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Abstract
Semi-Riemannian manifolds that satisfy (homogeneous) linear differential conditions
of arbitrary order r on the curvature are analyzed. They include, in particular, the
spaces with (r th-order) recurrent curvature, (r th-order) symmetric spaces, as well
as entire new families of semi-Riemannian manifolds rarely, or never, considered
before in the literature—such as the spaces whose derivative of the Riemann tensor
field is recurrent, among many others. Definite proof that all types of such spaces do
exist is provided by exhibiting explicit examples of all possibilities in all signatures,
except in the Riemannian case with a positive definite metric. Several techniques of
independent interest are collected and presented. Of special relevance is the case of
Lorentzian manifolds, due to its connection to the physics of the gravitational field.
This connection is discussed with particular emphasis on Gauss–Bonnet gravity and
in relation with Penrose limits. Many new lines of research open up and a handful of
conjectures, based on the results found hitherto, is put forward.
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1 Introduction

The investigation of a type of tensor fields in Lorentzian manifolds named “super-
energy tensors” [48] led to the following very simple question: if R is the curvature
tensor, which Lorentzian manifolds satisfy

∇2R = 0 ?

Traditional results in Riemannian geometry [38, 58] stated that∇2R = 0 implied local
symmetry: ∇R = 0, and this seems to be the reason why a higher-order condition
such as ∇2R = 0, or others that one can imagine, had not been explored before in
non-Riemannian possibilities. However, such a “negative” result does not hold in the
general semi-Riemannian case.

In theLorentzian case, themain ideaswere presented in [49],where the fundamental
result of the existence of a parallel null vector field was proven, which led to a full
resolution of the problem first in four dimensions [5], and then in the general case in
[4, 6, 7] and, independently, in [1].

These achievements lead, somehow naturally, to the study of semi-Riemannian
manifolds that satisfy a homogeneous linear differential condition on the curvature:

∇r R + t (1) ⊗ ∇r−1R + t (2) ⊗ ∇r−2R + · · · + t (r−1) ⊗ ∇R + t (r) ⊗ R = 0 (1)

for some m-covariant tensor fields t (m), m ∈ {1, . . . , r}.
This family of manifolds was presented in two invited talks [50, 51] at meetings

on Lorentzian geometry and General Relativity. After this, a very important paper
from 1985 by Kaigorodov [32] came to my knowledge where the semi-Riemannian
manifolds satisfying (1) where studied in some detail—but not so thosewith∇2R = 0.
Curiously enough, the results from [32] and [50, 51] were mostly complementary or
independent, and the techniques used different. The purpose of this paper is to publish
the main results, the basic ideas and some important open questions combining partly
the results in [32] with those in [50, 51] which are published herein for the first time.
I firmly believe that this line of research will be helpful and interesting in the areas of
semi-Riemannian geometry and in the physics of the gravitational field.
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This paper is structured as follows: in Sect. 2 the family of semi-Riemannian man-
ifolds satisfying (1) is introduced, their main properties listed and a classification
presented and analyzed. Section3presents amodel family of explicit semi-Riemannian
manifolds (Theorem 5) satisfying (1) for all possible r and for all signatures except
the positive-definite one—because they possess a parallel lightlike vector field. In
Sect. 4 all known results for particular values of r and of the tensor fields t (m) in (1)
are collected. Section5 is devoted to a brief analysis of the physical relevance of the
Lorentzian manifolds satisfying (1), in particular their connection with the Penrose
limits [42] and its possible relevance in higher dimensional theories such as Gauss–
Bonnet gravity [26] or those derived from string theory. Finally, Sect. 6 contains a
discussion with the open lines of research and presents a set of conjectures that seem
to be valid taking all the known results into account.

This is complemented with three appendices, with contents of independent interest,
collecting some interesting and classical techniques that are helpful in proving themain
results, such as the existenceof “generic points”, the use of particular homothetic vector
fields that are gradients and arise naturally in this context, and the general results
concerning when a tensor field T with vanishing 2nd-order covariant derivative is
actually parallel.

Before that, the next subsection fixes the notation and the terminology used through-
out. This is basically standard, and thus it can be skipped in a first reading, or if the
reader is familiar with the subject. Analogously, it may be advisable to only look at
the Appendices when needed upon reading the main text.

1.1 Notation and terminology

Let (M, g) be an n-dimensional semi-Riemannian manifold of arbitrary signature,
∇ its Levi-Civita connection and R(X ,Y )Z = ∇X∇Y Z − ∇Y∇X Z − ∇[X ,Y ]Z its
curvature tensor field. The signature is Riemannian if the metric is positive definite,
and is called Lorentzian if the signature is (1, n−1) –or (n−1, 1). The use of abstract
index notation will be extremely convenient in many cases in this work, but it will not
refer to the use of any particular basis or coordinate choice—under explicitly stated
on the contrary. Thus, the Riemann tensor will be denoted by R or, in abstract index
form, by Rα

βλμ such that

(∇λ∇μ − ∇μ∇λ)X
α = Rα

βλμX
β.

This is sometimes called the Ricci identity. Ric will denote the corresponding Ricci
tensor or, in abstract index notation Rαβ := Rρ

αρβ while S denotes the scalar curva-
ture. When using indices the metric is gαβ and its contravariant version (or its inverse)
is gαβ . In index notation any vector field X carries a contravariant index Xα , and
its metrically equivalent one-form will be denoted by ̂X or, in abstract indices, by
Xα := gαβXβ . Thus, the covariant Riemann tensor is Rαβλμ = gαρRρ

βλμ. Here
and throughout the Einstein summation convention will be used. When using index
notation, round brackets will mean symmetrization in the enclosed indices, and square
brackets anti-symmetrization.
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Within the class of metrics that satisfy (1) there are obvious classic examples for
some particular values of the tensor fields t (m), m = 1, . . . , r which already have
their nomenclature. Outstanding examples are the first order conditions (r = 1) cor-
responding to recurrent spaces if t (1) �= 0, and to locally symmetric manifolds if
t (1) = 0. More generally, r th-order recurrent–or simply r -recurrent– spaces are those
with t (1) = · · · = t (r−1) = 0 and t (r) �= 0, while r th-order symmetric–or simple
r -symmetric– spaces are defined by t (m) = 0 for all m ∈ {1, . . . , r}.

Recall that a semi-Riemannian manifold is called reducible when the holonomy
group leaves a non-trivial subspace of each tangent space invariant; further, it is non-
degenerately reducible if it leaves a non-degenerate subspace-that is, such that the
restriction of the metric is non-degenerate-invariant. In the latter case the manifold
is (locally) decomposable in the sense that (M, g) is a direct product of two semi-
Riemannian manifolds (M1, g1) and (M2, g2) with M = M1 × M2 and g = g1 ⊕ g2.
The following terminology will be used:

Definition 1 (r th-symmetric extensions) An r -symmetric extension of a semi-
Riemannian manifold (M, g) is a direct product manifold that is decomposable into
(M, g) and a r th-order symmetric semi-Riemannian manifold (M, gM ).

If r = 0, 0-symmetric extensions will be simply called flat extensions of the mani-
fold,meaning that (M, gM ) is a flat semi-Riemannianmanifold, and if r = 1, 1st-order
symmetric extensions will be referred to as locally symmetric extensions.

It is important to point out that there exist semi-Riemannianmanifolds characterized
by conditions non-linear on the curvature. The most relevant such condition is that
of semi-symmetry [17, 56, 57], which was actually introduced due to the absence
of r -symmetric and r -recurrent spaces in Riemannian geometry, see Sect. 4. This is
generalized to higher non-linearities as follows [32]

Definition 2 ( 1
2p -symmetric semi-Riemannian manifolds) A semi-Riemannian mani-

fold (M, g) is called 1
2p -symmetric with p ∈ N if it satisfies the condition

∇[λ1∇λ2]∇[λ3∇λ4] . . . ∇[λ2p−1∇λ2p]Rα
βλμ = 0.

In particular, if p = 1 it is called a semi-symmetric space and the condition becomes
R(X ,Y ) · R = 0, which is equivalent to ∇[λ∇μ]Rα

βγ δ = 0.

Here R(X ,Y ) · R = 0 is a shorthand [56] for the following expression in abstract
indices

Rρ
αλμRρβγ δ + Rρ

βλμRαργ δ + Rρ
γλμRαβρδ + Rρ

δλμRαβγρ = 0. (2)

2 KSn spaces: definition and properties

The main subject of this paper is the following set of semi-Riemannian manifolds:
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Definition 3 (KSn spaces. [30, 32, 50, 51]) An n-dimensional semi-Riemannian man-
ifold (M, g) satisfies a linear differential condition of order r ∈ N on the curvature
tensor R associated to a fixed tensor field B ∈ T 1

r+3(M) if there exist r covariant

tensor fields t (m) ∈ T 0
m(M) with m = 1, . . . , r , such that

∇r R + t (1) ⊗ ∇r−1R + t (2) ⊗ ∇r−2R + . . . + t (r−1) ⊗ ∇R + t (r) ⊗ R = B. (3)

If B = 0, then (M, g), called KSn , satisfies the homogeneous linear differential
condition of order r on the curvature (1).

Some research has been done in the non-homogeneous case for particularmanifolds
(see for example [53, 54]). In Sect. 3 some explicit examples with B �= 0 will also
be given. Nevertheless, this work will be dealt mainly with the homogeneous case,
Eq.(1), which was first studied by Kaigorodov [30–32] and much later re-discovered
in [50, 51].

Despite the linearity of the condition (1) on R, there is no superposition principle
in the solutions of these equations in the sense that, fixed M , the linear combinations
of curvature tensors satisfying (1) associated to different metrics on M will not be
another solution in general, since both R and ∇ depend also on the chosen metric.

Making some abuse of notation and removing the superscript of the tensor fields
t (m) in Eq. (1)—since they can be identified by their number of subindices in abstract
index form—, the equation can be written in the abstract index form as:

∇λ1 . . . ∇λr R
α

βμν + tλ1∇λ2 . . . ∇λr R
α

βμν + · · · + tλ1...λr−1∇λr R
α

βμν

+ tλ1...λr R
α

βμν = 0. (4)

Observe that, written in this form, this definition could be generalized by permuting
the subscripts to obtain different linear differential conditions on the curvature, which
would lead to a much larger class of manifolds.

It is obvious that if (1) holds, then linear differential relations with exactly the same
structure, and the same set of tensors t (m), are satisfied by the Ricci tensor and the
scalar curvature:

∇r Ric + t (1) ⊗ ∇r−1Ric + t (2) ⊗ ∇r−2Ric + · · · + t (r−1) ⊗ ∇Ric + t (r)

⊗Ric = 0, (5)

∇r S + t (1) ⊗ ∇r−1S + t (2) ⊗ ∇r−2S + · · · + t (r−1) ⊗ ∇S + t (r) ⊗ S = 0. (6)

or with indices

∇λ1 . . . ∇λr Rβν + tλ1∇λ2 . . . ∇λr Rβν + · · · + tλ1...λr−1∇λr Rβν + tλ1...λr Rβν = 0,

∇λ1 . . . ∇λr S + tλ1∇λ2 . . . ∇λr S + · · · + tλ1...λr−1∇λr S + tλ1...λr S = 0.

Now, let C denote the Weyl tensor of (M, g). Using (1), (5) and (6) it is easily verified
that the Weyl tensor satisfies the same relation too:

∇rC + t (1) ⊗ ∇r−1C + t (2) ⊗ ∇r−2C + · · · + t (r−1) ⊗ ∇C + t (r) ⊗ C = 0.
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This opens the door to define semi-Riemannian manifolds that comply just with this
relation for C , or with (5), but not for the full R.

If (1) holds, by computing the r th-order derivative along any geodesic on (M, g)
of R (or C , Ric or S) and using (1) (or (7), (5) or (6)) the following result is derived:

Lemma 1 On a KSn semi-Riemannian manifold (M, g):

1. if R and its covariant derivatives up to order (r−1) vanish at a given point x ∈ M,
then the curvature vanishes everywhere, that is, (M, g) is flat.

2. if the Weyl tensor C and its covariant derivatives up to order (r − 1) vanish at a
given point x ∈ M, then C vanishes everywhere and (M, g) is conformally flat.

3. if Ric and its covariant derivatives up to order (r − 1) vanish at a given point
x ∈ M, then the Ricci tensor vanishes everywhere, that is, (M, g) is Ricci-flat.

4. if S and its covariant derivatives up to order (r −1) vanish at a given point x ∈ M,
then the scalar curvature vanishes everywhere.

Notice that if (M, g) satisfies Eq. (1) for some r then, by taking successive covariant
derivatives there, it will also satisfy the same type of equation for all s > r with some
properly defined new covariant tensor fields t (m) with m = 1, . . . , s. Hence, the
following definition is necessary:

Definition 4 A KSn semi-Riemannian manifold is said to be proper of order r if r is
the minimum value for which the manifold satisfies a condition of type (1).

2.1 Non-decomposability

In the theory of semi-Riemannian manifolds (M, g) the question of decomposabil-
ity, or non-degenerate reducibility, is of paramount importance (see [38, 43] for the
Riemannian case and [64] for the semi-Riemannian case). ForKSn semi-Riemannian
manifolds, and using Definition 1, the following powerful theorem, which is a broad
generalization of Theorem 2.1 in [63], can be proven:

Theorem 1 [50, 51] If (M, g) is a non-flat proper order r KSn semi-Riemannian
manifold, then either it is r th-symmetric, or it is not decomposable except for kth-
symmetric extensions with k ≤ r .

Furthermore, if m is the greatest interger in {1, . . . , r} such that t (m) �= 0, then
only sth-symmetric extensions are allowed, for s ≤ r − m.

Proof Suppose that (M, g) is reducible, so that there exist two semi-Riemannian man-
ifolds (M1, g1), (M2, g2) such that M = M1 ×M2 and g = g1 ⊕ g2. Let us prove that
then (M, g) is a kth-symmetric extension of (M1, g1) or of (M2, g2). Let A, B,C, . . .

be the indices for (M1, g1) and a, b, c, . . . the indices for (M2, g2), then not only the
metric but also the covariant derivative ∇ and the curvature tensor R decompose:

g = gABdx
Adx B + gabdx

adxb,

∇ = ∇(1) + ∇(2),

R = R(1) + R(2),
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where g1 = gABdx Adx B , g2 = gabdxadxb, and ∇(i) are the Levi Civita connections
and R(i) the curvature tensors of (Mi , gi ), for i = 1, 2. Taking indices λr = A and
αβμν = abcd in the Eq. (4), the r th-order homogeneous condition becomes

tλ1...λr−1AR
a
bcd = 0.

Analogously, taking indices λr = a and αβμν = ABCD, (4) becomes

tλ1...λr−1a R
A
BCD = 0.

Since the manifold is not flat by hypothesis, if t (r) �= 0 then either Ra
bcd = 0 or

RA
BCD = 0, and the manifold is a flat extension of either (M1, g1) or (M2, g2). If

otherwise t (r) = 0, (4) becomes

∇λ1 . . . ∇λr R
α

βμν + tλ1∇λ2 . . . ∇λr R
α

βμν + · · · + tλ1...λr−1∇λr R
α

βμν = 0. (7)

Obviously, if (M, g) is locally symmetric, Eq. (7) is trivially satisfied (and then r
would be 1). Suppose that the manifold is not locally symmetric. Then, using the same
idea as before take now λr−1 = A, λr = e and αβμν = abcd on the one hand, and
λr−1 = a, λr = E and αβμν = ABCD on the other hand, to obtain from (7):

tλ1...λr−2A∇e R
a
bcd = 0, tλ1...λr−2a∇E R

A
BCD = 0.

Then, if t (r−1) �= 0 and since ∇R �= 0 it follows that either ∇e Ra
bcd = 0 or

∇E RA
BCD = 0 and the manifold is a locally symmetric extension of either (M1, g1)

or (M2, g2). If otherwise t (r−1) = 0, the last term on left-hand side of (7) vanishes:

∇λ1 . . . ∇λr R
α

βμν + tλ1∇λ2 . . . ∇λr R
α

βμν + · · · + tλ1...λr−2∇λr−1∇λr R
α

βμν = 0.

Continuing with this reasoning we conclude that either the manifold (M, g) is a proper
r th-symmetric space, or it admits a sth-symmetric extension with s ≤ r − m. �	

Therefore, for KSn spaces proper of order r the cases of interest are the indecom-
posable ones, any others being mere sth-symmetric extensions of them: if t (r) �= 0,
the manifold is not decomposable except for flat extensions; if t (r) = 0 but t (r−1) �= 0,
it is not decomposable except for locally symmetric or flat extensions; if t (r) = 0 and
t (r−1) = 0 but t (r−2) �= 0, it is not decomposable except for 2nd-symmetric, locally
symmetric or flat extensions, and so on.

2.2 Properties of t(r)

ForKSn semi-Riemannian manifolds the following property follows at generic points
(these points are defined and discussed in Appendix A):

Lemma 2 [50, 51] If (M, g) is a non-flat KSn semi-Riemannian manifold proper of
order r , then in a neighbourhood of any generic point t (r) = 0.
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Proof Applying the second Bianchi identity ∇[λr Rαβ]μν = 0 to Eq. (4), one gets that

tλ1...λr−1[λr Rαβ]μν = 0.

Let x ∈ M be generic and U (x) ⊂ M an open neighbourhood of x with all of its
points generic. Then, contracting the previous expression with R−1 μνσρ onU (x) one
obtains that tλ1...λr−1[λr δσ

α]δ
ρ
β = 0. Contracting σ with α, and ρ with β, one sees that

tλ1...λr = 0 on U (x).

�	
Lemma 3 [32] Let (M, g) be a non-flat semi-Riemannian manifold of type KSn with
r ≥ 2. If t (r−1) = 0, then t (r) is symmetric in its last two indices.

Proof If t (r) = 0 the claim is obvius. Thus consider the case with t (r) �= 0—which
automatically implies thatwe are dealingwith non-generic points due to Lemma2. The
following identity for the Riemann tensor holds on any semi-Riemannian manifold
[63]:

∇[α1∇α2]Rβ1β2λ1λ2 + ∇[β1∇β2]Rλ1λ2α1α2 + ∇[λ1∇λ2]Rα1α2β1β2 = 0.

Taking the covariant derivative of this identity (r − 2)-times and using Eq. (4) and the
fact that t (r−1) = 0, one gets

tλ1...λr−2[α1α2]Rβ1β2λ1λ2 + tλ1...λr−2[β1β2]Rλ1λ2α1α2 + tλ1...λr−2[λ1λ2]Rα1α2β1β2 = 0.

(8)

Now, define the 2-form T (
)
αβ = tλ1...λr−2[αβ]
λ1...λr−2 , for an arbitrary (r − 2)-

contravariant tensor field 
, so that from Eq. (8) one derives

T (
)
α1α2

Rβ1β2λ1λ2 + T (
)
β1β2

Rλ1λ2α1α2 + T (
)
λ1λ2

Rα1α2β1β2 = 0. (9)

By using collective indices for each skew-symmetric pair here, say A = α1α2, B =
β1β2 and C = λ1λ2, this can be viewed as the vanishing of the completely symmetrized
product T (
)

(A RBC) = 0, which readily implies that either T (
) = 0 or R = 0. As

(M, g) is not flat by hypothesis, it follows that T (
) = 0 for all possible 
, that is,
tλ1...λr−2[αβ] = 0. �	

2.3 An interesting property

Here we prove that the existence of a vector field X such that ∇X = c1, c ∈ R, is
not possible in general KSn spaces unless c = 0. The main properties of such vector
fields are collected in Appendix B.
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Proposition 1 [50, 51] Let (M, g) be a semi-Riemannian manifold of type KSn and
assume that the manifold admits a vector field X such that∇X = c1with c ∈ R−{0}.
Then, (M, g) is flat.

Proof Contracting (4) with Xλ2 and applying Lemma 7 (d) and Lemma 8 in Appendix
B one gets:

− c(r + 1)∇λ1∇λ3 . . . ∇λr R
α

βλμ + (

tλ1ρX
ρ − crtλ1

) ∇λ3 . . . ∇λr R
α

βλμ

+ tλ1ρλ3X
ρ∇λ4 . . . ∇λr R

α
βλμ + . . . + tλ1ρ...λr X

ρRα
βλμ = 0,

which is nothing else than another homogeneous linear differential equation of one
order less. Contracting now with Xλ3 and using the same idea, one gets:

(−c)2(r + 1)r∇λ1∇λ4 . . . ∇λr R
α

βλμ

+
(

(−c)2r(r − 1)tλ1 − c(r − 1)tλ1ρX
ρ + tλ1ρ1ρ2X

ρ1Xρ2
)

∇λ4 . . . ∇λr R
α

βλμ

+ tλ1ρ1ρ2λ4X
ρ1Xρ2∇λ5 . . . ∇λr R

α
βλμ + · · · + tλ1ρ1ρ2λ4...λr X

ρ1Xρ2 Rα
βλμ = 0.

Following the same reasoning and contracting with Xλ4 ,…,Xλr it is possible to con-
clude that ∇λ1R

α
βλμ = tλ1R

α
βλμ for some 1-form t .

However, contracting here with Xα and using (45) one obtains

Xα∇λ1R
α

βλμ = 0 = −Rα
βλμ∇λ1Xα = −cRλ1βλμ

so that the metric is flat. �	

2.4 Classification

Observe that lowering the index α, skew-symmetrizing the indices λr , α, β in Eq. (4)
and using the second Bianchi identity ∇[αRβλ]μν = 0, one gets that

tλ1λ2...[λr Rαβ]λμ = 0. (10)

This statement is vacuous at generic points as a consequence of Lemma 2. However,
whenever t (r) �= 0 this leads to the classification of KSn spaces. We start with

Proposition 2 [32] Let (M, g) be a KSn space with t (r) �= 0. Then, there exist a
non-vanishing one-form ω ∈ �(M) such that

ω[γ Rαβ]λμ = 0. (11)

Proof This is basically the content of Eq. (10). For each (r − 1)-contravariant tensor
field 
 it is possible to define the following one-form associated to 
:

t (
)
α = 
λ1...λr−1 tλ1λ2...λr−1α.
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At least one of these t (
) does not vanish, as otherwise t (r) = 0 contrary to the
assumption. Choose then an 
 such that ω := t (
) �= 0. Equation (10) provides the
result. �	
Definition 5 (The sub-module L) Let L denote the set of all ω ∈ �(M) satisfying
(11).

Obviously, by linearity, L is a sub-module of �(M). As we see below, the dimen-
sion of L cannot be greater than two, which together with Eq. (11) will lead to a
decomposition of the curvature tensor depending on the dimension of L. This result
is very powerful since it gives the possibility of completing a classification of KSn-
spaces. To prove this theorem some previous results are needed. The following lemma
is well known.

Lemma 4 If there exists a one-form ω such that ω[γ Rαβ]λμ = 0, then there exist a
2-covariant symmetric tensor field Q such that Rαβλμ = 4ω[αQβ][λωμ].

The tensor field Qβλ is not uniquely defined, as there is the gauge freedom

Qβλ −→ Qβλ + ωβτλ + ωλτβ (12)

for arbitrary τ ∈ �(M). This freedom can be used to simplify Q. Basically, all
components of Q along ω can be removed. Thus, Q—and a fortiori R—contains at
most n(n − 1)/2 independent components.

Lemma 5 If there exists two linearly independent one-forms ω, ρ ∈ �(M) such that
Rαβ[λμων] = 0 and Rαβ[λμρν] = 0, then Rαβλμ = 4Aω[αρβ]ρ[λωμ] for some scalar
A.

Proof By Lemma 4 there exists a 2-covariant symmetric tensor field Q such that
Rαβλμ = 4ω[αQβ][λωμ]. But since Rαβ[λμρν] = 0 also, using the symmetry in the
interchange of skew-symmetric pairs for R and the symmetry of Q, the only possibility
is that Qβλ = A ρβρλ + ωβτλ + ωλτβ for some scalar A and some τ ∈ �(M). But
using the gauge freedom (12) we arrive at Qβλ = A ρβρλ as required. �	

In this situation R = AF ⊗ F where F ∈ �2M is the two-form F = ω ∧ ρ, and
R contains a single independent component.

Lemma 6 (dimL ≤ 2) In general, dimL cannot be greater than 2.

Proof By Lemma 5 any third one-form σ ∈ �(M) satisfying Rαβ[λμσν] = 0 will
necessarily satisfy ω[λρμσν] = 0—unless Rαβλμ = 0–, that is ω ∧ ρ ∧ σ = 0,
meaning that ω, ρ and σ are linearly dependent. �	

There is a strong similarity between the sub-module L and the so-called “Olszak
distribution” [21, 39] defined in conformally recurrent manifolds for the Weyl tensor
instead of R. Actually, their algebraic properties are identical, however, the Olszak
distribution is a 2- or 1-dimensional parallel distribution, while L will not have the
parallel property in general, at least not in principle.

From Proposition 2 and Lemma 6 the next theorem follows at once.
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Theorem 2 If (M, g) is a non-flat KSn space with t (r) �= 0, then dimL ∈ {1, 2}.
Thus, the following classification is in order:

Definition 6 KSn spaces can be classified into the following disjoint classes: Type 0,
Type I and Type II according to whether dimL = 0, 1 or 2 respectively.

All KSn with t (r) �= 0 are of types I or II due to Proposition 2, so that L is non-
empty. The Riemann tensor assumes the form given in Lemma 4 for Type I and that
of Lemma 5 for Type II. However, KSn with t (r) = 0 may also belong to types I or
II if they happen to have dim L > 0, and in this situation the previous forms of the
Riemann tensor also apply. On the other hand, Type 0 requires t (r) = 0 and all possible
manifolds with generic points belong here—at least in the domains with such points.
At this stage it is not clear whether there are any possible manifolds of Type 0, and it
may turn out that they are impossible. In any case, the outstanding possibility of KSn

with t (r) = 0 are the r -symmetric semi-Riemannian manifolds defined by ∇r R = 0.
All known results concerning r -symmetry are collected in Sect. 4, and all the known
cases will belong to types I or II.

Proposition 3 [32] Let (M, g) be a KSn space of type I or II. Then, the following
relations are satisfied:

ωρR
ρ

αβλ = 2Rα[λωβ], ∀ω ∈ L (13)

ωρRρα = 1

2
Sωα, ∀ω ∈ L, (14)

G : = RαβλμRαβλμ − 4Rαβ Rαβ + S2 = 0. (15)

Proof Take Eq. (11) and contract the indices μ and γ to get (13). Next, contract α and
λ in (13) to get (14). Finally, contract (11) with Rαβλμ and use first (13) once, and
then (14) twice to obtain (15). �	

In (15) one recognizes the Gauss–Bonnet scalar G. This is identically zero if n ≤ 3,
and in n = 4 has special topological properties—see Sect. 5.

Corollary 1 If (M, g) is a KSn space of type I or II, then

(a) The Gauss–Bonnet scalar vanishes
(b) the scalar curvature vanishes if and only if Rαβωβ = 0, ∀ω ∈ L;
(c) ω is, at each point, an eigenvector of the Ricci tensor with eigenvalue S

2 .

Corollary 2 If (M, g) is a KSn space of type I or II, and is also an Einstein space of
dimension n > 2, then it is in fact Ricci flat.

Proof Substituting Rαμ = 1
n Sgαμ into (14) one gets 1

n S = 1
2 S which implies S = 0

if n > 2, and the space is Ricci flat. �	
Proposition 4 If (M, g) is a KSn Einstein space of type I or II, then

RαβλμRαβλμ = 0.

In particular, if (M, g) is Riemannian, it is actually flat.
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Proof From the vanishing of the Gauss–Bonnet term (15) and the previous Corollary
2 one readily gets RαβλμRαβλμ = 0. Of course, if the metric is positive definite, this
implies the vanishing of R. �	

2.4.1 Type I

In this class of manifolds dim L = 1 and there exists a one-form ω ∈ �(M) such that
L =< ω >. By Lemma 4, there also exists a 2-covariant symmetric tensor field Qαβ

such that the curvature tensor, the Ricci tensor and the scalar curvature have the form

Rαβλμ = 4ω[αQβ][λωμ]; (16)

Rαβ = ωαQβρωρ + ωβQαρωρ − ωρωρQαβ − Qρ
ρωαωβ; (17)

S = 2Qρσ ωρωσ − 2ωρωρQσ
σ . (18)

Observe that, if X is a vector field such that ω(X) = 1, then

Qαβ = Rαρβσ X
ρ
X

σ ; Q = Rρσ X
ρ
X

σ
.

Type I can be split into two cases depending on whether or not L is degenerate.
Thus we have

• Type Iε if L is non-lightlike, that is if ω is non-null.
• Type IN if L is lightlike, i.e., if ω is a lightlike one-form.

Clearly, there are no K Sn spaces of type IN in the Riemannian case.
Let (M, g) be a KSn of type Iε and set ε := g(ω, ω) = ±1. Then, using the

freedom (12) one can always choose Qαβ totally orthogonal to ω, Qαβωβ = 0, as we
do from now on for type Iε . Under this condition, Eqs. (17)–(18) reduce to

Rαβ = −εQαβ − Qρ
ρωαωβ; (19)

S = −2εQρ
ρ, (20)

Therefore, the 2-covariant tensor field Qαβ can be written in terms of the Ricci tensor
and the scalar curvature as

Qαβ = S

2
ωαωβ − εRαβ; Qαβωβ = 0.

Using this form of Qαβ it is straightforward to derive the next

Corollary 3 The curvature tensor of type Iε can be written in terms of the Ricci tensor
as

Rαβλμ = 4ω[αRβ][λωμ].

For type Iε , all possible decompositions of the Ricci tensor and the metric were
given in [31] for the Riemannian case, and for the Lorentzian signature in [32].
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Theorem 3 A KSn semi-Riemannian manifold (M, g) of type Iε is not 1
2p -symmetric

for any value of p ∈ N.

Proof Wewill use the general expression (16) for the curvature tensor with Qαβωβ =
0, as we have already argued. Then, using (16) and the Ricci identity it is possible to
prove that

∇[α2∇α1]Rαβλμ = 2
(

ω[λQμ][αQβ][α2ωα1] + ω[αQβ][λQμ][α2ωα1]
)

. (21)

A somewhat longer calculation, using the above expression and the Ricci identity
again, allows one to prove that

∇[α4∇α3]∇[α2∇α1]Rαβλμ

= 4
(

ω[α3Qα4][λQμ][αQβ][α2ωα1] + ω[α3Qα4][αQβ][λQμ][α2ωα1]
+ ω[α3Qα4][α2Qα1][αQβ][λωμ] + ω[α3Qα4][α2Qα1][λQμ][αωβ]

)

+ 4ε
(

ωμQ
ρ [α4ωα3]ω[αQβ][ρQλ][α2ωα1] − ωλQ

ρ [α4ωα3]ω[αQβ][ρQμ][α2ωα1]
+ωβQ

ρ [α4ωα3]ω[λQμ][ρQα][α2ωα1] − ωαQ
ρ [α4ωα3]ω[λQμ][ρQβ][α2ωα1]

)

(22)

Contracting (21) withωμ andωα2 and using the condition of semi-symmetry (p = 1),
and contracting (22) with ωμ and ωα4 and using the condition of 1

4 -symmetry (p = 2)
one gets respectively:

Qλ[αQβ]α1 = 0,

Qα3[α2Qα1][αQβ]λ + ωαQ
ρ

α3Qλ[ρQβ][α2ωα1] − ωβQ
ρ

α3Qλ[ρQα][α2ωα1] = 0.

Observe that since Qαβ is totally orthogonal to span{ω}, and ω is not null, the com-
pletely orthogonal parts with respect to ω of the two equations are

Qλ[αQβ]α1 = 0,

Qα3[α2Qα1][αQβ]λ = 0. (23)

In fact, reasoning in a similarway, that is to say, contracting the 1
2p -symmetry condition

∇[α2p∇α2p−1] . . . ∇[α2∇α1]
(

ω[αQβ][λωμ]
) = 0

(after using the Ricci identity) withωμ andωα2p and taking the completely orthogonal
part with respect to ω one gets

Qα(2p−1)[α(2p−2) . . . Qα1][αQβ]λ = 0.

Any of these conditions leads to a Q with matrix-rank 1. To see this, for any vector
field Y define the one-form QY by means of Q(Y )

α := QαβY β . Then, Eq. (23) leads to

Q(Y ) ∧ Q(Y ) = 0, ∀Y ,Y ∈ T M .
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Hence, all the Q(Y ) are proportional to each other for arbitrary vector field Y . This
readily implies that Qαβ = σαρβ for some one forms σ, ρ ∈ �(M). As Qαβ is
symmetric, necessarilyσ = Aρ for some scalar A, and Qab = A ραρβ . Thus Rαβλμ =
4ω[αρβ]ρ[λωμ] and the manifold would be of type II, contrary to the assumption.
Similarly for larger values of p. �	

Consider now the case of KSn of type IN , so that ω is a lightlike one-form. Now
the Eqs. (17)–(18) reduce to

Rαβ = ωαQβρωρ + ωβQαρωρ − Qρ
ρωαωβ; (24)

S = 2Qρσ ωρωσ . (25)

In the Lorentzian case, the existence of the null ω satisfying (11) implies that ω is
in fact a multiple aligned null direction (AND) of the Riemann tensor (a ‘RAND’) so
that the curvature tensor is algebraically special. For the definition and properties of
AND, see [41] and references therein. Furthermore, it is easy to prove from (11) that
the Weyl tensor satisfies

ωρC
ρ

α[βλωμ] = 0

so that ω is also a multiple AND for the Weyl tensor (a ‘WAND’).
Instead of using the Weyl tensor, Kaigorodov [31] chose to provide a classification

of type IN based on the Ricci tensor. Observe that from (24) one can easily deduce
that the rank of the Ricci tensor matrix is less than or equal to 2. The classification
combined this rank with the vanishing or not of the scalar curvature as follows.

(i) when the Ricci tensor vanishes (rank 0) or its rank is equal to 1,
(ii) when the rank of the Ricci tensor is equal to 2 and the scalar curvature does not

vanish,
(iii) and finally when the rank is equal to 2 and the scalar curvature does vanish.

For details consult [31].

2.4.2 Type II

In this class of manifolds dim L = 2 and there exist two linearly independet one-forms
ω, ρ ∈ �(M) that generate L. By Lemma 5, the curvature tensor, the Ricci tensor and
the scalar curvature assume the form:

Rαβλμ = 4Aω[αρβ]ρ[λωμ]; (26)

Rαβ = A
(

2(ωνρ
ν)ω(αρβ) − (ρσ ρσ )ωαωβ − (ωρωρ)ραρβ

) ; (27)

S = 2A
[

(ωνρ
ν)2 − ωρωρρσ ρσ

]

. (28)

As a general result for type II we have the following.

Theorem 4 ([30, 32]) All KSn spaces of type II are semi-symmetric.
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Proof Introducing the explicit expression for the curvature given in (26) into the left-
hand side of (2) the result is identically zero. �	

Now take the expression (4) and antisymmetrize in the indices λr−1 and λr . Since
a KSn space of type II is semi-symmetric by Theorem 4, one gets that for type II

tλ1...[λr−1∇λr ]Rα
βμν + tλ1...[λr−1λr ]Rα

βμν = 0. (29)

Corollary 4 Let (M, g) be a non-flatKSn of type IIwith r ≥ 2. Then, if the r-covariant
tensor field t (r) in (1) is symmetric in its last two indices, it follows that

tλ1...[λr−1∇λr ]Rα
βμν = 0

and t (r) can be decomposed as:

t (r) = A1 ⊗ ω ⊗ ω + A2 ⊗ (ω ⊗ ρ + ρ ⊗ ω) + A3 ⊗ ρ ⊗ ρ (30)

for some (r − 2) covariant tensor fields A1, A2 and A3. In particular, this is always
true for type II K Sn spaces with t (r−1) = 0.

Proof If the r-covariant tensor t (r) in (1) is symmetric in its last two indices the first
relation follows directly from (29). Also, contracting (10) with Zλr ∈ L⊥ and using
(26) one gets

Zλr tλ1...λr−1λr = 0, ∀Z ∈ L⊥

since (M, g) is non-flat. Given that t (r) is symmetric in its last two indices, the decom-
posittion (30) follows at once. The last sentence is a consequence of Lemma 3. The
case where t (r) = 0 is included here with A1 = A2 = A3 = 0. �	

Type II KSn semi-Riemannian manifolds can be naturally split into three different
classes according to the level of degeneracy of L. In particular we have—see also
[30]–

• Type IIε if L is non degenerate, so that it admits an orthonormal basis with
g(ω, ω) := εω = ±1, g(ρ, ρ) := ερ = ±1 and g(ω, ρ) = 0. Here ε ∈ {1, 0,−1}
can be defined by ε := (εω + ερ)/2.

• Type IINε if L is degenerate of rank 1, i.e., if L admits a basis {ω, ρ} so that
g(ω, ω) = 0, g(ρ, ρ) := ε = ±1 and g(ω, ρ) = 0.

• Type II0 if L is degenerate of rank 0 (the metric on L vanishes) so that L admits a
basis of two null andmutually orthogonal null one-forms: g(ω, ω) = 0, g(ρ, ρ) =
0 and g(ω, ρ) = 0.

Observe that in theRiemannian case only type II1 spaces are possible. In theLorentzian
case, types II−1, II0 and IIN−1 are not possible either.
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For type IIε relations (27) and (28) simplify to

Rαβ = S

2

(

εωωαωβ + ερραρβ

) ; (31)

S = −2ερεωA. (32)

The first of these states that the Ricci tensor is actually proportional to the metric on
the 2-dimensional space L. Furthermore,

Proposition 5 [30] Let (M, g) be a non-flat KSn of type IIε . Then

(a) the scalar curvature is non-vanishing.
(b) The curvature tensor, theRicci tensor and the scalar curvature satisfy the following

equations:

1

2
SRαβλμ = RαλRβμ − RαμRβλ, (33)

Rα
ρR

ρ
β = 1

2
SRα

β, (34)

Rαβ R
αβ = 1

2
S2, (35)

Rαβρσ R
ρσλμ = SRαβλμ, (36)

RαβλμR
αβλμ = S2. (37)

Proof From (26) and (32) one has

Rαβλμ = 2 ερεωS ω[αρβ]ρ[λωμ]

so that S = 0 would imply vanishing curvature. From this and (31) Eqs. (33–37)
follow. �	

Consider now type IINε . The relations (27) and (28) simplify now to

Rαβ = −εAωαωβ; (38)

S = 0. (39)

Proposition 6 [30] Let (M, g) be a KSn of type IINε . Then,

(a) The scalar curvature vanishes.
(b) The curvature tensor and the Ricci tensor satisfy

RαρR
ρ

β = 0; Rαβ R
αβ = 0; RαβλμR

αβλμ = 0.

Proof (a) is just formula (39). (b) follows from (26) and (38). �	
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For Lorentzian type IIN1 , ω is a multiple AND [41] of maximum multiplicity and
the Riemann, Ricci and Weyl tensors are of the so-called type N.

Finally, consider type II0. Relations (27) and (28) become

Rαβ = 0, S = 0. (40)

It is straightforward then to prove the following:

Proposition 7 [30] Let (M, g) be a KSn of type II0. Then

(a) (M, g) is Ricci flat.
(b) the curvature tensor coincides with the Weyl tensor and satisfies RαβλρRρ

μνσ

= 0.

�	

3 Amodel family: the classKSn is not empty

In this section, in order to prove that the homogeneous Eq. (1) has a non-empty set
of solutions, an explicit family of semi-Riemannian metrics satisfying the general Eq.
(1) and (3) for each r ≥ 1 is presented in the following theorem:

Theorem 5 [50, 51] Let (Rn, g) be an irreducible semi-Riemannian manifold of sig-
nature (p+1, q +1), p+q = n−2 with Cartesian coordinates {u, v, x2, . . . , xn−1}
endowed with the metric

g = 2du
(

dv + Ai j (u)xi x j du
)

+ ηi j dx
i dx j

where η is the flat semi-Riemannian metric of signature (p, q) on R
n−2 and Ai j (u)

are functions of u with Ai j = A ji (i, j, · · · = 2, . . . n − 1).
Choose fixed functions Bi j (u) on M. Then, (M, g) satisfies the linear differential

condition on the curvature (3) with

t (m) = am(u) du ⊗ . . . ⊗ du
︸ ︷︷ ︸

m

, B = Bi j (u) du ⊗ · · · ⊗ du
︸ ︷︷ ︸

r

⊗ ∂

∂v
⊗ dxi ⊗ dx j ⊗ du

if and only if the functions Ai j (u) satisfy

d r Ai j

du r
+

r
∑

m=1

am(u)
d r−m Ai j

du r−m
= Bi j (u) (41)

for all i, j .
In particular, (M, g) satisfies the homogeneous linear differential condition on the

curvature (1), and therefore is a KSn space, if and only if all the functions Ai j (u)
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satisfy the same and unique homogenous ordinary differential equation

dr y

dur
+

r
∑

m=1

am(u)
dr−m y

dur−m
= 0. (42)

Proof If one takes the general co-basis for the cotagent bundle T ∗M given by:

θ0 = du; θ1 = dv + Ai j (u)xi x j du; θ i = dxi ,

the metric can be written as

g = 2θ0θ1 +
n−1
∑

i=2

εi (θ
i )2, with (εi )

2 = 1.

The connection 1-forms ωα
β can be computed from the formulae ∇g = 0, dθα =

−ωα
β ∧ θβ (see [16] for more information) and the fact that θ0 = du is a null parallel

one-form. Then, the only non-vanishing connection 1-forms are:

ω1
i = Aik x

kθo = −ωi
0.

Calculating the curvature 2-forms 
α
β by the formulae 
α

β = dωα
β + ωα

ρ ∧ ω
ρ
β , one

deduces that the only non-vanishing components of the curvature R are:

R1
i j0 = Ai j (u).

It is easy to show that, therefore, the non-vanishing components of∇R,∇2R,…,∇r R
in this co-basis are, respectively:

∇0R
1
i j0 = d

du
Ai j (u);

∇0∇0R
1
i j0 = d2

du2
Ai j (u);

...

∇0 . . . ∇0
︸ ︷︷ ︸

r

R1
i j0 = d r

du r
Ai j (u).

In conclusion, the only non-vanishing components that survive for the terms ∇m R on
the left-hand side of the homogeneous lineal differential conditions (3) in this co-basis
are those associated to

θ0 ⊗ . . . ⊗ θ0
︸ ︷︷ ︸

m

⊗∂v ⊗ θ i ⊗ θ j ⊗ θ0
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and therefore the only way that (3) can be satisfied is that the tensor fields t (m) have
the form

t (m) = am(u) du ⊗ . . . ⊗ du
︸ ︷︷ ︸

m

.

Then, (3) reduces in this co-basis to (41). If the fixed tensor field B = 0, and as all the
t (m) do not depend on i, j , then all the Ai j must satisfy the unique ODE (42). �	

This family contains an example of a solution for a specific homogeneous linear
differential equation of order r ≥ 1, for each r . Observe that each t (m) = am(u)θ0 ⊗
. . . ⊗ θ0 is a fully symmetric recurrent tensor field ∀m = 1, . . . , r , since ∇t (m) =
ȧm
am

θ0 ⊗ t (m), where ˙ means derivation with respect to the variable u. This raises the

questions of whether or not, in general, the tensor fields t (m) will have any type of
symmetry or recurrent properties.

All the manifolds in the new family given in Theorem 5 possess a parallel lightlike
one-form du, whose contravariant version is ∂v , so that they realize all signatures
except the Riemannian one. This model family in Theorem 5 has vanishing scalar
curvature S = 0, and the Ricci tensor field is given by

Ric = ηi j Ai j (u)du ⊗ du

whereηi j is the contravariant, inverse,metric of ηi j . In the classification of the previous
section, they belong to one of the following cases, always with ω = θ0 = du:

• type IN with the additional property that Qαβωβ = 0, where Qαβ corresponds
essentially to Ai j .

• type IIN1 if rank(Ai j ) = 1.

As a final comment, it is remarkable that there exists a one-to-one correspondence
between the KSn model family described in Theorem 5 and the family of order-r
linear ordinary differential equations.

4 Particular cases of special relevance

In this section a compendium of the most relevant particular families of semi-
Riemannian manifolds contained in theKSn manifolds that have been already studied
in the literature is given, with particular emphasis in their (non)-existence and their
known properties. Formore than 100 years a vastwork has been developed characteriz-
ing and classifying semi-Riemannian manifolds with conditions on the curvature. The
outstanding example is the class of locally symmetric spaces, defined by the condition

∇R = 0

so that R is parallel propagated along any direction. Introduced by Shirokov in [55]
these were thoroughly studied and classified by Cartan in 1926–27 [14, 15] in the
Riemannian case, and later in 1970 by Cahen andWallach in the Lorentzian case [11].
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The next important family is the set of recurrent spaces, defined by the condition

∇R = σ ⊗ R

for some 1-form σ ∈ �(M), so that ∇R is being propagated parallel to itself along
any direction. First introduced by Ruse in 1946 [46], they contain the locally sym-
metric ones and thus they are referred to as proper recurrent space if ω �= 0. Locally
symmetric and proper recurrent (M, g) belong to the family ofKSn spaces for r = 1,
the former with t (1) = t (r) = 0.

More generally, r th-order recurrent spaces, or shortly r -recurrent spaces, were
introduced in [20], and are defined by the condition

∇r R = −t (r) ⊗ R

where t (r) is a r -covariant tensor field. If t (r) �= 0, they are called proper rth-recurrent
spaces while if t (r) = 0, so that the curvature condition reads simply

∇r R = 0,

they are called r th-order symmetric spaces—or shortly r -symmetric spaces—andwere
introduced1 in [49]. A r th-order symmetric space is proper if it satisfies ∇r R = 0
but ∇r−1R �= 0. Proper r -recurrent and r -symmetric spaces belong to the class KSn

with t (m) = 0 for all m = 1, . . . , r − 1 in the former case, and also with t (r) = 0 in
the latter.

As a corollary of Lemma 2, one can state the following:

Corollary 5 ([49, 58]) At generic points, r th-order recurrent semi-Riemannian man-
ifolds are rth-order symmetric.

Important known results about locally symmetric, recurrent, proper r -symmetric
and proper r -recurrent spaces are summarized in what follows. Starting with Rie-
mannian Geometry, traditional results show that there are no proper r -symmetric
Riemannian spaces with r > 1 [35, 38, 58]; and letting aside obvious flat extensions
of 2-dimensional recurrent spaces, for n > 2 there are no proper recurrent Riemannian
manifolds [37, 63]. Furthermore, there are no proper 2nd-order recurrent Riemannian
spaces, all of them being locally symmetric. Summarizing:

Theorem 6 Let (M, g) be a Riemannian manifold of dimension n. Then:

(a) [35, 58] if it is r th-symmetric, or
(b) [44, 45] if it is recurrent, or proper 2nd-order recurrent and n > 2,

then it is actually locally symmetric.

Concerning recurrent spaces for signatures other than Riemannian one has the
following theorem due to Walker [63] that provides a classification of recurrent semi-
Riemannian manifolds:

1 Kaigorodov already defined these spaces in [32] but with the added condition that the subspace L of
Definition 5 is non-empty. Examples of r -symmetric spaces were given in [32] and in [25].
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Theorem 7 [63] Letting aside obvious flat extensions, for n > 2 any proper recurrent
semi-Riemannian manifold of signature (p+1,q+1) satisfying ∇R = σ ⊗ R with
σ �= 0:

(a) is not reducible;
(b) has a parallel lightlike one-form ω (∇ω = 0 and g(ω, ω) = 0) such that σ ∧ω =

0;
(c) belongs to the model family of KSn given in Theorem 5 with ω = du, Ai j (u) =

F(u)Mi j , Mi j ∈ R with rank(Mi j ) ≥ 1 and F(u) is a non-constant, otherwise

arbitrary, function of u. The recurrence one-form is σ = − Ḟ(u)

F(u)
du with Ḟ(u) :=

dF

du
.

Observe that this theorem shows that there are no proper recurrent Riemannian
manifolds, in accordance with Theorem 6.

Notice that from Lemma 3, for a proper r th-recurrent space (r ≥ 2) t (r) is always
symmetric in its last two indices.

Proposition 8 [32] If (M, g) is proper rth-order recurrent, including rth-order sym-
metric, with r ≥ 2 then it is 1

2p -symmetric for p = r/2 if r is even, and p = (r +1)/2
if it is odd.

Proof If themanifold is r th-symmetric the proof follows immediately for p = r/2 if r
is even, and p = (r+1)/2 if it is odd. Suppose then that the manifold is r th-recurrent.
If r is an even number, take p = r/2. The condition for 1

2p -symmetry given is then

∇[λ1∇λ2] . . . ∇[λr−1∇λr ]Rα
βλμ = 0

and as the manifold is r -recurrent this equation is equivalent to

t[λ1λ2]...[λr−1λr ]Rαβλμ = 0,

which is trivially satisfied for r th-recurrent manifolds by Lemma 3. If r is odd, then
take p = r+1

2 to obtain that the condition for 1
2p -symmetry reads

∇[λ1∇λ2] . . . ∇[λr ∇λr+1]Rαβλμ = 0

which is rewritten by r th-recurrence as

∇[λ1 tλ2]...[λrλr+1]Rαβλμ = 0,

which is again trivially satisfied due to Lemma 3. �	
Corollary 6 There are neither rth-order recurrent nor r-symmetric semi-Riemannian
manifolds of type Iε .

Proof This follows from Proposition 8 and Theorem 3. �	
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There is no formal classification of r th-order recurrent spaces with r ≥ 2. Thomp-
son [59] proved that if a manifold is proper 2nd-order recurrent and conformally
flat (which implies that the scalar curvature is zero due to Chowdhury [19]), then it
is recurrent. In [62], he proved that if the scalar curvature is not zero, and a proper
2nd-recurrent manifold is either 3-dimensional, 4-dimensional and Lorentzian, or its
Ricci tensor is definite, then it is recurrent. Also, he proved in [60] and [61] that a
4-dimensional proper 2nd-order recurrent Lorentzian manifold is complex-recurrent.
With all this information at hand, in 1972 together withMcLenaghan they proved that:

Proposition 9 [36] A proper 2nd-order recurrent Lorentzian manifold of dimension
4 is non-corformally flat with vanishing scalar curvature, and there exist coordinates
{u, v, x, y} such that the metric takes the form:

g = 2du (dv + H(u, x, y)du) + dx2 + dy2,

where ∂v is a parallel lightlike vector field,

H(u, x, y) = h(u)(x2 + y2) + 2 f (u)
[

cos(β(u))(x2 − y2) − 2 sin(β(u))xy
]

,

with f (u) an arbitrary function and β(u) and h(u) satisfying the equations

{

β̇ = κ/ f 2, κ ∈ R.

ḧ − h/ f ( f̈ − κ2/ f 3) = 0.

The manifold is Ricci-flat if and only if h = 0, and it is recurrent if and only if
β̇(u) = κ = 0 and h = λ f for some λ ∈ R.

Again, these spaces belong to the model family of Theorem 5. In this case, the
relation between the metric in Proposition 9 and that of Theorem 5 is given by

Axx (u) = h(u) + 2 f (u) cos(β(u)),

Ayy(u) = h(u) − 2 f (u) cos(β(u)),

Axy(u) = Ayx (u) = −4 f (u) sin(β(u)).

Using the equations in Proposition 9 that relate f (u), h(u) and β(u) it can be proven
that the above functions Ai j (u) do satisfy the conditions given in Theorem 5 for n = 4
and (p + 1, q + 1) = (1, 3), with

t (2) =
(

f̈

f
− κ2

f 4

)

du ⊗ du.

In the solution given in Proposition 9 there are an arbitrary funtion f (u) and four
arbitrary constants, κ and the ones obtained after solving the equations for the functions
β and h. However, f (u) and κ define the tensor field t (2) in the equation of second
recurrence, and then only the sign of κ matters because, if κ �= 0, by taking f̄ (u) =
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f√|κ| , the constant κ becomes equal to ±1. Thus, there are 3 essential parameters plus
one sign in the solution. On the other hand, in themodel family of solutions of Theorem
5, since n = 4 and r = 2 there would be a priori 6 arbitrary parameters in the metric.
This apparent conflict can be easily resolved by performing an appropriate change
of coordinates that preserves the form of the metric in Theorem 5—see for instance
Claim 5.20 in [7] or [8]—which allows to remove two of these constants.

Passing now to the cases of r -symmetry for r ≥ 1, the full classification of the
Lorentzian symmetric spaces is known.

Theorem 8 [11] Any simply-connected Lorentzian symmetric space (M, g) is isomet-
ric to the product of a simply-connected Riemannian symmetric space and one of the
following Lorentzian manifolds:

(a) (R,−dt2)
(b) the universal cover of d-dimensional de Sitter or anti-de Sitter spaces, d ≥ 2,
(c) a metric of KSn type in the model family of Theorem 5 with all Ai j constant and

ηi j = δi j , the Kronecker delta.

The d-dimensional Lorentizan manifolds with the metric of (c) are sometimes called
Cahen-Wallach spaces and denoted by CWd (observe that CW 2 = L

2 is just the two-
dimensional Minkowski space, as Ai j necessarily vanish). Therefore, if a Lorentzian
symmetric space admits a parallel lightlike vector field, then it is locally isometric
to the product of a d-dimensional Cahen-Wallach space and an (n − d)-dimensional
Riemannian symmetric space with d ≥ 2.

Locally symmetric spaces of signatures other than positive definite and Lorentzian
are not so well understood. Important advances can be found in [12, 18, 33, 34] and
references therein.

In the case of r th-order symmetric spaces some progress has been made in this
century for r = 2, 3 in the Lorentzian case. For r = 2, in [49] it was proven that such
spaces admit a lightlike parallel vector field, and latter in [6, 7] the global classification
was given. The local classification was also given in [1] using Lorentzian holonomy
techniques [27]. Some years later 3rd-order Lorentzian symmetric spaces were also
locally classified in [28] using the same techniques as in [1]. The following theorem
combines all these results

Theorem 9 [1, 7, 28] Letting aside obvious locally-symmetric extensions, for n > 2
any proper 2nd-order or 3rd-order symmetric Lorentzian manifold:

(a) is not reducible;
(b) possesses a parallel lightlike one-form ω: ∇ω = 0;
(c) belongs to the KSn model family of Theorem 5 with ω = du, ηi j = δi j ,

Ai j (u) = Di ju
2 + Bi j u + Ci j

with Di j , Bi j ,Ci j ∈ R and rank(Di j ) ≥ 1 for 3-symmetry, while Di j = 0 and
rank(Bi j ) ≥ 1 for 2-symmetry.

The global result is
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Theorem 10 [7, 28] Any geodesically complete and simply connected proper 2nd- or
3rd-order symmetric Lorentzian manifold is globally isometric to a direct product of a
non-flat Riemannian symmetric space and the 2- or 3-symmetric Lorentizan manifolds
of Theorem 9.

It is clear that the model families in Theorem 5 with Ai j (u) polynomials of order
r − 1 are r -symmetric for any r ∈ N. However, there is no proof that these exhaust
the entire family for r ≥ 4. According to [28], Lorentzian holonomy techniques [27]
are no longer usable for this purpose if r ≥ 4, hence, the main line to be pursued is to
try and prove that, for any r , there is a parallel lightlike one-form.

A question that springs to mind is whether or not a KSn space can satisfy more
than one relation of type (1). This can be answered in the affirmative by the following
result.

Corollary 7 Letting aside obvious flat extensions, a Lorentzian manifold (M, g) of
dimension n > 2 that satisfies both the recurrent condition and the kth-order sym-
metric condition on the curvature for k = 2, 3 is given by the solutions of Theorem 7
with F(u) a polynomial of degree k − 1 with leading coefficient ak−1 = 1.

Proof If (M, g) is Lorentzian and recurrent, it has a parallel one-formω (Theorem7). If
it is also k-symmetric, k ∈ {2, 3}, it also possesses a parallel one-form ω̃ (Theorem 9).
Hence, the first thing one needs to prove is that these two parallel directions coincide.
Suppose, on the contrary, that they are linearly independent. Then, they would span a
2-dimensional subspace of parallel one-forms, with signature necessarily Lorentzian,
implying the existence of a parallel timelike one-formU (and also a parallel spacelike
one-form). This would imply that (M, g) is decomposable as (M1×M2, g1⊕g2), with

g1 = 1

g(U ,U )
U ⊗U and g2 a Riemannian metric. Since (M, g) is both recurrent and

kth-symmetric for k = 2, 3, so would be (M2, g2), and since (M2, g2) is Riemannian,
(M, g) would be locally symmetric by Theorem 6. In conclusion, if a Lorentzian
manifold is proper recurrent and proper kth-symmetric for k = 2, 3, the parallel one-
forms ω and ω̃ must be proportional—and can be chosen to be the same. Once this is
established, the result follows at once from Theorems 7 and 9. �	

For general r th-order symmetric semi-Riemannian manifolds one can prove the
following interesting intermediate result

Proposition 10 Let (M, g) be an irreducible r th-order symmetric non-flat semi-
Riemannian manifold. Then either

(i) there exist a parallel lightlike vector field and g
(∇r−1R,∇r−1R

) = 0, or
(ii) g

(∇r−2R,∇r−2R
) =constant.

Proof Applying Lemma 9 in Appendix C to T = R, one sees that case (i) in that
Lemma is not possible due to Proposition 1. The result then follows immediately from
cases (i i) and (i i i) in Lemma 9. �	

The importance of this result lies in the fact that, if case (i) in Proposition 10 holds,
then a Lorentzian r -symmetric (M, g)will be a Brinkmann manifold [7, 10], and then
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using calculations such as in [1, 6, 7, 28] one may try to prove that such manifolds
belong to the model family of Theorem 5.

Strong results can also be obtained if there are generic points (Appendix A) in the
manifold. For instance

Theorem 11 [49] At generic points, all semi-symmetric semi-Riemannian manifolds
are of constant curvature.

And taking into account the results in Appendix C one obtains

Proposition 11 If a r th-order recurrent or a rth-order symmetric semi-Riemmanian
manifold (M, g) has a generic point, then it is locally symmetric. In other words, a
(proper) r th-symmetric space has no generic points.

This proposition follows from Corollary 5 and Theorem 15 by taking T = R in
Theorem 15. Therefore, since locally symmetric spaces are semi-symmetric, from
Propositions 11 and Theorem 11 one concludes that:

Theorem 12 At generic points, all r th-order recurrent and all r th-order symmetric
semi-Riemannian manifolds are actually of constant curvature.

The full classification of semi-symmetric 4-dimensional Lorentzian manifolds can
be found in [2, 24].

5 Relevance in physics

The physics of the gravitational field is described on Lorentzian manifolds, also called
spacetimes. Actually, the gravitational field itself corresponds to the curvature of the
spacetime. Therefore, results concerning KSn Lorentzian manifolds have undoubt-
edly relevance for many branches of gravitational physics. A long list of applications
was detailed in the Introduction of [49]. They were listed for 2nd-order symmetric
spacetimes, but they remain valid, mutatis mutandis, for the general class of KSn

Lorentzian manifolds. Thus,KSn spacetimes may have some applications in (see [49]
and references therein)

• building conserved quantities of the gravitational field depending on higher-order
derivatives of the curvature, via for instance the so-called ‘super-energy’ tensors
[48];

• simplifying the expansions in Riemann normal coordinates, if these are useful;
• the regularization of quantum fluctuations via curvature counter-terms;
• the study of ‘Penrose limits’;
• as solutions of higher-order Lagrangian theories, in particular in some supergravity
theories, string theory, and their relatives. Gauss–Bonnet gravity theories are of
particular relevance in this case.

I would like to comment further in the last two points. Let me start with the case of
Gauss–Bonnet gravity, see the review [26] and references therein. These are theories
where the Lagrangian density contains not only the Einstein-Hilbert term S, but also
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an additional term proportional to the Gauss–Bonnet invariant G defined in (15). This
additional term is relevant for dimension n > 4, as it provides field equations different
from the Einstein equations but still of second-order and with two degrees of freedom.
If the dimension is n = 4, the integral of G is a topological invariant—it equals the
Euler characteristic of the manifold—and thus its contribution to the field equations
vanishes upon extremization. As shown in Corollary 1 (a), the Gauss–Bonnet scalar
vanishes for all KSn spaces in any dimension, except possibly for type 0, if this
exception happens to exist at all. Therefore, the KSn spaces seem to be solutions of
any Gauss–Bonnet extension of General Relativity in arbitrary dimension.

With regard the other point, let me first of all recall that the spacetimes in the model
family of Theorem 5, in the Lorentizan case (so that ηi j = δi j ) are called plane-
wave spacetimes, or simply plane waves, in the physics literature [8, 22]. They are
geodesically complete [13] for good-behaved Ai j (u).

Theorem 13 (EveryLorentzian (M, g)has a“Penrose limit”) [42]ToeveryLorentzian
(M, g) and choice of a null geodesic γ one can associate a unique plane-wave space-
time (i.e., one of the models in Theorem 5 ) called its “Penrose limit” on γ .

The original construction [42] of the Penrose limit amounts to selecting appropriate
local coordinates adapted to the chosen null geodesic, performing a re-scaling with a
parameter λ and then taking the limit λ → 0. This is why they are called ‘limits’ in the
first place. Penrose limits retain the information about geodesic deviationof the original
spacetime along the chosen null geodesic γ , and nothing more. However, they can be
determined in a covariant way without taking any limit, see [8] and references therein:
just compute the geodesic deviation (in orthogonal directions) along the selected null
geodesic in the original space-time and this is identical to the null geodesic deviation
in the corresponding Penrose limit plane wave metric. Such deviation is characterized
by the symmetric Ai j (u) in Theorem 5, where u plays the role of parameter along the
null geodesic on the original spacetime. [8]

This shows the information about the original metric that the Penrose limit encodes
is precisely that of geodesic deviation along the selected null geodesic: in other words,
it gives the curvature properties around the null geodesic to first non-trivial order—in
analogy with what Riemannian normal coordinates do at any given point [9]. Further-
more, when approaching any spacetime singularity—the edge of incomplete geodesics
[3, 52]—the Penrose limits acquire some scale-invariant properties and have a univer-
sal power-law behaviour related to the growth of the curvature in the original (M, g)
[8].

An obvious question is what properties of the original spacetime, if any, are pre-
served in its plane-wave Penrose limit. The study of the properties preserved if one
considers a one-parameter family of space-times and takes some limit on the defining
parameter was curried out long ago by Geroch [29]. He defined a property shared
by the entire one-parameter family of spacetimes hereditary if all the limits of this
family also have this property. Following this idea, Blau [8] states that a property
of a Lorentzian manifold (M, g) is hereditary if all its Penrose limits also have this
property.

Any tensor field concomitant of the curvature—that is, any tensor field constructed
from R, its derivatives, the metric and its inverse—that vanishes is hereditary [29]. For
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instance, every Penrose limit of de Sitter and anti-de Sitter spacetimes, for arbitrary
null geodesics, is a flat space-time. One can conjecture that, conversely, if a space-time
has all of its Penrose limits flat, then it must be of constant curvature. In general trace
properties of the Riemann tensor are lost in the limits. For instance, Einstein spaces
have Ricci-flat Penrose limits—as all plane waves have vanishing scalar curvature.
Using Geroch’s ideas it seems somehow obvious to claim

EveryKSn proper of order r Lorentzian (M, g) has as its universalPenrose limits
the plane-wave models of Theorem 5 satisfying an appropriate homogeneous
ODE (42) of order r—including a flat space-time as a particular sub-possibility.

The question is now to ascertain how much “room” is left between the plane-
wave models of Theorem 5, which are the Penrose limits, and the general Lorentzian
manifolds of type KSn .

6 Discussion: open questions and conjectures

From the long list of results herein presented there are some facts that catch one’s eye.
The two most obvious, and probably more relevant, ones are

• the absence of non-locally-symmetric Riemannian KSn manifolds
• the existence of a parallel lightlike vector field in all known examples, in particular
in the model family of Theorem 5

This leads to the first open question

Open Question 1 (Riemannian manifolds in the new family?) Are there any KSn Rie-
mannian manifolds other than the locally symmetric ones?

All known partial results answer this question in the negative. Thus, Theorem 6
forbids the existence of proper recurrent, proper r th-symmetric, and proper 2nd-order
recurrent Riemannian spaces. Furthermore, Proposition 4 ensures that no Riemannian
KSn Einstein space with non-empty L exists. The existence of generic points also
leads to the absence of proper r -recurrentKSn due to Theorem 12. And, of course, the
model family of Theorem 5 does include all signatures except the Riemannian one.
This leads to my first conjecture.

Conjecture 1 There are no Riemannian KSn manifolds of any order r , apart from the
locally symmetric spaces.

Notice that the combination of Theorem 1 and Theorem 6 implies that, in dealing
with this conjecture, only irreducible manifolds must be studied due to the de Rham
decomposition [43].

On the other hand, all known (non-locally symmetric) examples of proper KSn

manifolds belong to the model family of Theorem 5, which raises the second open
question

Open Question 2 (Do the models in Theorem 5 exhaust the KSn spaces?) Are there
any KSn semi-Riemannian manifolds other than the explicit models of Theorem 5
and the locally symmetric ones?
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Note that the explicit model family in Theorem 5 has a parallel null vector field.
Thus, a second conjecture emerges.

Conjecture 2 If (M, g) is a non-locally symmetric KSn semi-Riemannian manifold
then it admits a parallel lightlike vector field.

Again, all known partial results support this conjecture. Generally the model family
in Theorem 5, but also Theorem 7 for the recurrent case, Theorem 9 for 2nd- and
3rd-order symmetry, as well as Proposition 9 for 2nd-order recurrent Lorentzian 4-
dimensional manifolds and the partial result in Proposition 10 for general r th-order
symmetry.

It would be very important to settle Conjecture 2. In the Lorentzian case, and if the
conjecture holds, then one can restrict the study to the Brinkmann metrics [7, 10] and
the analysis would be much simplified. Furthermore, if Conjecture 2 is resolved in the
affirmative, then Conjecture 1 will be immediately true.

The validity of Conjecture 2 would probably lead to a negative answer for the Open
Question 2, and in that case one can formulate the more ambitious speculation.

Conjecture 3 AllKSn semi-Riemannian manifolds are contained in the family of The-
orem 5. In particular, for the Lorentzian case, they coincide with their own Penrose
limits built with respect to the null geodesics tangent to the parallel vector field.

If anyone wishes to attack the previous open problems by steps, the simplest unre-
solved case is that of proper 2nd-order recurrent semi-Riemannian spaces. All partial
known results are in agreement with the conjecture, as detailed next

Proposition 12 (2nd-order recurrent case: known results) [20, 36, 60, 61] Let (M, g)
be a proper 2nd-order recurrent n-dimensional semi-Riemannian manifold, then

1. if it is also conformally flat, it is actually recurrent
2. if the scalar curvature does not vanish and

• Rμν is definite, then it is actually recurrent
• g is Lorentzian, then it is actually recurrent

3. if n = 4 and g is Lorentzian, then the only solutions are the explicit plane wave
models shown in Theorem 5

Recall that the recurrent case is fully resolved and the solutions, given in Theorem
7, do belong to the model family of Theorem 5. All in all, it seems that this case might
not be too difficult to settle. Another important partial unresolved problem is that of
Lorentizan r -symmetry for r ≥ 4.

Appendices

In this section classical methods related to this type of problems are explained and
known results presented. These methods could be helpful in the study of the properties
of the new family of KSn semi-Riemannian manifolds—those satisfying (1).
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A Generic points

Let (M, g) be a semi-Riemannian manifold. Consider the curvature endomorphism
on the space of two-forms (see, for example, [40]):

R : �2M −→ �2M


 �→ R(
)

defined by

R(
)λμ := Rαβ
λμ
αβ.

Definition 7 A point x ∈ M in a semi-Riemannian manifold (M, g) is generic if the
curvature endomorphism at x is an isomorphism, that is to say, ifR|x is non-singular
and has an inverse.

Let x ∈ M be a generic point. Then, there exists the inverse endomorphism R−1
|x of

R|x—denoted in abstract index form by (R−1
|x )αβ

λμ
—at the point x . In fact, by the

smoothness of R, the inverse R−1 is defined in some neighbourhood Ux of x . This
endomorphism satisfies:

R|y αβ
ρσ

(R−1
|y )ρσ

λμ
= 1

2
δ
αβ
λμ := 1

2
(δα

λ δβ
μ − δα

μδ
β
λ ), ∀y ∈ Ux (43)

where δ
αβ
λμ is the generalized Kronecker delta.

B Homothetic vector fields that are gradients

In this appendix vector fields X that satisfy ∇X = c1, with c ∈ R, are studied. They
are of particular interest because, on the one hand they are homothetic so that £X R = 0
and, on the other hand, they arise naturally is semi-Riemannian manifolds that contain
a second-order parallel tensor field T (∇∇T = 0), see next Appendix C. Observe that
if c = 0 then X is a parallel vector field. Therefore, if c = 0 either there is a parallel
lightlike vector field or (M, g) is non-degenerately reducible (or decomposable), and

the metric decomposes into g = 1

g(X , X)
̂X ⊗ ̂X + (g − 1

g(X , X)
̂X ⊗ ̂X).

Consider then the case when c �= 0.

Lemma 7 Let (M, g) be a semi-Riemannian manifold and X a vector field such that

∇X = c1 (44)

for some c ∈ R − {0}. Then:
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(a) g(X , X) is not constant. In particular, X is not lightlike.
(b) ̂X is a closed one-form.
(c) X is homothetic.
(d) ∇∇T (X ,Y ) = ∇∇T (Y , X), for any tensor field T and any vector field Y , where

∇∇T (X ,Y ) := ∇X (∇Y T ) − ∇∇XY T .

Proof (a) If g(X , X) =constant, by taking the covariant derivative here and using
(44) one would get 2ĉX = 0 and, as c �= 0, this is impossible due to (44).

(b) Usign the covariant version of (44) (that is, ∇̂X = cg), one has (d̂X)αβ =
∇[α̂Xβ] = cg[αβ] = 0.

(c) Since ∇̂X = cg, if £X denotes the Lie derivative with respect to X one has that
£X g(Y , Z) = ∇̂X(Y , Z) + ∇̂X(Z ,Y ) = 2cg(Y , Z) for all vector fields Y , Z .

(d) Since ∇̂X = cg one gets that ∇∇̂X = 0 which implies via the Ricci identity

XρR
ρ

βλμ = 0. (45)

Inserting this in the expression of Xρ∇[ρ∇β]T via the Ricci identity for any tensor
field T , one readily gets that Xρ∇[ρ∇β]T = 0 and the assertion follows.

�	
As is well known, X being homothetic it leaves the connection and the curvature
invariant

£X∇ = 0, £X R = 0.

Lemma 8 Let (M, g) be a semi-Riemannianmanifold and X a vector field that satisfies
(44) for some c ∈ R − {0}. Then,

∇X R + 2cR = 0,

∇X∇r R + c(r + 2)∇r R = 0, ∀r ∈ N.

Proof Writing LX R = 0 in abstract index notation:

Xρ(∇ρR
α

βλμ) − (∇ρXα)Rρ
βλμ + (∇βX

ρ)Rα
ρλμ + (∇λX

ρ)Rα
βρμ

+(∇μX
ρ)Rα

βλρ = 0

and using here (44) one derives

Xρ(∇ρR
α

βλμ) + 2cRα
βλμ = 0.

Covariantly differentiating this expression and using (44) again

Xρ(∇σ ∇ρR
α

βλμ) + 3c∇σ R
α

βλμ = 0

and using now the property in Lemma 7, item (d), the previous expression becomes

Xρ(∇ρ∇σ R
α

βλμ) + 3c∇σ R
α

βλμ = 0.
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And so on. �	

C Semi-Riemannianmanifolds with a tensor field T such that∇rT = 0

In this appendix the question of when there can be tensor fields T with a vanishing r th-
order covariant derivative is tackled. Apart from its intrinsic interest, this has obvious
applications to the case of r th-order symmetric semi-Riemannian manifolds, but it
has also relevance because the existence of such T implies the existence of homothetic
vector fields satisfying (44).

Lemma 9 [50, 51, 58] If an irreducible semi-Riemannian manifold (M, g) carries a

non-zero tensor field T that satifies ∇2T = 0, then X := 1

2
grad(g(T , T )) either

(i) is a vector field that satisfies (44) with c �= 0, or
(ii) is a parallel lightlike vector field and g(∇T ,∇T ) = 0, or
(iii) vanishes and g(T , T ) =constant.

Proof Define the function f as half the total contraction of T with itself

f := 1

2
g(T , T )

and set X := grad f . Due to the assumption ∇2T = 0 one has for all vector fields
Y , Z

Hess f (Y , Z) = g(∇Y T ,∇Z T )

and also

∇Hess f = 0.

Hence, Hess f is a 2-covariant symmetric parallel tensor field. Since (M, g) is irre-
ducible a classical theorem due to Eisenhart [23] implies that Hess f = cg for some
constant c so that (44) holds. If c �= 0 then case (i) follows. If c = 0 then ∇X = 0
and X is parallel and necessarily null due to irreducibility, or zero. The former case is
(i i) and the latter is (i i i). �	

The classical result for positive definite metrics can then be easily deduced from
this Lemma.

Theorem 14 Let (M, g) be a Riemannian manifold with a tensor field T that satisfies
∇r T = 0. If either

(1) [38] (M, g) is complete and irreducible
(2) [58] T is any of Riemann, Ricci or Weyl tensors,

then ∇T = 0.
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Proof It is enough to prove the result for r = 2. To prove (1), notice that either (i)
or (i i i) in Lemma 9 hold. But if an irreducible Riemannian manifold is complete, all
homothetic vector fields are in fact Killing vector fields, and thus only (i i i) is possible
and ∇T = 0.

To prove (2), due to the de Rham decomposition theorem [43] irreducibility can
be assumed and T—which is either R, Ric or C—vanishes in the flat part of the de
Rham decomposition. Again from Lemma 9 ∇X = c1 and, if c �= 0, the formulas in
Lemma 8 hold. In particular ∇X∇R = 0 = −3cR so that R = 0. Similarly for Ric
or C . If on the other hand c = 0, then (i i i) in Lemma 9 applies and the result also
follows. �	

As noticed by Sánchez [47], for irreducible Riemannian (M, g) the only possibility
left open for having ∇2T = 0 without ∇T = 0 is when the manifold is incomplete
and has a proper (non-Killing) homothetic vector field of type (44).

One can however prove a fully general theorem if there is at least one generic point
in the manifold.

Theorem 15 ([49]) If a semi-Riemmanianmanifold (M, g) has a generic point x ∈ M
and a tensor field T on the manifold that satisfies∇r T = 0, then∇T = 0 everywhere.

Proof It is enough to prove this for r = 2: ∇λ∇μTα1...αq = 0. From the Ricci Identity
applied to ∇[λ∇μ]Tα1...αq = 0 the relation

q
∑

i=1

Rρ
αiλμTα1...αi−1ραi+1...αq = 0 (46)

follows. Multiplying by the inverse R−1 at x :

q
∑

i=1

(

gαiλTα1...αi−1μαi+1...αq − gαiμTα1...αi−1λαi+1...αq

)

∣

∣

∣

∣

∣

x

= 0

Differentiating (46), then multiplying by R−1 and using this last expression one also
gets at x

q
∑

i=1

(

gαiλ∇νTα1...αi−1μαi+1...αq − gαiμ∇νTα1...αi−1λαi+1...αq

)

∣

∣

∣

∣

∣

x

= 0.

The identity ∇[λ∇μ]∇νTα1...αq = 0 provides analogously

gνλ∇μTα1...αq − gνμ∇λTα1...αq

+
q

∑

i=1

(

gαiλ∇νTα1...αi−1μαi+1...αq − gαiμ∇νTα1...αi−1λαi+1...αq

)

∣

∣

∣

∣

∣

x

= 0.
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Substracting the last two expressions one obtains

gνλ∇μTα1...αq − gνμ∇λTα1...αq

∣

∣

x
= 0.

Contracting here ν and λ one derives ∇μTα1...αq |x = 0. Finally, as ∇T is parallel then
∇T = 0 on the entire M . �	
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