002–7. PubMed PMID: 16041363. eng.

    Article  CAS  PubMed  Google Scholar 

  14. Ben-Arie N, Kedmi R, Peer D. Integrin-targeted nanoparticles for siRNA delivery. Methods Mol Biol. 2012;757:497–507. PubMed PMID: 21909930. Epub 2011/09/13. eng.

    Article  PubMed  Google Scholar 

  15. Landesman-Milo D, Goldsmith M, Leviatan Ben-Arye S, Witenberg B, Brown E, Leibovitch S, et al. Hyaluronan grafted lipid-based nanoparticles as RNAi carriers for cancer cells. Cancer Lett. 2012 Aug 27. PubMed PMID: 22935680.

  16. Peer D, Florentin A, Margalit R. Hyaluronan is a key component in cryoprotection and formulation of targeted unilamellar liposomes. Biochim Biophys Acta. 2003;1612(1):76–82. PubMed PMID: 12729932. Epub 2003/05/06. eng.

    Article  CAS  PubMed  Google Scholar 

  17. Peer D, Margalit R. Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia. 2004;6(4):343–53. PubMed PMID: 15256056. Pubmed Central PMCID: 1502115. Epub 2004/07/17. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peer D, Margalit R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer. 2004;108(5):780–9. PubMed PMID: 14696107.

    Article  CAS  PubMed  Google Scholar 

  19. Mizrahy S, Raz SR, Hasgaard M, Liu H, Soffer-Tsur N, Cohen K, et al. Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. J Control Release. 2011;156(2):231–8. PubMed PMID: 21745506. Epub 2011/07/13. eng.

    Article  CAS  PubMed  Google Scholar 

  20. Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science. 2008;319(5863):627–30. PubMed PMID: 18239128. Pubmed Central PMCID: 2490797. Epub 2008/02/02. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weinstein S, Emmanuel R, Jacobi AM, Abraham A, Behlke MA, Sprague AG, et al. RNA inhibition highlights cyclin D1 as a potential therapeutic target for mantle cell lymphoma. PLoS One. 2012;7(8):e43343. PubMed PMID: 22905260. Pubmed Central PMCID: 3419170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kedmi R, Ben-Arie N, Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials. 2010;31(26):6867–75. PubMed PMID: 20541799. Epub 2010/06/15. eng.

    Article  CAS  PubMed  Google Scholar 

  23. Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011;29(11):1005–10. PubMed PMID: 21983520. Pubmed Central PMCID: 3212614. Epub 2011/10/11. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Wang L, Lin XY, Wang J, Yu JH, Miao Y, et al. The transcription factor DEC1 (BHLHE40/STRA13/SHARP-2) is negatively associated with TNM stage in non-small-cell lung cancer and inhibits the proliferation through cyclin D1 in A549 and BE1 cells. Tumour biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine. 2013 Feb 20. PubMed PMID: 23423709.

  25. Guo J, Cheng WP, Gu J, Ding C, Qu X, Yang Z, et al. Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-l-lysine nanocarrier to suppress prostate cancer growth in mice. Eur J Pharm Sci. 2012;45(5):521–32. PubMed PMID: 22186295.

    Article  CAS  PubMed  Google Scholar 

  26. Cubillos-Ruiz JR, Engle X, Scarlett UK, Martinez D, Barber A, Elgueta R, et al. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J Clin Invest. 2009;119(8):2231–44. PubMed PMID: 19620771. Pubmed Central PMCID: 2719935.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim SS, Peer D, Kumar P, Subramanya S, Wu H, Asthana D, et al. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther. 2010;18(2):370–6. PubMed PMID: 19997090. Epub 2009/12/10. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Injac R, Perse M, Obermajer N, Djordjevic-Milic V, Prijatelj M, Djordjevic A, et al. Potential hepatoprotective effects of fullerenol C60(OH)24 in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas. Biomaterials. 2008;29(24–25):3451–60. PubMed PMID: 18501960. eng.

    Article  CAS  PubMed  Google Scholar 

  29. Gao X, Yao L, Song Q, Zhu L, Xia Z, Xia H, et al. The association of autophagy with polyethylenimine-induced cytotoxicity in nephritic and hepatic cell lines. Biomaterials. 2011;32(33):8613–25. PubMed PMID: 21903261.

    Article  CAS  PubMed  Google Scholar 

  30. Landesman-Milo D, Peer D. Altering the immune response with lipid-based nanoparticles. J Control Release. 2012;161(2):600–8. PubMed PMID: 22230342. Epub 2012/01/11. eng.

    Article  CAS  PubMed  Google Scholar 

  31. Goldsmith M, Mizrahy S, Peer D. Grand challenges in modulating the immune response with RNAi nanomedicines. Nanomedicine (London). 2011;6(10):1771–85. PubMed PMID: 22122585. Epub 2011/11/30. eng.

    Article  CAS  Google Scholar 

  32. Peer D, Zhu P, Carman CV, Lieberman J, Shimaoka M. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci U S A. 2007;104(10):4095–100. PubMed PMID: 17360483. Pubmed Central PMCID: 1820714. Epub 2007/03/16. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peer D. Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Adv Drug Deliv Rev. 2012;64(15):1738–48. PubMed PMID: 22820531.

    Article  CAS  PubMed  Google Scholar 

  34. Rivkin I, Cohen K, Koffler J, Melikhov D, Peer D, Margalit R. Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials. 2010;31(27):7106–14. PubMed PMID: 20619792. Epub 2010/07/14. eng.

    Article  CAS  PubMed  Google Scholar 

  35. Eliaz RE, Szoka Jr FC. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res. 2001;61(6):2592–601. PubMed PMID: 11289136.

    CAS  PubMed  Google Scholar 

  36. Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010;18(9):1650–6. PubMed PMID: 20606648. Pubmed Central PMCID: 2956922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chono S, Li SD, Conwell CC, Huang L. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J Control Release. 2008;131(1):64–9. PubMed PMID: 18674578. Pubmed Central PMCID: 2585496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Lewis Family Trust, Israel Science Foundation (Award #181/10), the Kenneth Rainin Foundation, the Israeli Centers of Research Excellence (I-CORE), Gene Regulation in Complex Human Disease, Center No 41/11 ,the FTA: Nanomedicine for Personalized Theranostics, and by The Leona M. and Harry B. Helmsley Nanotechnology Research Fund awarded to D.P.

Conflict of interest statement

D.P. has financial interest in Quiet Therapeutics, and D.L.M declares no financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Peer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landesman-Milo, D., Peer, D. Toxicity profiling of several common RNAi-based nanomedicines: a comparative study. Drug Deliv. and Transl. Res. 4, 96–103 (2014). https://doi.org/10.1007/s13346-013-0158-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0158-7

Keywords

Navigation