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Abstract We describe the first whole-genome sequence of

a GA13-like isolate of avian infectious bronchitis virus

CK/CR/1160/16 (MN757859), obtained in 2016 in the

province of Alajuela, Costa Rica. This virus caused an

outbreak with great economic impact to the local poultry

industry. The genome sequence is 27 696 bp in length,

with the following genome organization 50-UTR-Pol-S-3a-
3b-E-4b-4c-M-5a-5b-N-6b-30-UTR. The complete genome

sequence has the highest sequence identity (94.03%) with

DMV/1639/GA9977/2019 (MK878536) from Georgia,

USA, and the lowest identity (86.03%) with ck/CH/LHLJ/

08-6 (KX252788), from China. Analysis of the S1 subunit

indicates that the Costa Rican isolate belongs to genotype I,

lineage 17 (GI-17) and displays 96.89% identity with the

S1 subunit of Ga-13/14255/14 (KM087780) (USA). Pos-

sible recombination events in genes S, E, M, 4b y 4c were

detected, with Massachusetts, Connecticut, Arkansas and

MA5 as potential parental types. This study highlights the

importance of the epidemiological and molecular surveil-

lance of avian infectious bronchitis.

Keywords Georgia 13 � Avian coronavirus � Complete

genome � GI-17 � Costa Rica � GA13-like

Infectious bronchitis (IB) is a viral disease that affects

chickens. It causes high morbidity and economic losses in

the industry around the world [1, 10]. The etiological agent

is the Avian coronavirus [8] or avian infectious bronchitis

virus (IBV), member of the genus Gammacoronavirus,

family Coronaviridae, order Nidovirales [2, 8, 13]. The

virion has a lipid envelope and the genome is a positive-

sense linear RNA of approx. 27.6 kb [1, 2, 10], with the

following as the most common genome organization 50-
UTR-Pol-S-3a-3b-E-M-5a-5b-N-30UTR [24, 35]. The first

gene encodes proteins involved in replication and tran-

scription, and it has two open reading frames (ORFs): 1a

and 1b [1, 4, 13, 34] which are translated into polyprotein

1a and 1ab due to a change in the reading frame [1, 4, 34].

The last third of the genome has the structural genes for the

spike (S), envelope (E), membrane (M), and nucleocapsid

(N) proteins, with additional ORFs that codify for the

accessory proteins 3a, 3b, 5a y 5b [24, 28, 34].

Different strains of IBV have been described around the

world including Massachusetts, Beaudette, Holte, 4/91,

Arkansas, Connecticut, D274, and QX-Like, among others

[2, 5, 12]. The classification of IBV genotypes is based on

the S1 sequence of the spike gene, and six genotypes which

comprise 32 lineages have been described [1, 34]. Mass-

like, Ark-like and Penn-like variants, plus one unassigned

genotype designated as IBV-CR-53 [5, 23], have been

reported in Costa Rica since 1990 [17, 23].

Starting in May 2016 until mid 2017, there was an IBV

outbreak throughout farms in Costa Rica. Poultry exhibited

mild respiratory infections and mortality. However, great

economic losses due to carcass condemnation were
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reported [30]. The IBV isolate associated to this outbreak

was classified as a Georgia 13-like type (GA13-like), based

on S1 gene sequence [30].

We isolated the virus associated to this outbreak in 9-to-

11-day-old embryonated specific-pathogen-free (SPF) eggs

[2]. For RNA isolation, allantoic fluid was collected and

purified in a 30% sucrose cushion by ultracentrifugation at

27 800 rpm for 4 h [19]. The RNA from the pellet was

extracted using TRIZOL (Ambion� CA, ES) in accor-

dance with the manufacturer’s instructions [35]. RNA was

converted to double-stranded DNA using random hexam-

ers, Superscript III and Klenow enzyme. The NGS library

was prepared with NexteraTM XT (Illumina�) reagents.

RNA and dsDNA quantification and quality control were

conducted using Quantus Fluorometer� (Promega) and a

QIAxcel� (QIAGEN�). The library was sequenced on an

Illumina MiSeq using a paired-end (2 9 250 bp) protocol.

The quality control of the sequence run was analyzed with

Sequence Analysis Viewer (SAV) (Illumina�). Short reads

quality was analyzed using FASTQC and quality trimming

was conducted using Trimmomatic [7]. De novo assembly

was conducted using SPADES [6] and the longest contig

was compared with viral sequences at NCBI using BLAST.

Bowtie2 was used to align all short reads of the draft

genome and Artemis [9] was used for visualization of the

alignment. Automatic annotation was done using

PROKKA [31] followed by manual curation using infor-

mation from the ViPr database. Each CDS and genome

feature was compared to existing sequences using BLASTP

(nr database).

Possible recombination events were evaluated using the

recombination detection program RDP4 V.4.95

[1, 2, 33, 35], to detect recombinations in at least five out of

the seven possible methods [35]. The phylogenetic analysis

was conducted by taking sequences of the S1 gene region

and the IBV whole-genome sequences available in the

GenBank database. The sequences were aligned using

MAFFT algorithm available in Guidance2 server [18, 32],

and the software PartitionFinder2 was used to determine

the best substitution model [20, 21]. The phylogenetic trees

were made using the Bayesian inference with Mr.Bayes

3.2.6 [15]. Phylogenetic analyses were performed in the

CIPRES Science Gateway Cluster [26].

The whole-genome sequence of isolate CK/CR/1160/16

was uploaded to the GenBank database under the accession

number MN757859 and raw data were deposited in the

SRA under accession number SRR10547950, BioProject

number PRJNA592262, and BioSample number

SAMN13419001. The complete sequence was 27 696 bp

long, consistent with previously reported lengths

[2, 29, 35], with thirteen ORFs, containing 9 genes, with

two UTR regions, and a noncoding region between gene N

and 6b (Table 1). The genome organization of isolate CK/

CR/1160/16 was 50-UTR-Pol-S-3a-3b-E-4b-4c-M-5a-5b-

N-6b-30-UTR, which differs with the classic IBV gene

distribution [24, 35], but has been previously reported

[1, 27, 33].

The phylogenetic analysis of the S1 region shows that

isolate CK/CR/1160/16 forms a cluster with sequences that

belong to the genotype 1 lineage 17, where the variants

from California and Pennsylvania isolates (1990s) are

found [34] (Fig. 1a). Moreover, the Costa Rican isolate

CK/CR/1160/16 shows a close phylogenetic relatedness to

isolate GA-13/14,255/14 (KM087780) with a bootstrap

value of 100 (Fig. 1a). The sequences from other regions in

America form two different clusters: GI-11 (unique for

South America, including sequences from Argentina and

Brazil), and GI-16 (reported in Asia and Italy and including

sequences from Argentina and Chile) [34] (Fig. 1a). The

phylogeny obtained using the whole genome sequence

shows that isolate CK/CR/1160/16 forms a cluster with

isolates from USA, specifically with CAV/CAV56b/91

(GU393331) and Cal99/NE15172/95 (FJ904714) from

California [25, 33] and with DMV/1639/GA9977/2019

(MK878536), from Georgia [14] (Fig. 1b). These sequen-

ces correspond to the GI-17 clasification, based on the S1

region.

Comparison of isolate CK/CR/1160/16 to other whole-

genome sequences (Table 1) indicates that this isolate has

the highest nucleotide sequence identity (94.03%) with

DMV/1639/GA9977/2019, with which the nucleotide

sequence identities for every gene were higher than 88%.

The IBV sequence with the lowest identity (86.03%) was

ck/CH/LHLJ/08-6. The S1 gene region is highly variable,

with nucleotide sequence identities varying between

58.3–88.48% among the different IBV serotypes, due to a

high mutation frequency as well as recombination events

[2, 3, 11, 29]. For this reason, it is important to point out

that the isolate in this study exhibits a very high sequence

identity in the S1 gene (96.89%) with the Georgia 13

genotype (Ga-13/14255/14). Finally, ORF 6b shows the

lowest sequence identity among all the coding regions in

the genomes analyzed in this study.

Two possible recombination points were detected,

shown in at least six of the seven models using RDP4

software. The first event has a beginning breakpoint posi-

tion at nucleotide 20,410 and an ending breakpoint position

at 23,695 that is found in the S gene (Fig. 2a). In this case,

the minor parent was inferred as a Massachusetts

(FJ904722) strain, and the putative major parent was

determined as a Connecticut type (KF696629). The second

recombination event starts at nucleotide 24,291 and ends at

position 25,518 in the sequence. The major parent belongs

to an Arkansas type (EU418976), and the minor parent to

Ma5 (KY6226045), comprising a part of the E, M, 4B and

4C genes (Fig. 2b). Recombination hotspots in region S of
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the genome, which are associated with the appearance of

new virus variants have been described in the past [22, 33].

Recombination events in genes 3 and M have also been

detected previously [22, 33].

Our results show that the 2016 outbreak of IBV in Costa

Rica was caused by a virus that belongs to the GI-17 group,

which includes strains native to the United States. More

specifically, we confirmed that the outbreak was caused by

a Ga-13/14255/14 strain similar to the one that circulated in

the United States during in 2016 [16, 30]. Our whole

genome analyses provide the first evidence that the isolate

CK/CR/1160/16 may be the result of the recombination of

at least four different variants (Mass, Connecticut, Arkan-

sas and Ma5). Detection of recombination events supports

Fig. 1 Consensus phylogenetic trees constructed using (a) the S1

gene and (b) the full-length genome. Both trees were made using

Bayesian Inference and four MCMC runs, 10,000,000 generations,

and corroborated by the Maximun likelihood method, using Mega X.

The CK/CR/1160/16 isolate (Genbank accession MN757859) is show

in boldface
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Confirmation Table
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Conn.V-Mass41.V
Major Parent-Minor Parent

Conn.V-CK/CR/1160/16
Major Parent-Recombinant

Mass41.V-CK/CR/1160/16
Minor Parent-Recombinant

a

b

Confirmation Table
Methods RDP GENECONV BootScan MaxChi Chimera Siscan 3Seq 
p-value 7.466 x 10-39 9.259 x 10-32 4.837 x 10-39 1.372 x 10-16 1.104 x 10-16 2.156 x 10-26 4.990 x 10-13

Methods RDP GENECONV BootScan MaxChi Chimera Siscan 3Seq 
p-value 6.688 x 10-80 7.080 x 10-75 8.625 x 10-73 5.835 x 10-28 1.407 x 10-30 1.858 x 10-47 4.990 x 10-13

Fig. 2 RDP4 recombination plot and confirmation table of the

recombination events detected on isolate CK/CR/1160/16. Putative

recombination regions are shaded in red. a Breakpoint

20,410–23,695. The minor parent was inferred as Mass41.V and the

putative major parent was determined as Conn.V. b Breakpoint

24,291–25,518. The major parent was inferred as ArkDPI11 and the

putative minor parent was determined as Ma5.V
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the need to maintain epidemiological surveillance, monitor

the variants present in Latin America and optimize vacci-

nation schemes, as outbreaks usually originate from vari-

ants not covered by vaccine serotypes [35].

The raw data of isolate CK/CR/1160/16 of the GA13-

like strain has been deposited in the Sequence Read

Archive (SRA) under number SRR10547950, BioProject

number PRJNA592262, and BioSample number

SAMN13419001 of the NCBI. The whole-sequence of the

genome, has been uploaded in the GenBank database under

accession number MN757859.
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123

https://doi.org/10.1007/978-1-4939-2438-7_11


26. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science

gateway for inference of large phylogenetic trees. Gatew Comput

Environ Work. 2010;2010:1–8. https://doi.org/10.1109/GCE.

2010.5676129.

27. Mousavi FS, Ghalyanchilangeroudi A, Hosseini H, Fasaei BH,

Ghafouri SA, Abdollani H, et al. Complete genome analysis of

Iranian IS-1494 like avian infectious bronchitis virus. Virusdis-

ease. 2018;29:390–4.

28. Nafaji H, Langeroudi AG, Hashemzadeh M, Karimi V, Madagar

O, Ghafouri SA, et al. Molecular characterization of infectious

bronchitis viruses isolated from broiler chicken farms in Iran,

2014–2015. Arch Virol. 2016;161:53–62. https://doi.org/10.1007/

s00705-015-2636-3.
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