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The hypothalamus controls food intake [1]. It regulates

food intake by integrating information on nutritional status

from periphery through nutrients, hormones, and auto-

nomic nervous system. Previous studies revealed that

numerous neuropeptides are expressed in the hypothalamus

and contribute to the neural networks that regulate food

intake. Among them, the melanocortin system—which

consists of proopiomelanocortin (POMC), agouti-related

peptides (AgRP), and melanocortin receptors—is the most

fundamental system regulating food intake. POMC is

a precursor for alpha-melanocyte-stimulating hormone

(a-MSH), which is an agonist for melanocortin type 4

receptor (MC4R), and AgRP is an inverse agonist for

MC4R and counteracts the function of a-MSH. In fact,

POMC-null mice [2] and MC4R-null mice [3] are obese,

and cases of highly obese humans with MC4R gene

mutations have been reported [4–6].

Within the hypothalamus, the arcuate nucleus (ARC),

paraventricular nucleus (PVN), and lateral hypothalamic

(LH) area are centers for controlling food intake. ARC is

the ‘‘first-order center’’ for regulating food intake. It is

located at the mediobasal hypothalamus, where the blood–

brain barrier is quite permissive, making ARC the place for

sensing nutrients and hormone levels. ARC contains two

types of neurons: anorexigenic POMC and orexigenic

AgRP. These neurons project axons to the ‘‘second-order

centers,’’ which are located in PVN and LH, and compet-

itively regulate the activity of these nuclei [7, 8].

The most-studied feeding-related hormone is leptin. In

the hypothalamic neurons, leptin activates the Janus kinase

2–signal transducer and activator of transcription 3 (JAK2-

STAT3) pathway, leading to nuclear translocation of

phosphorylated STAT3. STAT3 suppresses food intake by

transactivating the anorexigenic Pomc gene and transre-

pressing the orexigenic Agrp gene. Insulin is also known as

a central regulator for food intake. Neuron-specific insulin

receptor knockout mice exhibit increased food intake and

obesity [9]. Insulin signaling is transmitted from the insulin

receptor to phosphoinositide 3-kinase (PI3K), which sub-

sequently activates a serine/threonine kinase protein kinase

B (Akt). FoxO1 is a transcription factor and one of the

substrates for Akt. Phosphorylation of FoxO1 by Akt

results in cytoplasmic shuttling from the nucleus, thereby

inactivating FoxO1 as a transcription factor [10]. FoxO1 is

expressed in ARC AgRP and POMC neurons, and FoxO1

in these neurons are located in the nucleus under fasted

condition but is shuttled to cytoplasm by feeding [11, 12].

Overexpression of constitutively active FoxO1 in the

mediobasal hypothalamus of rats by adenoviral microin-

jection leads to loss of feeding inhibitory effect of leptin

and results in body weight gain [11]. Hypothalamus-spe-

cific constitutively active FoxO1 knockin mice also have

increased food intake and decreased energy expenditure,

and consequently these mice develop obesity [13].

Silent mating type information regulation 2 homolog

(sirtuin 1; Sirt1) is a nicotinamide adenine dinucleotide

(NAD?)-dependent deacetylase and serves as an energy

sensor [14]. Sirt1 is the mammalian ortholog of Sir2, which

is crucial for caloric-restriction-induced longevity [15–17].

Sirt1 is expressed in POMC and AgRP neurons in ARC and
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other hypothalamic nuclei that are important for regulating

food intake [18, 19]. There are several reports indicating

that Sirt1 affects insulin signaling by modulating the

downstream effectors (Fig. 1). For example, Sirt1 deacet-

ylates insulin receptor substrate 2 (IRS2) in hepatocytes,

which enhances insulin-induced tyrosine phosphorylation

of IRS2 [20]. Sirt1 also decreases transcription of protein

tyrosine phosphatase 1B (PTP1B), which results in

increased tyrosine phosphorylation of insulin receptor in

hepatocytes and myocytes [21]. We also previously

reported that Sirt1 deacetylates FoxO1 in pancreatic

b cells, enhancing FoxO1 ubiquitination and thereby

decreases FoxO1 protein level [22]. Furthermore, Nie et al.

[23] reported that Sirt1 deacetylates STAT3, a downstream

effector of leptin signaling, and inhibits STAT3 transcrip-

tional activity. If the same mechanism for Sirt1 regulation

of insulin and leptin signaling exists in the hypothalamus,

Sirt1 should also play an important role in the central

regulation of food intake. Therefore, we and others inves-

tigated the role of hypothalamic Sirt1 in regulating food

intake.

There is conflicting information on how feeding regu-

lates hypothalamic Sirt1 protein. We found that Sirt1

protein level decreases with fasting in the hypothalamus

but not in the cerebral cortex [18]. This hypothalamic Sirt1

response to food intake is lost in diet-induced obese mice.

Furthermore, Sirt1 is ubiquitinated in the hypothalamic

cells in vitro and in vivo, and fasting increases hypotha-

lamic Sirt1 ubiquitination [18]. On the other hand, Satoh

et al. found that dietary restriction increases Sirt1 protein

level in the dorsomedial hypothalamus (DMH) and LH

[24]. Ramadori et al. [19], found that fasting increased the

Sirt1 protein level strictly in the hypothalamus within the

brain, which is contrary to our finding.

There are also varying reports on physiological effects

of hypothalamic Sirt1 on food intake. In our observation,

Sirt1 suppressed hyperphagia and body weight gain

induced by overexpression of constitutively active FoxO1

in the mediobasal hypothalamus by adenovirus microin-

jection, but the effect of hypothalamic Sirt1 overexpression

on food intake was not observed in normophagic mice [18].

Satoh et al. [24], observed no change in food intake in their

brain-specific Sirt1 transgenic mice, but these mice showed

increased physical activity. Intracerebroventricular injec-

tion of Sirt1 inhibitor (Ex-527) suppressed food intake [25,

26]. Furthermore, AgRP neuron-specific Sirt1-knockout

mice have decreased electric responses of AgRP neurons to

ghrelin and decreased food intake [26]. Meanwhile, POMC

neuron-specific Sirt1 knockout mice exhibit unchanged

food intake, but these mice are hypersensitive to diet-

induced obesity due to reduced energy expenditure [27].

We also observed that POMC neuron-specific Sirt1 knoc-

kin mice have increased energy expenditure and decreased

body weight gain (authors’ unpublished data).

Further investigation is required to clarify the role of

hypothalamic Sirt1 in regulating food intake and energy

balance. Sirt1 is expressed in most neurons, and it is quite

possible that Sirt1 in the different parts of the brain

contributes differently to food intake control. Therefore,

manipulation of Sirt1 specifically in certain types of

neurons or nuclei is important. Interestingly, Sirt1

expression level decreases with age only in ARC but not

in DMH, PVN, or ventromedial hypothalamus (VMH)

[28]. Aging and high-fat diet reduces Sirt1 expression and

activity in a number of tissues [29, 30]. It is possible that

the age-dependent loss of Sirt1 in ARC contributes to

increased obesity with age, and obesity further accelerates

the loss of Sirt1 function in ARC, causing dysregulation

of energy balance. The pharmacological activation of Sirt1

confers life span extension in mice fed a high-fat diet [31,

32], but overexpression of Sirt1 in transgenic mice fed a

normal diet does not extend life span [33]. These data

implicate that Sirt1 promotes health and life of mammals

under excessive nutrient conditions but not in normal

conditions.

Hypothalamic control of food intake is regulated not

only by hormones, such as insulin and leptin, but also by

nutrients, such as glucose, amino acids, and FAs. The

molecular mechanisms by which these factors control food

intake have been uncovered in the past 10 years. Amino

acids activate mammalian target of rapamycin (mTOR)

signaling in the hypothalamus and suppress food intake

[34]. AMP kinase, which also serves as an energy sensor

for cells, stimulates food intake [35]. Cross-talk
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Fig. 1 Hormones, nutrients, and neuropeptides controlling food

intake. Insulin and leptin control food intake via regulating neuro-

peptides in the hypothalamus. Nutrients, such as glucose, amino acids,

and fatty acids, regulate feeding. Nutrient-sensing proteins, such as

adenosine-monophosphate-dependent protein kinase (AMPK), mam-

malian target of rapamycin (mTOR), and silent mating type

information regulation 2 homolog (sirtuin 1; Sirt1) also participate

in controlling food intake. Cross-talk among these molecules

implicates more complex mechanisms for food intake control
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among adenosine-monophosphate-dependent protein kinase

(AMPK), mTOR, FoxO1, and Sirt1 have been reported in

different experimental systems [36–39], and it is quite

possible some of these signaling cross-talks may be func-

tional in the hypothalamus (Fig. 1). We hope that clarifying

the molecular mechanism of Sirt1 in controlling food intake

will contribute to the development of a new strategy to treat

obesity and metabolic syndrome.
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