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Abstract
In this paper we start the study of Schur analysis for Cauchy–Fueter regular
quaternionic-valued functions, i.e. null solutions of the Cauchy–Fueter operator inR4.
The novelty of the approach developed in this paper is that we consider axially regular
functions, i.e. functions spanned by the so-called Clifford-Appell polynomials. This
type of functions arises naturally from twowell-known extension results in hypercom-
plex analysis: the Fueter mapping theorem and the generalized Cauchy–Kovalevskaya
(GCK) extension. These results allow one to obtain axially regular functions starting
from analytic functions of one real or complex variable. Precisely, in the Fueter the-
orem two operators play a role. The first one is the so-called slice operator, which
extends holomorphic functions of one complex variable to slice hyperholomorphic
functions of a quaternionic variable. The second operator is the Laplace operator
in four real variables, that maps slice hyperholomorphic functions to axially regular
functions. On the other hand, the generalized CK-extension gives a characterization
of axially regular functions in terms of their restriction to the real line. In this paper
we use these two extensions to define two notions of rational function in the regular
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setting. For our purposes, the notion coming from the generalized CK-extension is the
most suitable. Our results allow to consider the Hardy space, Schur multipliers and
their relation with realizations in the framework of Clifford-Appell polynomials. We
also introduce two notions of regular Blaschke factors, through the Fueter theorem
and the generalized CK-extension.

Keywords Clifford-Appell polynomials · Rational functions · Blaschke factor ·
Schur analysis · Generalized Cauchy–Kovalevskaya extension

Mathematics Subject Classification 47B32 · 47S10 · 30G35

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1 Quaternionic-valued functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Fueter theorem and generalized CK-extension . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Clifford-Appell polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Axially rational regular functions through the Fueter theorem . . . . . . . . . . . . . . . . . . . . .
4 Axially rational regular function through the generalized CK-extension . . . . . . . . . . . . . . . .

4.1 Algebraic properties of rational axially regular functions . . . . . . . . . . . . . . . . . . . . .
5 Hardy space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Schur multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 Realizations of Schur multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 Blaschke product: through the GCK-extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 Blaschke factor through the Fueter map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

TheFuetermapping theoremand the generalizedCauchy–Kovalevskaya (GCK) exten-
sion are two main tools in quaternionic, and more generally, in Clifford analysis, both
allowing one to get axially regular functions, i.e. null solutions of the Cauchy–Fueter
operator in R

4, starting from analytic functions of one real or complex variable.
TheFuetermapping theorem is a two-steps procedure giving an axially regular func-

tion starting from a holomorphic function of one complex variable. This is achieved
by using two operators. The first one is the so-called slice operator that extends holo-
morphic functions of one complex variable to slice hyperholomorphic functions. The
theory of slice hyperholomorphic functions is nowadays well developed, see [23, 24].
The second operator is the Laplace operator in four real variables which maps slice
hyperholomorphic functions to axially regular functions. On the other hand, the gen-
eralized CK-extension is defined in terms of powers of x∂x0 , where x0 and x are the
real and imaginary parts of a quaternion, respectively.

The two maps are not the same: the generalized CK-extension is an isomorphism,
whereas the Fueter map is only surjective. In [31] a connection between the two
extension operators has been proved. Furthermore, in [31] the authors showed that
although for the exponential, trigonometric and hyperbolic functions the two extension
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maps coincide, the two maps differ in most cases, for example when acting on the
rational functions.

In the framework of rational functions, we recall that in [18, 38] it is explained
how the state space theory of linear systems gave rise to the notion of realization,
which is a representation of a rational function. In the complex setting a realization in
a neighbourhood of the origin is defined as

R(z) = D + zC(I − zA)−1B, z ∈ C,

where A, B, C and D are matrices of suitable dimensions. Moreover, the inverse of
a realization is still a realization when D is square and invertible, as well as the sum
and the product of two realizations of compatible sizes. See [18] and the beginning of
Sect. 3 in the present paper.

In this paper we shall introduce the counterpart of the realization theory in the
regular setting through the Fueter theorem and the generalized CK-extension. The
main obstacles to achieve this goal are

• a suitable replacement of monomials in the framework of axially regular functions,
• an appropriate product between axially regular functions.

In order to explain how to overcome these issues, we fix the following notations. The
set H of real quaternions is defined as:

H := {x = x0 + e1x1 + e2x2 + e3x3 | x0, x1, x2, x3 ∈ R},

where the imaginary units satisfy the relations

e21 = e22 = e23 = −1, and e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1,

e3e1 = −e1e3 = e2.

We can also write a quaternion as x = x0 + x , where we denoted by x0 its
real part and by x := e1x1 + e2x2 + e3x3 its imaginary part. The conjugate of
a quaternion x ∈ H is defined as x = x0 − x and its modulus is given by

|x | = √x x̄ =
√
x20 + x21 + x22 + x23 . By the symbol S we denote the sphere of purely

imaginary unit quaternions defined as

S := {x = e1x1 + e2x2 + e3x3 | x21 + x22 + x23 = 1}.

We observe that if I ∈ S then I 2 = −1. This means that I is an imaginary unit and
that

CI := {u + Iv | u, v ∈ R},

is an isomorphic copy of the complex numbers.
In quaternionic analysis, the Taylor expansion of a regular function is given in

terms of the well-known Fueter polynomials, which play the role of the monomials
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xα1
0 xα1

1 . . . xαn
n in several real variables. An easy way to describe regular functions

is through axially regular functions, see [46]. Indeed, for axially regular functions a
simpler approach than the one of Fueter polynomials is available: the approach of the
Clifford-Appell polynomials.

These polynomials are defined as

Qm(x) = 2

(m + 1)(m + 2)

m∑
�=0

(m − �+ 1)xm−� x̄�, (1.1)

and they were investigated in [21, 22]. We note that they arise as the action of the
Fueter map on the monomials xk , x ∈ H, see [30]. Any axially regular function
in a neighbourhood of the origin can be written as a power series in terms of the
polynomials Qm(x) of the form

f (x) =
∞∑
n=0

Qn(x) fn, fn ∈ H. (1.2)

As we discussed above, another issue is the fact that one needs a suitable product
between axially regular functions, since the pointwise product evidently spoils the
regularity. A well known product between regular functions is the so-called CK-
product. This product is defined for regular functions f and g as

f (x0, x)�CK g(x0, x) = CK
[
f (0, x) · g(0, x)] .

In [10] a CK-product between Clifford-Appell polynomials is performed. Precisely,
it is given by

(Qk �CK Qs) (x) = ckcs
ck+s

Qk+s(x). (1.3)

The drawback of the previous formula is the presence of the constant ck , depending
on the degree k, which makes the formula unsuitable for some types of computations.

In [32] a new kind of product is defined between axially regular functions: the so-
calledgeneralizedCK-product. This gives amorenatural formula for themultiplication
of the Clifford-Appell polynomials:

Qm(x)�GCK Q�(x) = Qm+�(x).

Another advantage of the generalized CK-product is that it is a convolution (also
called Cauchy product) of the coefficients of the Clifford-Appell polynomials.

The polynomialsQm(x) are also useful to define a counterpart of theHardy space in
the quaternionic unit ball for axially regular functions. This space consists of functions
of the form (1.2) which satisfy the condition

∑∞
n=0 | fn|2 < ∞. In this context, the
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reproducing kernel of the Hardy space is given by

K(x, y) =
∞∑

m=0
Qm(x)Qm(y).

The notion of Clifford-Appell polynomials and generalized CK-product paved the
way to provide a definition of Schur multipliers in this setting.

In the literature, Schur multipliers are related to several applications: inverse scat-
tering (see [12, 13, 20, 26]), fast algorithms (see [42, 43]), interpolation problems (see
[33]) and several other ones.

In complex analysis a function s defined in the unit disk D is a Schur multiplier if
and only if the kernel

ks(z, w) =
∞∑
n=0

zn(1− s(z)s(w))wn

is positive definite in the open unit disk. Recently a generalization of Schur multipliers
in the slice hyperholomorphic setting has been provided, see [3, 5]. The notion we
shall consider in this paper is the following: a quaternionic-valued function S defined
in the unit ball is a Schur multiplier if and only if the kernel

KS(x, y) =
∞∑
n=0

(
Qn(x)Qn(y)− (S �GCK Qn)(x)(S �GCK Qn)(y)

)

is positive definite in the unit ball of R4.
With this definition, most of the characterizations of Schur multipliers can be

adapted to the non-commutative framework of Clifford-Appell polynomials. We note
that in the quaternionic matrix case, being a Schur function is not equivalent to taking
contractive values; see [4, (62.38) p. 1767].

As a particular example of Schurmultiplier, we define the so-called Clifford-Appell
Blaschke factor by

Ba(x) = (1−Q1(x)ā)−�GCK �GCK (a −Q1(x))
ā

|a| ,

with a ∈ H, such that |a| < 1. Another and different notion of Blaschke factor
is given by applying the Fueter map to the slice hyperholomorphic Blaschke factor.
Nevertheless, these two regular notions of Blaschke factor are not equivalent.

The paper is divided into eight parts besides the present introduction. In Sect. 2 we
recall some key notions in hypercomplex analysis and we state the Fueter mapping
theorem and the generalized CK-extension. In Sect. 3 we provide the notion of axially
rational regular function by using the Fueter mapping theorem. In Sect. 4 we define
the counterpart of rational function in the regular setting by using the generalized
CK-extension, and we prove some properties of regular rational functions. In Sect. 5
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we define the Hardy space in this framework. In Sect. 6 we give the definition of
Schur multipliers by means of the Clifford-Appell polynomials, and we give several
characterizations of such. In Sect. 7 we prove a co-isometric realization of Schur
multiplier. Section8 is devoted to study a particular example of the Schur multiplier:
the Blaschke factor. Finally, in Sect. 9 we provide another notion of axially regular
Blaschke factor through the Fueter map.

2 Preliminaries

2.1 Quaternionic-valued functions

In the quaternionic setting there are various classes of functions generalizing holomor-
phic functions to quaternions, but in past few years two classes are the most studied:
the slice hyperholomorphic functions and the regular functions. In this section we
revise their definitions and their main properties.

First of all we recall the following:

Definition 2.1 We say that a setU ⊂ H is axially symmetric if, for every u+ Iv ∈ U ,
all the elements u + Jv for J ∈ S are contained in U .

The type of sets defined above are designed to work in class of functions in the next
definition.

Definition 2.2 Let U ⊂ H be an axially symmetric open set and let

U := {(u, v) ∈ R
2 | u + Sv ∈ U }.

A function f : U → H of the form

f (x) = f (u + Iv) = α(u, v)+ Iβ(u, v)

(resp. f (x) = f (u + Iv) = α(u, v)+ β(u, v)I ),

is left (resp. right) slice hyperholomorphic ifα andβ are quaternionic-valued functions
and satisfy the so-called "even-odd" conditions i.e.

α(u, v) = α(u,−v), β(u, v) = −β(u,−v) for all (u, v) ∈ U . (2.1)

Moreover, the functions α and β satisfy the Cauchy-Riemann system

∂uα(u, v)− ∂vβ(u, v) = 0, and ∂vα(u, v)+ ∂uβ(u, v) = 0.

The set of left (resp. right) slice hyperholomorphic functions on U is denoted by
SHL(U ) (resp. SHR(U )). If the functions α and β are real-valued functions, then we
say that the slice hyperholomorphic function f is intrinsic, and the class of instrinsic
functions is denoted by N (U ).
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We observe that the pointwise product of two slice hyperholomorphic functions is
not slice hyperholomorphic. However it is possible to define a product that preserves
the slice hyperholomorphicity.

Definition 2.3 Let f = α0+ Iβ0, g = α1+ Iβ1 ∈ SHL(U ).We define their ∗-product
as

f ∗ g = (α0α1 − β0β1)+ I (α0β1 + β0α1).

Let f = α0 + β0 I , g = α1 + β1 I ∈ SHR(U ). We define their ∗-product as

f ∗ g = (α0α1 − β0β1)+ (α0β1 + β0α1)I .

Definition 2.4 Let f = α0 + Iβ0 ∈ SHL(U ). We define its left slice hyperholomor-
phic conjugate as f c = α0 + Iβ0 and its symmetrisation as f s = f c ∗ f = f ∗ f c.
The left slice hyperholomorphic reciprocal is defined as f −∗ = ( f s)−1 f c.

Let f = α0+β0 I ∈ SHR(U ).Wedefine its right slice hyperholomorphic conjugate
as f c = α0 + β0 I and its symmetrisation as f s = f c ∗ f = f ∗ f c. The right slice
hyperholomorphic reciprocal is defined as f −∗ = f c( f s)−1.

Anotherwell studied class of quaternionic-valued functions is given by theCauchy–
Fueter regular (regular, for short) functions, see [19, 27, 35].

Definition 2.5 Let U ⊂ H be an open set and let f : U → H be a function of class
C1. We say that the function f is (left) regular if

D f (x) = (∂x0 + ∂x ) f (x) = (∂x0 + e1∂x1 + e2∂x2 + e3∂x3) f (x) = 0, ∀x ∈ U ,

D is the so-called Cauchy–Fueter operator.

Example The fundamental example of regular functions is given by the so-called
Fueter variables defined as

ξ1(x) := x1 − e1x0, ξ2(x) := x2 − e2x0, ξ3(x) := x3 − e3x0.

A way to characterize regular functions is the well-known CK-extension, see [19,
27, 34]. An arbitrary regular function f is uniquely obtained by considering its restric-
tion to the hyperplane x0 = 0. Precisely, we define the CK-extension of a function
f (x), which is real analytic in a set Ũ ⊂ R

3 (in the real variables x1, x2, x3), as the
function defined in a suitable open set U ⊆ H ∼= R

4, U ⊃ Ũ given by

CK [ f (x)](x) =
∞∑
j=0

(−1)�
�! x�

0∂x [ f (x)].

The pointwise product of regular functions is clearly not regular. Indeed, the product
of two Fueter variables is a counter-example proving this fact. For this reason, a
suitable product between regular functions is established, and since it is based on the
CK-extension it is called CK-product, see [19].
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Definition 2.6 Let f , g be two regular functions, then their CK -product is defined as

( f � g)(x) = CK [ f (x)g(x)]

where the product at the right hand side is the pointwise product of two real analytic
functions in x1, x2, x3 which are the restrictions of f and g to x0 = 0.

We recall that for a1,…,an ∈ H the symmetrized product is defined as

a1 × a2 × . . .× an = 1

n!
∑
σ∈Sn

aσ(1)aσ(2) . . . aσ(n),

where Sn is the set of all permutations of the set {1, . . . , n}. Bymaking the symmetrized
product of the Fueter polynomials, we get

ξν := ξν(x) = ξ
ξ1×
1 (x)× ξ

ν2×
2 (x)× ξ

ν3×
3 (x), ν = (ν1, ν2, ν3) ∈ N

3
0. (2.2)

We observe that ξν is the CK-extension of xν = xν1
1 xν2

2 xν2
2 and so it is in fact ξν =

ξ
ν1
1 � ξ

ν2
2 � ξ

ν3
3 .

Every regular function in neighbourhoodof the origin canbewritten in the following
way

f (x) =
∑

ν∈N3
0

ξν fν fν ∈ H. (2.3)

The CK-product of the basis ξν si given by

ξν p �CK ξμq = ξν+μ pq, q, p ∈ H, μ, ν ∈ N
3
0.

Thus the CK-product of two functions written in the form (2.3) in neighbourhood of
the origin can be computed via the convolution (also called Cauchy product, see [36])
of the coefficients along the Fueter polynomials.

A subset of regular functions is the right quaternionic space of the axially regular
functions. These functions are defined below:

Definition 2.7 LetU be an axially symmetric slice domain inH.We say that a function
f : U → H is axially regular, if it is regular and it is of the form

f (x0 + x) = A(x0, |x |)+ ωB(x0, |x |), ω := x

|x | ,

where the functions A and B are quaternionic valued and satisfy the even-odd condi-
tions (2.1). We denote by AM(U ) the set of axially regular functions on U .

The set of axially regular functions constitutes the “building blocks” to define a
regular functions in the sense of the result below, see [27].
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Theorem 2.8 LetU ⊆ H be an axially symmetric open set. Then every regular function
f : U → H can be written as

f̆ (x) =
∞∑
k=0

f̆k(x),

where fk(x) are functions of the form

f̆k(x) =
mk∑
j=1
[Ak, j (x0, |x |)+ ωBk, j (x0, |x |)]Pk, j (x),

where Ak, j and Bk, j satisfy conditions (2.1) and Pk, j (x) form a basis for the space
of spherical regular functions of degree k, which has dimension mk.

2.2 Fueter theorem and generalized CK-extension

We now recall how to induce slice hyperholomorphic functions from holomorphic
intrinsic functions.

Definition 2.9 An open connected set in the complex plane is an intrinsic complex
domain if it is symmetric respect the real-axis.

Definition 2.10 A holomorphic function f (z) = α(u, v) + iβ(u, v) is intrinsic if is
defined in an intrinsic complex domain D and f (z) = f (z̄). We denote the set of
holomorphic intrinsic functions on D byH(D).

Remark 2.11 Slice hyperholomorphic intrinsic functions defined on


D = {x = x0 + x | (x0, |x |) ∈ D}

are induced by intrinsic holomorphic functions defined in D ⊂ C, by the so-called
slice operator defined in the following way

S : H(D)⊗H→ SHL(
D), α(u, v)+ iβ(u, v) �→ α(x0, |x |)+ Iβ(x0, |x |),
(2.4)

which consists of replacing the complex variable z = u + iv by the quaternionic
variable x = x0 + x and the complex unit i is replaced by I := x

|x | .

Real analytic functions in one variable can be extended to slice hyperholomorphic
functions in a suitable open set. In fact, let D̃ := D∩R. We denote byA(D̃) the space
of real-valued analytic functions defined on D̃ with a unique holomorphic extension
to the set D. The holomorphic extension map is defined as C = exp(iv∂u). With this
notation, we can define the slice regular extension map as S1 = S ◦ C = exp(x∂x0).
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Theorem 2.12 We have the isomorphism,

SHL(
) � A(D̃)⊗H � H(D)⊗H,

and the following commutative diagram

A(D̃)⊗H H(D)⊗H

SHL(
)

C

S1
S

Remark 2.13 A slice operator can be defined also for right slice hyperholomorphic
functions and a result similar to Theorem 2.12 is valid in this case.

In quaternionic analysis the main tools to transform analytic functions of one real
or complex variable into axially regular functions are the Fueter mapping theorem (see
[37]) and the Cauchy–Kovalevskaya (CK) extension (see [27]).

Theorem 2.14 (Fueter mapping theorem) Let f0(z) = α(u, v) + iβ(u, v) be a holo-
morphic function defined in a domain (open and connected) D in the upper-half
complex plane and let 
D as before. Then the operator S defined in (2.4)maps the set
of holomorphic functions to the set of slice hyperholomorphic functions. Moreover,
the function

f̆ (x) := �

(
α(x0, |x |)+ x

|x |β(x0, |x |)
)

,

is axially regular, where � := ∂2x0 + ∂2x1 + ∂2x2 + ∂2x3 is the Laplace operator in the
four real variables x�, � = 0, 1, 2, 3.

Remark 2.15 The Fueter theorem was extended to the Clifford setting in 1957 by M.
Sce, in the case of odd dimensions, see [44]. In this case, the Laplace operator � is

replaced by�
n−1
2

n+1, where�n+1 is the Laplacian in n+1 dimensions and n is odd, so in
this case we are dealing with a differential operator. The proof ofM. Sce in the Clifford
setting is just a particular case of the computations in a generic quadratic algebra, see
[44] and its translation with commentaries in [25]. In 1997, T. Qian showed that the
Fueter-Sce theorem can be also proved in even dimensions. In this case the operator

�
n−1
2

n+1 is a fractional operator, see [40, 41].

Theorem 2.16 (Generalized CK-extension, [27]) Let D̃ ⊂ R be a real domain and
consider an analytic function f0(x0) ∈ A(R)⊗H. Then there exists a unique sequence
{ f j (x0)}∞j=1 ⊂ A(R)⊗H such that the series

f (x0, x) =
∞∑
j=0

x j f j (x0),
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is convergent in an axially symmetric 4-dimensional neighbourhood 
 ⊂ H of D and
its sum is a regular function i.e., (∂x0 + ∂x ) f (x0, x) = 0.

Furthermore, the sum f is formally given by the expression

f (x0, x) = �

(
3

2

)( |x |∂x0
2

)− 3
2
( |x |∂x0

2
J 1
2

(|x |∂x0
)+ x∂x0

2
J 3
2

(|x |∂x0
))

f0(x0),

(2.5)

where Jν is the Bessel function of the first kind of order ν.
The function in (2.5) is known as the generalized CK-extension of f0, and it is

denoted by GCK [ f0](x0, x).
This extension operator defined an isomorphism between right modules:

GCK : A(R)⊗H→ AM(
),

whose inverse is givenby the restrictionoperator to the real line, i.e. GCK [ f0](x0, 0) =
f0(x0).

A match between the generalized CK-extension and the Fueter theorem has been
found in [31, Thm. 4.2]:

Theorem 2.17 Let f (u+ iv) = α(u, v)+ iβ(u, v) be an intrinsic holomorphic func-
tion defined on an intrinsic complex domain 
2 ⊂ C. Then we have

�
[
f (x0 + x)

] = −2GCK
[
∂2x0 f|R

]
.

2.3 Clifford-Appell polynomials

In this subsectionwe recall the definition and themain properties of theClifford-Appell
polynomials, see [21, 22]. These are defined by

Qm(x) =
m∑

�=0
Tm

� xm−� x̄�, (2.6)

where

Tm
� := 2(m − �+ 1)

(m + 1)(m + 2)
, m = 0, 1, . . .

The polynomials Qm(x) satisfy the Appell property

D
2
Qm(x) = (∂x0 − ∂x )Qm(x)

2
= mQm−1(x), (2.7)
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An interesting feature of the Clifford-Appell polynomials is that they come from the
application of the Fueter map to the monomials xm . In particular, see [30], we have
the formula

Qm(x) = − �(xm+2)
2(m + 1)(m + 2)

, m = 0, 1, . . . (2.8)

Since the polynomials Qm(x) are axially regular and

Qm(x)|R = xm0 ,

we get that

Qm(x) = GCK [xm0 ]. (2.9)

The fact that the coefficients of the polynomials Qm(x) satisfy the relation

m∑
�=0

Tm
� = 1

implies the inequality

|Qm(x)| ≤ |x |m . (2.10)

The Clifford-Appell polynomials are a basis for axially regular functions, see [10,
Thm. 3.1].

Theorem 2.18 Let us consider
 ⊂ Hbeanaxially symmetric slice domain containing
the origin. Let f be an axially regular function on 
. Then there exist {ak}k∈N0 ⊂ H

such that

f (x) =
∞∑
k=0

Qk(x)ak .

In [32] the authors defined a new product among regular functions which is more
useful in the set of axially regular functions than the CK-product.

Definition 2.19 Let f (x0, x) and g(x0, x) be axially regular functions. We define

f (x0, x)�GCK g(x0, x) = GCK [ f (x0, 0) · g(x0, 0)]. (2.11)

Definition 2.20 Let f (x0, x) be an axially regular function then we define

[ f (x0, x)]−�GCK = GCK

[
1

f (x0, 0)

]
.
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The previous definition introduces the multiplicative inverse of the generalized
CK-product, indeed

[ f (x0, x)]−�GCK �GCK f (x0, x) = f (x0, x)�GCK [ f (x0, x)]−�GCK = 1.

This product fits perfectly with the product of Clifford-Appell polynomials. Indeed
we have

Qm(x)�GCK Q�(x) = Qm+�(x).

Remark 2.21 If we consider two axially regular functions f and g expanded in con-
vergent series

f (x) =
∞∑
k=0

Qk(x)ak, g(x) =
∞∑
k=0

Qk(x)bk, {ak}k∈N0 , {bk}k∈N0 ∈ H,

then their generalized CK-product is given by

( f �GCK g)(x) =
∞∑
n=0

Qn(x)
n∑

�=0
a�bn−�.

Thus the generalized CK-product is a convolution (also called Cauchy product, see
[36]) on the coefficients along the Clifford-Appell polynomials.

Remark 2.22 It is clear that

f (x0, x)�GCK 1 = 1�GCK f (x0, x) = f (x0, x). (2.12)

Remark 2.23 Aswe explained in the Introduction, formula (1.3) is unsuitable for some
computations because of the presence of the constants. To have amore natural product,
in [8] the authors introduced the polynomials

Pm(x) = Qn(x)∑m
�=0(−1)�Tm

�

In this way formula (1.3) can be written as

(Pk �CK Ps)(x) = Pk+s(x).

However, the polynomials Pn(x) do not satisfy the Appell property like the one
in (2.7). Moreover, the CK-product is not a convolution on the coefficients of the
polynomials Pm(x). Thus the product (2.11) looks the best option to work in the set
of axially regular functions.
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3 Axially rational regular functions through the Fueter theorem

We start by recalling that any CN×M -valued rational function R(z), without a pole at
the origin can be written in the form

R(z) = D + zC(I − zA)−1B, (3.1)

where D, C , A and B are matrices of suitable sizes. Formula (3.1) is known in the
literature with the name of realization (centred at the origin). It is well-known that the
inverse of the function R(z) is still a realization. Indeed, if we assume N = M and D
being an invertible matrices one has the following formula

R−1(z) = D−1 − zD−1C(I − zA×)−1BD−1, A× := H − CD−1B.

Moreover the product of two different realizations R�(z) = D�+ zC�(I − zH�)
−1B�

of suitable sizes is given by

R1(z)R2(z) = D + zC(I − zA)−1B,

where

D = D1D2 A =
(
A1 C1A2
0 A2

)
C =

(
C1

D1C2

)
B = (

B1D2 B2
)
.

The sum of two realizations it is a realization as well. This follows as a special case
of the product since

(
R1(z) IN

) ( IM
R2(z)

)
= R1(z)+ R2(z).

The aim of this section is to introduce a notion of realization in the framework
of axially regular functions. As we explained in the previous section, there are two
possible ways to extend analytic functions of one complex variable to the regular
setting. As we will see, the two approaches do not coincide for rational functions.

We start by studying the notion of axially rational function by means of the Fueter
theorem. To this end we need to recall the notion of rational slice hyperholomorphic
functions and their characterisation, [3, Thm. 4.6].

These functions arise from the study of the counterpart of state space equations in
the slice hyperholomorphic setting, see [3].

Theorem 3.1 Let r be a H
N×N -valued function, slice hyperholomorphic in a neigh-

bourhood 
 of the origin. Then, we have

1. r(x) is a rational function from 
 ∩ R to HN×N .
2. There exist matrices A, B and C, of appropriate dimensions, such that

r(x) = D + xC ∗ (I − x A)−∗B. (3.2)



On axially rational regular functions and Schur analysis in… Page 15 of 59    41 

3. The function r can be expanded in series as follows

r(x) = D +
∞∑
n=1

xnC AnB,

for suitable matrices A, B,C, D.

Remark 3.2 It is important to note that the formula (3.2) is formally identical to that
one in the classical complex case; however, when expanded, it gives

r(x) = D + xC ∗ (I − x A)−∗B = D + (xC − |x |2CA)(|x |2A2 − 2x0A + 1)−1B.

This shows that the formula is very unconventional, because the term |x |2 is involved.
Remark 3.3 If we consider two functions r1, r2 admitting realizations of the form (3.2)
of appropriate sizes, then r1∗r2 can be written in the form (3.2). Similarly the function
r1 + r2 admits a realization of the form (3.2).

Now, we define the first notion of axially rational regular function of this paper:

Definition 3.4 A quaternionic valued function r̆ = �r is called rational axially reg-
ular in a neighborhood of the origin if r satisfies one of the equivalent statements in
Theorem 3.1.

We now prove some equivalent statements on rational axially regular functions:

Theorem 3.5 Let r be an H
M×N -valued rational slice hyperholomorphic in a neigh-

bourhood of the origin. Then the following conditions are equivalent

1. r̆(x) = �r(x) is a rational axially regular function.
2. r̆(x) can be written as

r̆(x) = −4(C − x̄C A)Qx (A)−2AB,

where Qx (A) = |x |2A2 − 2x0A + I and A, B, C are quaternionic matrices of
appropriate sizes

3. r̆ can be expanded as follows

r̆(x) = E +
∞∑
n=1

(n + 1)(n + 2)Qn(x)CAn+1B,

where E := −4CAB and Qn(x) are the Clifford-Appell polynomials.

Proof We start by showing that 1)⇐⇒ 2). By Definition 3.4 we know that a function
r̆ is a rational axially regular function if there exists a rational slice hyperholomorphic
function r such that

r̆(x) = �r(x).
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By Theorem 3.1 we know a characterization of rational slice hyperholomorphic
functions, thus we can apply the Laplace operator to the entries r� j of the rational
slice hyperholomorphic function r , i.e.

r� j (x) = d + (xc − |x |2ca)Qx (a)−1b, � ∈ {1, . . . , M} j ∈ {1, . . . , N },

whereQx (a) := |x |2a2−2x0a+1 and a, b, c and d represent the quaternionic entries
of the matrices A, B, C and D.

To simplify the computations we set

g� j (x) := (xc − |x |2ca)Qx (a)−1.

Then, we have

∂g� j (x)

∂x0
= (c − 2x0ca)Qx (a)−1 − (xc − |x |2ca)Qx (a)−2(2x0a2 − 2a).

∂2g� j (x)

∂x20
= −2caQx (a)−1 − 2(c − 2x0ca)Qx (a)−2(2x0a2 − 2a)

+2(xc − |x |2ca)Qx (a)−3(2x0a2 − 2a)2 +
−2(xc − |x |2ca)Qx (a)−2a2

= −2caQx (a)−1 − 4(cx0a
2 − ca − 2x20ca

3 + 2x0ca
2)Qx (a)−2

+8(pc − |p|2ca)(x20a
4 + a2 − 2x0a

3)Qx (a)−3

−2(xc − |x |2ca)a2Qx (a)−2.

For 1 ≤ i ≤ 3 we have

∂g� j (x)

∂xi
= (ei c − 2pi ca)Qx (a)−1 − (xc − |x |2ca)Qx (a)−2(2xia2).

∂2g� j (x)

∂x2i
= −2caQx (a)−1 − 2(ei c − 2xi ca)Qx (a)−2(2xia2)

+2(xc − |x |2ca)Qx (a)−3(2xia2)2

−2(xc − |x |2ca)Qx (a)−2a2.

Finally, we get

�g� j (x) = ∂2g� j (x)

∂x20
+

3∑
i=1

∂g� j (x)

∂xi

= −8caQx (a)−1 − 8(xc − |x |2ca)a2Qx (a)−2

+4 (−xca2 + 2|x |2ca3 − x0ca
2 + ca + 2x20ca

3

−2x0ca2
)Qx (a)−2 + 8(xc − |x |2ca)(|x |2a4 + x20a

4 + a2 − 2x0a
3)Qx (a)−3

= −8caQx (a)−1 − 8(xc − |x |2ca)a2Qx (a)−2
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+4(−xca2 + 2|x |2ca3 + ca − 2x0ca
2)Qp(a)−2

+8(xc − |x |2ca)(|x |2a4 + a2 − 2x0a
3)Qx (a)−3.

Since 2x0 = x + x̄ we obtain

�g� j (x) = −8caQx (a)−1 − 8(xca2 − |x |2ca3)Qx (a)−2

+4
(
−xca2 + 2|x |2ca3 + ca − xca2

−x̄ca2
)
Qx (a)−2 + 8(xc − |x |2ca)a2Qx (a)−2

=
(
−8ca(|x |2a2 − 2x0a + 1)− 8xca2 − 4xca2 + 8|x |2ca3

+4ca − 4xca2 − 4x̄ca2

+8xca2 − 8|x |2ca3
)
Qx (a)−2

=
(
−8|x |2ca3 + 16x0ca

2 − 8ca − 8xca2 + 8|x |2ca3 − 4xca2 + 8|x |2ca3

+4ca − 4xca2 − 4x̄ca2

+8xca2 − 8|x |2ca3
)
Qx (a)−2

= −4(c − x̄ca)aQx (a)−2.

Therefore, we get

r̆� j (x) = −4(c − x̄ca)Qx (a)−2ab.

We get the result with A = a and appropriate matrices B, C and D.
Now, we show the relation 1) ⇐⇒ 3). By Theorem 3.1 we know that we can

expand a rational slice hyperholomorphic function r as

r(x) = D +
∞∑
n=1

xnC An−1B. (3.3)

Now, we consider the generic quaternions a, b, c and d that represent the entries of
the quaternionic matrices A, B, C and D. We apply the Laplace operator in four real
variables to the entries of (3.3), which are denoted by r� j , and we get

r̆� j (x) =
∞∑
n=2

�(xn)can−1b, � ∈ {1, . . . , M} j ∈ {1, . . . , N }.

By formula (2.8) we deduce that for n ≥ 2 we have �(xn) = −2(n − 1)nQn−2(x).
This implies that

r̆� j (x) = �r� j (x)
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= −2
∞∑
n=2

(n − 1)nQn−2(x)can−1b

= −2
∞∑
n=0

(n + 1)(n + 2)Qn(x)ca
n+1b

= −4cab − 2
∞∑
n=1

(n + 1)(n + 2)Qn(x)ca
n+1b.

We get the result with A = a and appropriate matrices B, C and D. ��
Remark 3.6 If we restrict to the case x ∈ R in Theorem 3.5 we can write the axially
regular function r̆ as

r̆(x) = −4C(I − x A)−3AB.

Remark 3.7 The rational axially regular functions defined in this section admit a real-
ization as proved in Theorem 3.5, however they have some limitations. For example,
if one performs the generalized CK-product of two rational axially regular functions
then, in general, one does not get a rational axially regular function in the sense of
Definition 3.4.

In particular, to preserve algebraic properties similar to those of the complex real-
izations we need to find an alternative definition of a rational axially regular function.

4 Axially rational regular function through the generalized
CK-extension

In this section we propose another notion of rational axially regular, different from the
one in Definition 3.4. The new notion makes use of the generalized CK-extension. The
main advantage is that we can prove some main algebraic properties of realizations.

The idea of the definition comes from the standard equivalent statements given in
Theorem 3.1 in the case of slice hyperholomorphic functions, but using the product
�GCK instead of the ∗-product since we are in the set of regular functions.
Definition 4.1 An H

M×N -valued function r is called (left) rational axially regular in
a neighborhood of the origin if it can be represented in the form

r(x) = D + C �GCK (I −Q1(x)A)−�GCK �GCK (Q1(x)B), (4.1)

This notion arises by considering the counterpart of the state space equations in the
regular hyperholomorphic setting. Let us consider the following quaternionic linear
system

{
xn+1 = Axn + Bun, n = 0, 1, . . .

yn = Cxn + Dun .
(4.2)



On axially rational regular functions and Schur analysis in… Page 19 of 59    41 

where A, B, C and D are matrices of appropriate sizes with quaternionic entries and
U := {un}n∈N0 is a given sequence of vectors with quaternionic entries, and of suitable
size. In the complex setting the “transfer function” of the system is defined by taking
the Z-transform which, in this framework, can be defined as

Z(U ) := U(x) =
∞∑
n=0

Qn(x)un .

We observe that the Z-transform is right linear, since

Z(U A) = Z(U )A.

FurthermoreZ(U ) is an axially regular function, seeTheorem2.18.Another important
property of the Z-transform is the following. If we set

τ−1U := (u1, u2, . . . , un),

then if u0 = 0 we have

Z(τ−1U ) = [Q1(x)
−�GCK ] �GCK Z(U ).

However, in the regular setting a “transfer function” cannot be defined by taking
the Z-transform like in the complex case. The transfer function matrix-valued of the
system (4.2) is the axially regular function

H(x) := Y(x)�GCK (U(x))−�GCK ,

where Y(x) and U(x) are the GCK-extensions of the Z-transforms of yn and of un ,
respectively. We now give the counterpart of the classical realization for the transfer
function.

Theorem 4.2 Let A, B, C, D and {un}n∈N0 be defined as above. Then we have

H(x) = D + C �GCK (I −Q1(x)A)−�GCK �GCK (Q1(x)B). (4.3)

Proof We start by considering the system (4.2) on the real line, where A, B, C and
D are replaced by given quaternionic numbers a, b, c and d. Now, we suppose that
{un}n∈N0 is a given sequence of real numbers:

{
xn+1 = axn + bun, n = 0, 1, . . . .

yn = cxn + dun .

Let x0 ∈ R. By applying the real-valued Z-transform defined as

Z(U ) := U(un) :=
∞∑
n=0

xn0un,



   41 Page 20 of 59 D. Alpay et al.

where U = {un}n∈N0 we get

{
X (x0) = x0aX (x0)+ x0bU(x0)

Y(x0) = cX (x0)+ dU(x0).

Each element of the above system is commutative, thus we have

{
X (x0) = (1− x0a)−1x0bU(x0)

Y(x0) = cX (x0)+ dU(x0).
(4.4)

All the functions involved in (4.4) are analytic on the real line, so we can use the
generalized CK-extension (see Theorem 2.16) to get axially regular function in the
variable x . Thus by Definition 2.19 we have

{
X̆ (x) = (1−Q1(x)a)−�GCK �GCK (Q1(x)b)�GCK U(x)

Y(x) = c �GCK X̆ (x)+ d �GCK U(x).

By substituting the first equation in the second one of the above system we get

{
X̆ (x) = (1−Q1(x)a)−�GCK �GCK (Q1(x)b)�GCK U(x)

Y(x) = c �GCK (1−Q1(x)a)−�GCK �GCK (Q1(x)b)�GCK U(x)+ d �GCK U(x).

Finally, by the definition of the function H(x) we obtain

H(x) = Y(x)�GCK (U(x))−�GCK

= (
c �GCK (1−Q1(x)a)−�GCK �GCK (Q1(x)b)�GCK U(x)

+d �GCK U(x))�GCK (U(x))−�GCK

= c �GCK (1−Q1(x)a)−�GCK �GCK (Q1(x)b)+ d.

In order to get a matrix valued-function it is sufficient to replace a, b, c and d,
respectively, with the matrices A, B, C , D of suitable size and with quaternionic
entries. Then we get the axially regular function

H(x) = D + C �GCK (1−Q1(x)A)−�GCK �GCK (Q1(x)B).

��
Proposition 4.3 Let r be a quaternionic valued slice hyperholomorphic function and
let ∂2x0r|R be a rational function in the real variable x0. Then we have

r̆(x) = �r(x) = D + C �GCK (I −Q1(x)A)−�GCK �GCK (Q1(x)B),

where D, C, B and A are quaternionic matrices of suitable sizes.
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Proof By hypothesis we know that ∂2x0r |R is rational. This implies that we can write

∂2x0r(x)|R = D + C(I − x0A)−1(x0B).

By Theorem 2.17 we know that

�r = −2GCK [∂2x0r(x)|R].

We replace the quaternionic matrices A, B, C , D with the respective entries a, b, c
and d. Now, by Definitions 2.19 and 2.20 we obtain

GCK [(I − x0a)−1(x0b)] = (I −Q1(x)a)−�GCK �GCK (Q1(x)b).

This implies the following equality for the entries r� j of the HM×N -valued function
r

r̆� j (x) = �r� j (x) = −2[d + c �GCK (I −Q1(x)a)−�GCK �GCK (Q1(x)b)]
∀�, j ∈ {1, . . . , N }.

The thesis follows by absorbing the constant −2 in the matrices. ��
A relation between the two different notions of rational axially regular functions is

discussed in the next result.

Proposition 4.4 A function which is rational axially regular according to Definition
3.4 is also rational according to Definition 4.1.

Proof In Definition 3.4 we suppose that the function r is rational slice hyperholomor-
phic, so its restriction to the real line is a rational function and thus also the function
∂2x0r|R is rational. The statement follows by Proposition 4.3. ��

4.1 Algebraic properties of rational axially regular functions

Wenow show that the notion of rational axially regular function given in Definition 4.1
is the most suitable one to extend to the Clifford-Appell framework the classical
properties that hold for classical rational functions.

We begin by observing that a function which is a linear combination of the poly-
nomials Q�(x) admits a realization.

Lemma 4.5 Let M(x) be the HN×N -valued function defined as

M(x) =
L∑

�=0
Q�(x)M�.

Then

M(x) = D + (Q1(x)C)�GCK (I −Q1(x)A)−�GCK B,
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where D = M0 and

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0N IN 0N . . .

0N 0N IN 0N . . .

.

.

.

0N . . . . . . 0N IN
0N 0N . . . 0N 0N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

B :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0N
0N
.

.

.

IN

⎞
⎟⎟⎟⎟⎟⎟⎠

C := (
ML ML−1 . . . M1

)

Proof The assertion follows from the formula

(I −Q1(x)A)−�GCK =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

IN Q1(x)IN Q2(x)IN . . . QL−1(x)IN
0N IN Q1(x)IN . . . QL−2(x)IN

.

.

.

0N . . . . . . IN Q1(x)IN
0N 0N . . . 0N IN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

��
Lemma 4.6 Let us consider two axially regular realizations of the following form

r j (x) = Dj + C j �GCK
(
I −Q1(x)A j

)−�GCK �GCK (Q1(x)Bj ) j = 1, 2,

which are H
M×N and H

N×R-valued, respectively. The generalized CK-product
r1 �GCK r2 is a HM×R-valued function, which can be written as

(r1 �GCK r2)(x) = D1D2 +
(
C1 D1C2

)�GCK

(
I −Q1(x)U

(
A1 B1C2
0 A2

))−�GCK

�GCK (Q1(x)U )

(
B1D2
B2

)
,

where U :=
(
I 0
0 I

)
.

Given realizations of the two rational HM×N -valued functions r1 and r2, then a
realization of the the sum r1 + r2 is given by

r1(x)+ r2(x) = D1 + D2 +
(
C1 C2

)�GCK

(
I −Q1(x)U

(
A1 0
0 A2

))−�GCK

�GCK (Q1(x)U )

(
B1

B2

)
.
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Proof We start by proving the formula for the generalized CK-product between r1 and
r2. We have

(r1 �GCK r2)(x) = D1D2 + D1C2 �GCK (I −Q1(x)A2)
−�GCK �GCK Q1(x)B2

+C1 �GCK (I −Q1(x)A1)
−�GCK �GCK Q1(x)B1D2

+C1 �GCK (I −Q1(x)A1)
−�GCK �GCK Q1(x)B1C2

�GCK (I −Q1(x)A2)
−�GCK

�GCKQ1(x)B2.

Then, by setting A := I −Q1(x)A1, B := −Q1(x)B1C2 and C = I −Q1(x)A2 we
get

r1(x)�GCK r2(x) = D1D2 +
(
C1 D1C2

)�GCK(A−�GCK −A−�GCK �GCK B �GCK C−�GCK

0 C−�GCK

)

�GCK

(Q1(x)B1D2
Q1(x)B2

)
.

Now we observe that

(A−�GCK −A−�GCK �GCK B �GCK C−�GCK

0 C−�GCK

)
=

(A B
0 C

)−�GCK

.

The above formula implies that

(r1 �GCK r2)(x) = D1D2 +
(
C1 D1C2

)�GCK

(
I −Q1(x)A1 −Q1(x)B1C2

0 I −Q1(x)A2

)−�GCK

�GCK

(Q1(x)B1D2

Q1(x)B2

)

= D1D2 +
(
C1 D1C2

)�GCK

(
I −Q1(x)U

(
A1 B1C2

0 A2

))−�GCK

�GCK (Q1(x)U )

(
B1D2

B2

)
.

To show the formula for r1(x)+ r2(x) it is enough observe that

(
r1 I

)�GCK

(
I
r2

)
= r1(x)+ r2(x),

and to apply the formula for r1 �GCK r2. ��
Lemma 4.7 Let us consider the following H

N×N rational axially regular function

r(x) = D + C �GCK (I −Q1(x)A)−�GCK �GCK (Q1(x)B),
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where A, B, C and D are matrices with quaternionic entries and of appropriate sizes
and such that D is invertible. Then the generalizedCK-inverse of r admits the following
realization

r−�GCK (x) = D−1 − D−1C �GCK

(
I −Q1(x) Ã

)−�GCK �GCK (Q1(x)BD
−1),

where Ã := A − BD−1C .

Proof We have to show

r(x)�GCK r−�GCK (x) = I .

Then we have

(
D + C �GCK (I −Q1(x)A)−�GCK �GCK (Q1(x)B)

)�GCK(
D−1 − D−1C �GCK

(
I −Q1(x) Ã

)−�GCK �GCK (Q1(x)BD−1)
)

= I − C �GCK

(
I −Q1(x) Ã

)−�GCK �GCK (Q1(x)BD
−1)+ C �GCK (I −Q1(x)A)−�GCK

�GCK (Q1(x)BD−1)− C �GCK (I −Q1(x)A)−�GCK �GCK (Q1(x)BD−1C)

�GCK

(
I −Q1(x) Ã

)−�GCK �GCK (Q1(x)BD
−1)

= I − C �GCK

{(
I −Q1(x) Ã

)−�GCK − (I −Q1(x)A)−�GCK + (I −Q1(x)A)−�GCK

�GCK (Q1(x)BD−1C)�GCK

(
I −Q1(x) Ã

)−�GCK
}
�GCK (Q1(x)BD−1).

Now, we observe that

Q1(x)BD
−1C = Q1(x)(A − Ã) = (I −Q1(x) Ã)− (I −Q1(x)A).

This implies that

(
I −Q1(x) Ã

)−�GCK − (I −Q1(x)A)−�GCK

+ (I −Q1(x)A)−�GCK �GCK (Q1(x)BD
−1C)�GCK

(
I −Q1(x) Ã

)−�GCK

=
(
I −Q1(x) Ã

)−�GCK − (I −Q1(x)A)−�GCK

+ (I −Q1(x)A)−�GCK �GCK

[
(I −Q1(x) Ã)

−(I −Q1(x)A)]�GCK (I −Q1(x) Ã)−�GCK

=
(
I −Q1(x) Ã

)−�GCK − (I −Q1(x)A)−�GCK

−
(
I −Q1(x) Ã

)−�GCK + (I −Q1(x)A)−�GCK
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= I .

This proves the statement. ��
For a generic axially regular function written in the form

f (x) =
∞∑
n=0

Qn(x) fn, { fn}n∈N0 ∈ H,

we define the operator

(R0 f )(x) =
{

Q1(x)−�GCK �GCK ( f (x)− f (0)) , x �= 0

f0 x = 0
(4.5)

which plays the role of the backward shift operator.
Now, we prove five conditions that characterize rational axially regular functions.

Theorem 4.8 The following conditions are equivalent

(1) A rational axially regular function can be written as

r(x) = D + C �GCK (I −Q1(x)A)−�GCK �GCK (Q1(x)B), (4.6)

where D1, C1, A1 and B1 are quaternionic matrices of suitable size.
(2) The function r can be written as a series converging in a neighbourhood of the

origin

r(x) =
∞∑
k=0

Qk(x)rk rk =
{
D k = 0

CAk B k ≥ 1.
(4.7)

(3) The right linear spanM(r) of the columns of the functions R0r , R2
0r , . . . is finite

dimensional.

Proof We start proving (1) ⇐⇒ (2). We show the implication by considering the
quaternionic entries of the matrices A, B, C and D, that we denote by a, b, c and d,
respectively. By Definition 2.20 we have

d + c �GCK (1−Q1(x)a)−�GCK �GCK (Q1(x)b)

= d + GCK [c(1− x0a)−1x0b]

= d + GCK

[ ∞∑
k=1

xk0ca
k−1b

]
.

Since the generalized CK-extension is a right-linear operator and by (2.9) we get

d + c �GCK (1−Q1(x)a)−�GCK �GCK (Q1(x)b)



   41 Page 26 of 59 D. Alpay et al.

= d +
( ∞∑
k=1

GCK [xk0 ]cak−1b
)

= d +
∞∑
k=1

Qk(x)ca
k−1b.

Now, we show that (1) �⇒ (3). Firstly, we observe that

R0(r(x)) = C �GCK (I −Q1(x)A)−�GCK B.

By iterating similar computations we have

R j
0 (r(x)) = C �GCK (I −Q1(x)A)−�GCK A j−1B, j = 1, 2, . . .

This means that the right liner span M(r) is included in the span of the columns
of the function C �GCK (I − Q1(x)A)−�GCK . Therefore the span M(r) is finite
dimensional.

Now, we prove that (3) �⇒ (1). Since (4) is in force there exists an integerm0 ∈ N

such that for every m ∈ N and v ∈ H
q , there exist vectors u1, . . . , um0 such that

Rm0
0 rv =

m0∑
m=1

Rm
0 rum . (4.8)

Now, we denote by E the Hp×m0q -valued slice hyperholomorphic function

E = (
R0r R2

0r . . . Rm0
0 r .

)

Now, by (4.8), there exists a matrix A ∈ H
m0q×m0q such that

R0E = E A.

By the definition of the operator R0, see (4.5), we have

E(x)− E(0) = E(x)�GCK Q1(x)A.

This implies that

E(x)�GCK (I −Q1(x)A) = E(0).

Therefore, we have

E(x) = E(0)�GCK (I −Q1(x)A)−�GCK . (4.9)
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Moreover, we have also that

(R0r)(x) = E(x)

⎛
⎜⎜⎜⎜⎜⎜⎝

Iq
0
.

.

.

0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The definition of the operator R0 and formula (4.9) implies that

r(x)− r(0) = E(0)�GCK (I −Q1(x)A)−�GCK �GCK Q1(x)

⎛
⎜⎜⎜⎜⎜⎜⎝

Iq
0
.

.

.

0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then we have that r(x) is of the form (4.6). ��
Remark 4.9 Adifferent type of regular rational functions was previously considered in
[16]. In that paper the authors studied a notion of rational hyperholomorphic function
in R4 by means of the Fueter variables and the CK-product. Precisely, they define the
counterpart of rational function in the regular setting as

R(x) = D + C � (I − ξ1(x)A1 − ξ2(x)A2 − ξ3(x)A3)
−�CK �CK

(ξ1(x)B1 + ξ2(x)B2 + ξ3(x)B3),

where Ai , Bi (with i = 1, 2, 3) are constants matrices with entries in the quaternions
and of appropriate dimensions. We observe that the function R is Fueter regular in a
neighbourhood of the origin.

A different notion of rational regular function of axial type was considered in [8].
They defined a rational axially regular as

R(x) = D +
∞∑
n=1

Pn(x)CAn−1B, Pn(x) = Qn(x)∑m
�=0(−1)�Bm

�

, (4.10)

where the matrices A, B, C and D are quaternionic matrices of suitable sizes. The
main issue with the previous notion of rational axially regular is that it is not possible
to write an expansion in series like the one in (4.7).

In this tablewe summarize the notions of rational functions in the hyperholomorphic
setting that appear in the literature
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Setting Realization Series

Slice hyperholomorphic D + C ∗ (I − x A)−∗ ∗ (pB)
∑∞

n=0 xnC An B
Monogenic D + C � (I − ξ1A1 − ξ2A2 − ξ3A3)

−�
�(ξ1B1 + ξ2B2 + ξ3B3)

∑∞
n=0

∑
|ν|=n ξν Rν

Axially regular (CK) None
∑∞

k=0 Pk (x)CAk B
Axially regular (GCK) D + C �GCK (I −Q1(x)A)−�GCK

�GCK (Q1(x)B)
∑∞

k=0 Qk (x)CAk B

where Rν := (|ν|−1)!
ν! C

(
ν1Aν−e1 ν2Aν−e2 ν3Aν−e3) B.

5 Hardy space

Positive definite functions and kernels and their associated reproducing kernel Hilbert
spaces are important in complex analysis, stochastic process and machine learning,
see [2, 45, 47]. In the quaternionic setting these notions are considered e.g. in [5, 15].

Definition 5.1 A quaternionic-valued function K(u, v), with u and v in some set 
 is
called positive definite if

• it is Hermitian:

K(u, v) = K(v, u) ∀u, v ∈ 
. (5.1)

• for every N ∈ N, every u1, . . . , uN ∈ 
 and c1, . . . , cN ∈ H it holds that

N∑
�, j=1

c̄�K(u�, u j )c j ≥ 0. (5.2)

From (5.1) it is clear that for any choice of the variables, the sum in (5.2) is a real
number.

Associated withK(u, v) there exists a uniquely defined reproducing kernel quater-
nionic (right)-Hilbert space H(K).

Definition 5.2 A quaternionic Hilbert space H(K) of quaternionic valued functions
defined on a set 
 is called reproducing kernel quaternionic Hilbert space if

• for every v ∈ 
 and c ∈ H the function u �→ K(u, v)c belongs toH(K),
• for every f ∈ H(K), u ∈ 
 and c ∈ H it holds that

c̄ f (v) = 〈 f (.),K(., v)c〉H(K).

It is possible to characterize a function belonging to H(K), see next result originally
proved in [15, Prop. 9.4]
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Lemma 5.3 Let us a consider the space H(K) a reproducing kernel quaternionic
Hilbert space,with reproducing kernel the functionK(u, v). Then, a function f belongs
toH(K) if and only if there exists a constant M > 0 such that

K(u, v)− f (u) f (v)

M2 ≥ 0.

In the previous equality M := ‖ f ‖H(K).

An example of reproducing kernel quaternionic Hilbert space is the Hardy space.
The aim of this section is to recall and study the main properties of the Hardy space

defined through the Clifford-Appell polynomials. This space was already considered
in [32], but in this paper we show more properties. We denote by B the unit ball inR4

B := {x ∈ R
4 : x20 + x21 + x22 + x23 < 1}.

To state the next result we introduce the notation

f m�GCK = f �GCK f �GCK . . .�GCK f︸ ︷︷ ︸
m−times

.

Lemma 5.4 The function

K(x, y) =
∞∑

m=0
Q1(x)

m�GCKQ1(y)
m�GCK

, (5.3)

is absolutely convergent for x, y ∈ B.

Proof The convergence follows by (2.10), indeed we have

|K(x, y)| ≤
∞∑

m=0
|Q1(x)

m�GCK ||Qm�GCK
1 (y)| ≤

∞∑
m=0

|xy|m . (5.4)

By the behaviour of the geometric series (5.4) converges if x , y ∈ B. ��
By using the generalized CK-inverse, we have the following result.

Lemma 5.5 The functionK(x, y), introduced in (5.3), for x, y ∈ B, can be written as

K(x, y) = (1−Q1(x)Q1(y))
−�GCK ,

where the generalized CK-extension is with respect to the variable x.

Proof We set α(y) := Qm�GCK
1 (y) and we recall that Q1(x) = GCK [xm0 ]. Then we

get

K(x, y) =
∞∑

m=0
Q1(x)

m�GCK α(y)



   41 Page 30 of 59 D. Alpay et al.

= GCK

[ ∞∑
m=0

xm0 α(y)

]
.

Since x , y ∈ B we can write

K(x, y) = GCK

[ ∞∑
m=0

xm0 α(y)

]

= GCK [(1− xm0 α(y))−1]
= (1−Q1(x)Q1(y))

−�GCK .

��
Definition 5.6 The kernel in (5.3) is associatedwith a reproducing kernel Hilbert space
called Hardy space. This will be denoted by H2(B).

Following [32] we recall a characterization of the Hardy space

Theorem 5.7 The Hardy space H2(B) consists of functions of the form

f (x) =
∞∑

m=0
Qm(x) fm, { fm}m≥0 ⊂ H

where the coefficients satisfy the following condition

∞∑
m=0

| fm |2 <∞.

The norm of a function f in the Hardy space is given by ‖ f ‖H2(B) =∑∞
m=0 | fm |2.

Remark 5.8 Other different types ofHardy space can be studied in the noncommutative
setting. For example, in [16] the authors studied the so-called Drury-Averson space.
The reproducing kernel of this space is given by

K (x, y) =
∑
m=0

∑
|ν|=m

|ν|!
ν! ξ(x)νξ

ν
(y)

= (1− ξ1(x)ξ1(y)− ξ2(x)ξ2(y)− ξ3(x)ξ3(y))
−�CK

The convergence of the previous sum is guaranteed if x , y belong the ellipsoid E :=
{x ∈ R

4 : 3x20 + x21 + x22 + x23 < 1}.
In [8], the authors use the axially regular kernel defined by

KE ′(x, y) =
∞∑

m=0
P1(x)

m�CK P1(y)
m�CK

, (5.5)
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where x , y ∈ E ′ := {x ∈ R
4 : 9x20 + x21 + x22 + x23 < 1}. The function defined in

(5.5) is a reproducing kernel of the Hardy space defined in terms of the polynomials
Pn(x), see (4.10). We observe that the kernel (5.5) differs from the one used in this
paper since we use another type of Clifford-Appell polynomials, see (2.6). Moreover,
we make use of the GCK -product.

Finally, another hypercomplex setting where to consider the Hardy space is the
slice hyperholomorphic framework, see [3, 5]. In this case the reproducing kernel is

k(x, y) =
∑

xn ȳn = (1− 2y0x + |y|2x2)−1(1− xy)

= (1− x̄ ȳ)(1− 2x0 ȳ + |x |2 ȳ2)−1.

All the reproducing kernels and domains of the different Hardy spaces (or Drury-
Averson) in the non commutative settings are summarized in the following table.

Setting Reproducing kernel Domain

Slice hyperholomorphic
∑

pnq̄n B

Monogenic
∑

m=0
∑
|ν|=m |ν|!

ν! ξ(x)νξ
ν
(y) E

Axially regular (CK)
∑∞

m=0 P1(x)
m�CK P1(y)

m�CK E ′
Axially regular (GCK)

∑∞
m=0 Q1(x)

m�GCK Q1(y)
m�GCK

B

We recall from [32] that the counterpart of shift operator in our framework is given
by

MQ1 = Q1 �GCK f , f ∈ H2(B). (5.6)

In [32, Thm. 6.8] the authors proved that the adjoint of the previous operator is the
so-called backward-shift operator and it is defined in the following way

M∗
Q1

( f )(x) =
∞∑

m=0
Qm(x) fm+1. (5.7)

Lemma 5.9 The operator defined in (5.7) for functions in H2(B) coincides with R0 f
introduced in (4.5).

Proof Let us consider the axially regular function on B

f (x) =
∞∑

m=0
Qm(x) fm .
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This implies that

f (x)− f (0) =
∞∑

m=1
Qn(x) fm .

Therefore, we have that

(R0 f )(x) =
∞∑

m=1
Qm−1(x) fm =M∗

Qm
1
( f )(x).

��
Lemma 5.10 Let f ∈ H2(B). The operator MQ1 is an isometry in the Hardy space.
Moreover, we have

MQ1M∗
Q1

f (x) = f (x)− f (0), f ∈ H2(B). (5.8)

Proof It is easy to prove that the shift operator is an isometry on the Hardy space. By
formula (5.7) we have

MPn
1
M∗

Pn
1
f (x) = Q1(x)�GCK

( ∞∑
m=0

Qn(x) fm+1

)

=
∞∑

m=0
Qm+1(x) fm+1

= f (x)− f (0).

��
Now we can define the point evaluation map in the Hardy space as C f = f (0).

The adjoint operator is defined as C∗u = K(., 0)u = u. Then by the equality (5.8) we
get

I −MQ1M∗
Q1
= C∗C . (5.9)

Remark 5.11 Astructural equality like the one in (5.9) is also obtained in the framework
of Clifford-Appell polynomials in [8] but with the operator of multiplication by P1.

In this table we sum up the main structural identities in the quaternionic setting.

6 Schur multipliers

We recall that, in the complex setting, a Schur multiplier is a function s that satisfies
one of the following conditions, see [1].
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Setting Structural identity

Slice hyperholomorphic I −MpM∗
p = C∗C

Regular I −MξM∗
ξ = C∗C

Axially regular (CK) I −MP1M∗
P1
= C∗C .

Axially regular (GCK) I −MQ1M∗
Q1

= C∗C .

Theorem 6.1 The following are equivalent

1. The function s is analytic and contractive in the open unit disk.
2. The function s is defined inDand the operator ofmultiplication by s is a contraction

from the Hardy complex Hardy space into itself.
3. The function s is defined in D and the kernel

ks(z, w) =
∞∑
n=0

zn(1− s(z)s(w))wn = 1− s(z)s(w)

1− zw̄

is positive definite in the open unit disk.

In the literature Schur multipliers are related to several research directions: inverse
scattering (see [12, 13, 20, 26]), fast algorithms (see [42, 43]), interpolation problems
(see [33]) among others.

In [3, 5] the authors defined a counterpart of the Schurmultipliers in the quaternionic
setting byusing the theory of slice hyperholomorphic functions.Also in this framework
it is possible to show a list of equivalent conditions characterising Schur multipliers,
see [5, Thm. 6.2.5].

In [17] Schur multipliers were introduced in the regular setting using the Cauchy–
Kovalevskaya product and series of Fueter polynomials. Precisely, a function S is a
Schur multiplier in the regular setting if the kernel

KS(x, y) =
∞∑
k=0

∑
|ν|=k

ξν(x)ξν(y)− (s �CK ξν)(x)(s �CK ξν)(y),

is positive.
Inspired from this definition, we give the definition of Schur multipliers in the

present framework. We note that in [8] Schur multipliers have been defined in the
axially regular setting by using the polynomials defined in (4.10) and the CK-product
but, as we discussed in the previous sections, the description via the CGK-product and
the polynomials Qn(x) has more advantages.

Definition 6.2 A function S : B→ H is a Schur multiplier if the kernel

KS(x, y) =
∞∑
n=0

(
Qn(x)Qn(y)− (S �GCK Qn)(x)(S �GCK Qn)(y)

)

is positive in B× B.
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The reproducing kernel Hilbert space with reproducing kernel KS(x, y) will be
denoted by H(S). This space was first introduced in [28, 29].

In this paper we use the following notion for the multiplicative operator

Definition 6.3 Let S : B → H be a generic function. The left �GCK -multiplication
operator by S is defined as

MS : f �→ S �GCK f .

If we consider a function regular in the unit ball B and written in the form f (x) =∑∞
k=0 Qk(x) fk , with fk ∈ H, we can write the operator MS in the following way

( f �GCK S)(x) =
∞∑
k=0

(S(x)�GCK Qk(x)) fk . (6.1)

Remark 6.4 In order to define the operator MS we need to request that the function
S has a restriction to the real axis which is real analytic. Moreover, we observe that
since if the operatorMS maps H2(B) into itself, then we have that S =MS belongs
to the Hardy space H2(B).

Theorem 6.5 A function S : B→ H is a Schur multiplier if and only if the operator
MS is a contraction on H2(B).

Proof Let us start by supposing that the operatorMS is a contraction. By the formula
of the reproducing kernel of Hardy space, see formula (5.3), and (6.1) we obtain

MSK(., y) =
∞∑
k=0

(
S(x)�x

GCK Qk(x)
)Qk(y).

By using the reproducing kernel property we have that

(M∗
SK(., y))(x) = 〈M∗

SK(., y),K(., x)〉H2(B)

= 〈K(., y), S �y
GCK K(., x)〉H2(B)

= S(y)�y
GCK K(y, x)

= S(y)�y
GCK

∞∑
k=0

Qk(y)Qk(x)

=
∞∑
k=0

(
S(y)�y

GCK Qk(y)
)Qk(x)

=
∞∑
k=0

Qk(x)
(
S(y)�y

GCK Qk(y)
)
. (6.2)
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This formula implies that

〈(I −MSM∗
S)K(., y),K(., x)〉H2(B) = 〈K(., y),K(., x)〉H2(B)

−〈MSM∗
SK(., y),K(., x)〉H2(B)

=
∞∑
k=0

Qk(x)Qk(y)−
∞∑
k=0

(S �GCK Qk) (x)(S �GCK Qk) (y).

Now, we consider a function f ∈ H2(B) of the form

f =
r∑

i=1
K(., xi )αi , r ∈ N, xi ∈ B, αi ∈ H. (6.3)

Therefore, we have

〈(I −MSM∗
S) f , f 〉H2(B) = 〈 f , f 〉H2(B) − 〈M∗

S f ,M∗
S f 〉H2(B)

=
r∑

i, j=1
αiK(xi , x j )α j

−
r∑

i, j=1

∞∑
k=0

αi (S �GCK Qk) (x)(S �GCK Qk) (y)α j

=
r∑

i, j=1
αi KS(xi , x j )α j . (6.4)

Since the operator MS is a contraction we have that 〈(I −MSM∗
S) f , f 〉H2(B) is

non negative. this implies that the quadratic form defined in (6.4) is non negative, then
the kernel KS is positive.

Now, we suppose that the kernel KS is positive on B× B. Firstly, we observe that
the function defined in (6.2) belongs toH2(B) for each fixed y ∈ B, since the operator
M∗

S maps H2(B) to H2(B). This implies that the following operator

T : H2(B) → H2(B), K(., y) �→
∞∑
k=0

Qk(x)
(
S(y)�y

GCK Qk(y)
)

is well defined. It is possible to consider an extension by linearity of the previous
operator to functions f of the form (6.3). Such type of functions are dense in H2(B),
and so we get that we can extend by continuity the operator T to all of H2(B). Using
this density argument and formula (6.4), where instead of the operatorM∗

S we consider
the operator T , by the positivity of KS we get that T is a contraction on H2(B). Now,
we compute the adjoint of the operator T . Let c1, c2 ∈ H and y1, y2 ∈ B, then we get

c2(T
∗K(y1, .)c1)(y1) = 〈T ∗K(y1, .)c1,K(., y2)c2〉H2(B)

= 〈K(y1, .)c1, T (K(., y2)) c2〉H2(B)
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=
〈
K(y1, .)c1,

∞∑
k=0

Qk(x)
(
S(y2)�y2

GCK Qk(y2)
)
c2

〉

H2(B)

= c2

( ∞∑
k=0

(
S(y2)�y2

GCK Qk(y2)
)Qk(y1)c1

)

= c2 (MS(K(., y2)c1)) .

Thus we get that T ∗ =MS . Since the operator T is a contraction also its adjoint is a
contraction. This implies that the operator MS is a contraction. ��

Another characterization of Schur multipliers is the following.

Theorem 6.6 A function S : B→ H is a Schur multiplier if and only if S belongs to
AM(B) and for all n ≥ 0 we have

In+1 − LnL
∗
n ≥ 0,

where Ln is the lower triangular Toeplitz matrix given by

Ln :=

⎛
⎜⎜⎜⎜⎜⎜⎝

S0 0 . . . 0
S1 S0 . . . .

. . . . . .

. . . . . .

. . . . . 0
Sn . . . S1 S0

⎞
⎟⎟⎟⎟⎟⎟⎠

S(x) =
∞∑
k=0

Qk(x)Sk . (6.5)

Proof We assume that S is a Schur multiplier. Computations similar to those done in
(6.2) show that for S written as in (6.5) we have, for all k ≥ 0, that

M∗
S : Qk(x) �→

k∑
j=0

Q j (x)Sk− j ,

which extends by linearity to

M∗
S : f (x) =

n∑
k=0

Qk(x) fk �→
n∑

k=0

⎛
⎝

n∑
j=k

S j−k f j

⎞
⎠ .

If we set f := [ f0, . . . , fn]T and by the shape of the matrix Ln we get

‖ f ‖2H2(B) − ‖M∗
S f ‖2H2(B) =

n∑
k=0
| fk |2 −

n∑
k=0

∣∣∣∣∣∣
n∑
j=k

S j−k f j

∣∣∣∣∣∣

2

= f∗(In+1 − LnL
∗
n)f . (6.6)
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ByTheorem 6.5 we know thatMS is a contraction onH2(B) (thus alsoM∗
S), hence

(6.6) is nonnegative for every f ∈ H
n+1. This means In+1− LnL∗n is positive definite.

Conversely, we assume that In+1 − LnL∗n ≥ 0, for each n ≥ 1. By (6.6) we have
that the operator M∗

S acts contractively on functions of the form
∑∞

k=0 Qk(x) fk .
However, this type of functions are dense in H2(B), then the operators MS and M∗

S
are contractions. The thesis follows by Theorem 6.5. ��
Lemma 6.7 Let S1, S2 and S be Schur multipliers. Then we have the following equal-
ities

(1) MS1MS2 =MS1�GCK S2
(2) MQ1MS =MSMQ1 .

Proof (1) We observe that S1�GCK S2 is an axially regular functionwith an expansion
in series in terms of the polynomials {Qn(y)}n≥0. Then we get

MS1MS2( f ) =MS1(S2 �GCK f )

= (S1 �GCK S2)�GCK f

=MS1�GCK S2

(2) Let us consider a function f =∑∞
n=0 Qn(x)αn , with {αn}n∈N0 ∈ H. Then by the

fact that the generalized CK-product is a convolution product and (5.6) we have

MQ1MS( f ) = Q1 �GCK (MS f )

= Q1 �GCK (S �GCK f )

= Q1 �GCK

( ∞∑
n=0

(Qn(x)�GCK S)αn

)

=
∞∑
n=0

(Qn+1 �GCK S)(x)αn

=MS

( ∞∑
n=0

Qn+1(x)αn

)

=MS(Q1 �GCK f )

=MSMQ1( f ).

��
Now, we show the counterpart of Schwarz’s lemma for Schur multipliers in this

framework.

Theorem 6.8 Let S be a Schur multiplier, and assume that S(0) = 0. We set S(x) =
(S(1) �GCK Q1)(x). Then S(1) is a Schur multiplier.
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Proof Since by hypothesis S(0) = 0 we have that 1 = KS(x, 0) ∈ H(S) and
KS(0, 0) = 1 = ‖1‖H(S). Hence by Lemma 5.3 (with the function f ≡ 1) we
have that

KS(x, y)− 1 ≥ 0,

in B. By Definition 6.2 we have that

∞∑
n=0

(
Qn(x)Qn(y)− (S(1) �GCK Qn+1)(x)(S(1) �GCK Qn+1)(y)

)
≥ 1.

Since Q0(x) = Q0(y) = 0 we have that

∞∑
n=1

Qn(x)Qn(y)−
∞∑
n=0

(S(1) �GCK Qn+1)(x)(S(1) �GCK Qn+1)(y) ≥ 0.

By changing index to the first sum we get

Q1(x) �x
GCK

( ∞∑
n=0

Qn(x)Qn(y)− (S(1) �GCK Qn)(x)(S(1) �GCK Qn)(y)

)

�y
GCKQ1(y) ≥ 0.

This implies that

∞∑
n=0

Qn(x)Qn(y)− (S(1) �GCK Qn)(x)(S(1) �GCK Qn)(y) ≥ 0.

Therefore, by Definition 6.2 we get the thesis. ��
Finally, we conclude this section with a characterization of the space H(S). The

proof is as in the classic case, see [9, 14].

Theorem 6.9 Let S be a Schur multiplier. Then

H(S) = range{
√
I −MSM∗

S}

endowed with the norm

‖(
√
I −MSM∗

S) f ‖H(S) = ‖(I − π) f ‖H2(B),

where π is the orthogonal projection on Ker(
√
I −MSM∗

S).
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7 Realizations of Schur multipliers

In the case of holomorphic and slice hyperholomorphic functions the realizations and
the Schur multiplier are related to each other, see [3, 5], respectively. The aim of this
section is to get a similar results in the framework of Clifford-Appell polynomials.

We start by recalling the following notion.

Definition 7.1 A realization is called observable, or closely outer-connected, if the
pair (C, A) ∈ H

N×N ×H
M×M is observable, i.e.

∞⋂
n=1

ker(CAn) = {0}.

Theorem 7.2 Let us consider a function S : B → H. Then S is a Schur multiplier
if and only if there exists a right quaternionic Hilbert space H(S) and a coisometric
operator

(
A B
C C

)
: H(S)⊕H→ H(S)⊕H (7.1)

such that

S(x) =
∞∑
n=0

Qn(x)Sn, (7.2)

where

Sn =
{
D, n = 0

CAn−1B, n = 1, 2, . . .
(7.3)

If we assume that (C, A) are closely outer-connected, then the realization S is unique
up to an an isometry of right quaternionic Hilbert spaces.

By Theorem 4.8 we can write the Schur multiplier S of the previous theorem as

S(x) = D + C �GCK (I −Q1(x)A)−�GCK �GCK (Q1(x)B). (7.4)

In order to show the previous theorem we need to show some technical lemmas. We
will use the following notation �S := I −MSM∗

S . We recall that for h, g ∈ H2(B)

we have the following relations

〈�Sh, �Sg〉H(S) = 〈�Sh, g〉H2(B) (7.5)

〈√�Sh, �Sg〉H(S) = 〈
√

�Sh, g〉H2(B), (7.6)

see for instance [6, 34]. To show the next results we use a similar method applied in
[11], suitably adapted.
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Lemma 7.3 Let S be a Schur multiplier. Then for x1, x2 ∈ B we have the following
equality

〈�SM∗
Q1
K(., x1), �SM∗

Q1
K(., x2)〉H(S) = KS(x2, x1)− 1+ S(x2)S(x1).

Proof First of all we observe that by (5.7) we have

M∗
Q1

K(x2, x1) =M∗
Q1

( ∞∑
n=0

Qn(x2)Qn(x1)

)

=
∞∑
n=0

Qn(x2)Qn+1(x1), (7.7)

and

MQ∗
1
M∗

SK(x2, x1) =M∗
Q1

( ∞∑
n=0

Qn(x2)(S �GCK Qn)(x1)

)

=
∞∑
n=0

Qn(x2)(S �GCK .Qn+1)(x1). (7.8)

By formulas (7.5), (7.7) and (7.8) we have that

〈�SM∗
Q1

K(., x1), �SM∗
Q1

K(., x2)〉H(S) = 〈(I −MSM∗
S)M∗

Q1
K(., x1),

M∗
Q1

K(., x2)〉H2(B).

Now, by the second point of Lemma 6.7 and Definition 6.2 we get
〈�SM∗

SK(., x1), �SM∗
Q1

K(., x2)〉H(S)

= 〈M∗
Q1

K(., x1),M∗
Q1

K(., x2)〉H2(B) − 〈M∗
Q1

M∗
SK(., x1),M∗

Q1
M∗

SK(., x2)〉H2(B)

=
∞∑
n=0

Qn+1(x2)Qn+1(x1)−
∑
n=0

(S �GCK Qn+1)(x2)(S �GCK Qn+1)(x1)

=
∞∑
n=0

Qn(x2)Qn(x2)−Q0(x2)Q0(x1)

−
∞∑
n=0

(S �GCK Qn)(x2)(S �GCK Qn)(x1)+ S(x2)S(x1)

= KS(x2, x1)− 1+ S(x2)S(x1).

��
In the next result we will use the following notation

ωyu := �SM∗
Q1

K(., u)y y ∈ H, u ∈ B.
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Note thatωyu is well defined sinceMQ1 is a bounded operator fromH2(B) into itself.

Lemma 7.4 The right vector subspace of (H(S)⊕H)× (H(S)⊕H) spanned by the
pairs

((
ωyu
v

)
,

(
Â(ωyu)+ B̂(v)

Ĉ(ωyu)+ D̂(v)

))

where

Â(ωyu) := (KS(x, y)− KS(x, 0)) u, B̂u := KS(x, 0)u

Ĉ(ωyu) :=
(
S(x)− S(0)

)
u, D̂u := S(0)u,

defines an isometric relation R

R :=
(
Â B̂
Ĉ D̂

)
,

with dense domain.

Proof Firstly we show that the relation R is an isometry. Precisely, we have to show
that

〈
R

(
ωy1u1

v1

)
, R

(
ωy2u2

v2

)〉

H(S)⊕H
=

〈(
ωy1u1

v1

)
,

(
ωy2u2

v2

)〉

H(S)⊕H
, (7.9)

where u1, u2, v1, v2 ∈ H(S) and y1, y2 ∈ B. We can write relation (7.9) as

〈(
Â(ωy1u1)+ B̂(v1)

Ĉ(ωy1u1)+ D̂(v1)

)
,

(
Â(ωy2u2)+ B̂(v2)

Ĉ(ωy1u1)+ D̂(v1)

)〉

H(S)⊕H

=
〈(

ωy1u1
v1

)
,

(
ωy2u2

v2

)〉

H(S)⊕H
. (7.10)

By using Lemma 7.3 we write the term on the right hand side of (7.10) in the following
way

〈(
ωy1u1

v1

)
,

(
ωy2u2

v2

)〉

H(S)⊕H
= ū2KS(y2, y1)u1 − ū2u1 + ū2S(y2)S(y1)u1 + v̄2v1.

(7.11)

We can write the term on the left hand side as

ū2KS(y2, y1)u1 − ū2KS(y2, 0)u1 − ū2KS(0, y1)u1
+ū2KS(0, 0)u1 + ū2KS(y2, 0)v1 − ū2KS(0, 0)v1
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+v̄2KS(0, y1)u1 − v̄2KS(0, 0)u1 + v̄2KS(0, 0)v1 + ū2S(y2)S(y1)u1
−ū2S(y2)S(0)u1 − ū2S(0)S(y1)u1
+ū2S(0)S(0)u1 + ū2S(y2)S(0)v1 − ū2S(0)S(0)v1 + v̄2S(0)S(y1)u1
−v̄2S(0)S(0)u1 + v̄2S(0)S(0)v1. (7.12)

By Definition 6.2 we observe that

KS(0, 0) = I − S(0)S(0).

This implies that

ū2KS(0, 0)u1 + ū2S(0)S(0)u1 = ū2u1,

ū2KS(0, 0)v1 + ū2S(0)S(0)v1 = ū2v1,

v̄2S(0)S(0)u1 + v̄2KS(0, 0)u1 = v̄2u1,

v̄2KS(0, 0)v1 + v̄2S(0)S(0)u1 = v̄2v1.

Then by using

KS(y2, 0) = I − S(y2)S(0),

KS(0, y1) = I − S(0)S(y1),

we can write (7.12) in the following way

ū2KS(y2, y1)u1 − ū2u1 + ū2S(y2)S(0)u1 − ū2u1 + ū2S(0)S(q1)u1 + ū2v1
−ū2S(y2)S(0)v1

v̄2u1 − v̄2S(0)S(y1)u1 − ū2S(y2)S(0)u1 − ū2S(0)S(y1)u1
+ū2S(y2)S(y1)u1 − ū2S(y2)S(0)u1
+ū2S(y2)S(0)v1 + v̄2S(0)S(y1)u1 + v̄2v1 + ū2u1 − ū2v1 − v̄2u1
= ū2KS(y2, y1)u1 − ū2u1 + ū2S(y2)S(y1)u1 + v̄2v1. (7.13)

Since (7.11) and (7.13) are equal we get that the relation R is an isometry.
Now, we show that the relation R has a dense domain. Let us consider (ω0, ω1) ∈

H(S)×H2(B) be orthogonal to the domain of R, where

ω0 :=
(
f0
v0

)
∈ H(S) ω1 :=

(
�SM∗

Q1
K(., y)u
v

)
∈ H2(B),

with f0 := √�Sh ∈ H(S), h ∈ H2(B). If we first consider u = 0 we get v0 = 0. If
now we consider that v = 0 from the orthogonality of ω0 and ω1 we get

〈√�Sh, �SM∗
Q1

K(., y)u〉H(S) = 0. (7.14)
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By formula (7.6), (5.7) and the reproducing kernel property of H2(B) we have

〈√�Sh, �SM∗
Q1

K(., y)u〉H(S) = 〈
√

�Sh,M∗
Q1

K(., y)u〉H2(B)

= 〈MQ1

√
�Sh,K(., y)u〉H2(B)

= ūMQ1

(√
�h

)
(x)

= ū
(
Q1 �GCK

√
�Sh

)
(x).

By combining (7.14) and (7.15) we get

(Q1 �GCK f0)(x) = 0.

This implies that f0(x) = 0. This concludes the proof. ��
Proposition 7.5 The relation R is the graph of a densely defined isometry. Moreover,
its extension toH(S)⊕H is defined as

(
A B
C D

)∗
: H(S)⊕H→ H(S)⊕H.

Then

(A f )(y) := (R0 f )(y), (7.15)

(Bv)(y) :=
{
Q1(x)−�GCK �GCK (S(x)− S(0)) v, p �= 0

s1, p = 0

C f = f (0), (7.16)

Dv = S(0)v.

Proof First we prove that R is the graph of a densely defined isometry. By definition,
the domain R is the set of U ∈ H(S) ⊗ H such that there exists V ∈ H(S) ⊕ H

such that (U , V ) ∈ R. By Lemma 7.4 we know that R has a dense domain. Thus we
introduce a densely defined operator W such that WU = V . Now, we assume that
there exists V1 and V2 such that TU = V1 and TU = V2. Then if (U , V1) ∈ R and
(U , V2) ∈ R then (0, V1 − V2) ∈ R. Since by Lemma 7.4 we know that the relation
R is an isometry we get ‖0‖ = ‖V1 − V2‖. This implies that V1 = V2. Therefore
W is a densely defined isometry. As in the complex Hilbert spaces, it extends to an
everywhere defined isometry.
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Now, we compute the operator T . Let y ∈ B and u ∈ H2(B) and we assume that
B∗ = B̂ is bounded from H(S) toH(S) then we have

A∗
(
�SM∗

Q1
K(., y)u

)
= (KS(., y)− KS(., 0))u.

On one side, for g ∈ H(S), by the reproducing kernel property we have

〈A∗�S R0K(., y), g〉H(S) = 〈KS(., y)− KS(., 0), g〉H(S)

= g(y)− g(0). (7.17)

On the other side we have that

〈A∗�S R0K(., y), g〉H(S) = 〈�S R0K(., y), Ag〉H(S).

Now, we set Ag = √�Sh, with h being not unique. By formula (7.5) and the repro-
ducing kernel property of the space H2(B) we have

〈�S R0K(., y), Ag〉H(S) = 〈�S R0K(., y),
√

�Sh〉H(S)

= 〈R0K(., y),
√

�Sh〉H(B)

= 〈K(., y), R∗0 Ag〉H(B)

= 〈K(., y),MQ1 Ag〉H(B)

=MQ1 Ag(y). (7.18)

By putting together (7.17) and (7.18) we get

(MQ1 Ag)(y) = g(y)− g(0).

By formula (2.12) we get

(Ag)(y) := (R0 f )(y).

Similarly, we compute the operator Bv, for v ∈ H2(B). We have that

B∗�SMQ1K(., y)u =
(
S(x)− S(0)

)
u.

On one side we get

〈v, B∗�SMQ1K(., y)u〉H(S) = ū (S(x)− S(0)) v. (7.19)

On the other side we have

〈v, B∗�SMQ1K(., y)u〉H(S) = 〈Bv, �SM∗
Q1

K(., y)u〉H(S).
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Now we set Bv := √
�Sh. Therefore, by using formula (7.5) and the reproducing

kernel of the space H2(B) we obtain

〈√�Sh, �SMQ1K(., y)u〉H(S) = 〈
√

�Sh,M∗
Q1

K(., y)u〉H2(B)

= 〈MQ1

√
�Sh,K(., y)u〉H2(B)

= ū (Q1 �GCK Bv) (y). (7.20)

By putting together formula (7.19) and (7.20) we obtain

(Bv)(y) = Q1(x)
−�GCK �GCK (S(x)− S(0)) v.

Now we compute the operator B. To do this we note that

C∗u = KS(., 0)u,

for every u ∈ H2(B). Then, for f ∈ H(S) we have

〈C( f ), u〉H(S) = 〈 f ,C∗u〉H(S)

= 〈 f , KS(., 0)u〉H(S)

= ū f (0).

Hence we have C( f ) = f (0). Finally, it is obvious that D = S(0). ��
Proof of Theorem 7.2 We observe that the pair (C, A) is closely outer connected, see
(7.15) and (7.16). A generic function f ∈ H(S) can written with the following power
series

f (x) =
∞∑
n=0

Qn(x) fn .

We have the expression for the coefficients of f

fn := CAn f , n = 0, 1, 2, . . .

Then we obtain

f (x) = C �GCK (I −Q1(x)A)−�GCK �GCK f .

Finally we apply this formula to Bv, where v ∈ H2(B), then we get

(S(x)− S(0)) v = (I −Q1(x)A)−�GCK �GCK (Q1(x)B)v.
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Now, we show the converse. We assume that the function S has the form (7.2) with
coefficients defined (7.3). First of all we show the following formula for x , y ∈ B

1− S(x)S(y) = U (x)(U (y))∗ − (Q1(x)�GCK U (x))
(
U (y)∗ �GCK Q1(y)

)
,

(7.21)

where the function U is defined as

U (x) =
∞∑
n=0

Qn(x)CAn . (7.22)

Then we have

1− S(x)S(y) = 1−
(
D +

∞∑
n=1

Qn(x)CAn−1B
)(

D +
∞∑

m=1
Qm(y)CAm−1B

)∗

= 1− DD∗ −
∞∑

m=1
DB∗(Am−1)∗C∗Qm(y)−

∞∑
n=1

Qn(x)CAn−1BD∗

−
∞∑

n,m=1
Qn(x)C(An−1)BB∗(Am−1)∗C∗Qm(y). (7.23)

Since the operator matrix (7.1) is coisometric we have that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

I − DD∗ = CC∗

DB∗ = −CA∗

BD∗ = −AC∗

BB∗ = I − AA∗.

These imply that we can write formula (7.23) in the following way

1− S(x)S(y) = CC∗ +
∞∑

m=1
C(Am)∗C∗Qm(y)+

∑
n=1

Qn(x)CAnC∗

−
∞∑

m,n=1
Qn(x)CAn−1(I − AA∗)(Am−1)∗C∗Qm(y).

(7.24)

Now, we observe that

U (x)(U (y))∗ =
∞∑

m,n=0
Qn(x)CAn(A∗)mC∗Qm(y)
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=
∞∑
n=0

Qn(x)CAnC∗ +
∞∑

m=1,n=0
Qn(x)CAn(A∗)mG∗Qm(y)

= CC∗ +
∞∑
n=1

Qn(x)CAnC∗ +
∞∑

m=1
C(Am)∗C∗Qm(y)

+
∞∑

m=1,n=1
Qn(x)CAn(A∗)mC∗Qm(y), (7.25)

and

(Q1(x)�GCK U (x))
(
U (y)∗ �GCK Q1(y)

)
=

∞∑
m,n=0

Qn+1(x)CAn(Am)∗C∗Qm+1(y)

=
∞∑

m,n=1
Qn(x)CAn−1(Am−1)∗C∗Qm(y).

(7.26)

By inserting (7.25) and (7.26) in (7.24) we get the expression (7.21). Now, from
(7.21) we obtain that

KS (x, y) =
∞∑
n=0

Qn(x)Qn(y)−
∞∑
n=0

(S �GCK Qn)(x)(S �GCK Qn)(y)

= 1− S(x)S(y)+
∞∑
n=1

Qn(x)Qn(y)−
∞∑
n=1

(S �GCK Qn)(x)(S �GCK Qn)(y)

= U (x)(U (y))∗ − (Q1(x)�GCK U (x))
(
U (y)∗ �GCK Q1(y)

)
+

∞∑
n=1

Qn(x)Qn(y)

−
∞∑
n=1

(S �GCK Qn)(x)(S �GCK Qn)(y).

By making the generalized CK multiplication of the formula (7.21) from the left
with Qn(x) and on the right by Qn(y) we get

(S �GCK Qn)(x)
(
S �GCK Qn

)
(y) = Qn(x)Qn(y)− (Qn(x)�GCK U (x))(

(U (y))∗ �GCK Qn(y)
)

+ (Qn+1(x)�GCK U (x))(
U (y)∗ �GCK Qn+1(y)

)
.

These imply that

KS(x, y) = U (x)(U (y))∗ − (Q1(x)�GCK U (x))
(
U (y)∗ �GCK Q1(y)

)



   41 Page 48 of 59 D. Alpay et al.

+
∞∑
n=1

(Qn(x)�GCK U (x))
(
(U (y))∗ �GCK Qn(y)

)

−
∞∑
n=1

(Qn+1(x)�GCK U (x))
(
U (y)∗ �GCK Qn+1(y)

)

= U (x)(U (y))∗ +
∞∑
n=2

(Qn(x)�GCK U (x))
(
(U (y))∗ �GCK Qn(y)

)

−
∞∑
n=1

(Qn+1(x)�GCK U (x))
(
U (y)∗ �GCK Qn+1(y)

)

= U (x)(U (y))∗. (7.27)

Therefore we have that KS(x, y) is positive define in B, therefore by Definition 6.2
the function S is a Schur multiplier.

Now, we have to show the uniqueness of the claim. Let us consider two different
closely outer-connected coisometric realizations of S defined in the following way

S1 :
(
A1 B1
C1 D1

)
: H1(S)⊕H→ H1(S)⊕H

S2 :
(
A2 B2
C2 D2

)
: H2(S)⊕H→ H2(S)⊕H,

where H1(S) and H2(S) are different right quaternionic Hilbert spaces. In order to
show that S1 and S2 are equivalent we have to prove that there exists an unitary map
W : H1(S)⊕H→ H2(S)⊕H such that the following diagram is commutative

H1(S)⊕H H1(S)⊕H

H2(S)⊕H H1(S)⊕H

S1

W W

S2

(7.28)

This means that we have to show the following equalities

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

W A1 = A2W

WB1 = B2

C1 = C2W

D1 = D2

The last relation is obvious, because by Proposition 7.5 we know that D1 = D2 =
S(0). In order to show the other relations, we observe that by (7.27) we have

U1(x)(U1(y))
∗ = U2(x)(U2(y))

∗,
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where U1 and U2 are defined as in (7.22). Then, it follows that for nay m, n ∈ N0 we
get

C1A
n
1(A

m
1 )∗C∗1 = C2A

n
2(A

m
2 )∗C∗2 .

Since the pairs (C1, A1) and (C2, A2) are closely outer connected we get that the
following relation

(
(Am

1 )∗C∗1u, (Am
2 )∗C∗2u

)
, u ∈ H, m ∈ N0

is a densely defined isometric relation inH1(S)×H2(S) with dense range. Therefore
it is the graph of a unitary map U such that

W
(
(Bm

1 )∗C∗1u
) = (Bm

2 )∗C∗2u, m ∈ N0, u ∈ H. (7.29)

If we consider m = 0 in (7.29) we get

C1 = C2W . (7.30)

Using another time (7.29) we obtain

(W A∗1)
(
(A∗1)mC1

) = A∗2(A∗2)mC∗2 = A∗2WW ∗(A∗2)mC∗2 = (A∗2W )
(
(A∗1)mC1

)

= C2W .

Since the pairs (C1, A1) and (C2, A2) are closely outer-connected we get

W A1 = A2W (7.31)

Now, using (7.30) and (7.31) we get

Sn = C1A
n−1
1 B1

= C2A
n−1
2 B2

= C1W
∗An−1

2 B2

= C1A
n−1
1 W ∗B2.

By the fact that the pair (C1, A1) is closely outer connected we get WB1 = B2. This
concludes the proof. ��

8 Blaschke product: through the GCK-extension

In complex analysis the Blaschke factor is defined as

ba(z) =
(

a − z

1− zā

)
ā

|a| , a ∈ D.
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These kind of functions are very important in the study of invariant subspaces and
interpolation, see [33, 39]. In [7] a Blaschke factors and an interpolation problem in
the slice hyperholomorphic setting were studied.

Definition 8.1 Let a ∈ H, |a| < 1. The function

Ba(x) = (1− xā)−∗ ∗ (a − x)
ā

|a| ,

is called a slice hyperholomorphic Blaschke factor at a.

Remark 8.2 By the definition of ∗-product we have that

(1− xā)−∗ = (1− x̄a)(|x |2a2 − 2x0a + 1)−1.

This implies that we can write the Blaschke factor at a as

Ba(x) =
(
(1− xā)−∗ ∗ a − (1− xā)−∗ ∗ x) ā

|a|
= [

(1− x̄ ā)(|x |2ā2 − 2x0ā + 1)−1a − (1− x̄ ā)(|x |2ā2 − 2x0ā + 1)−1 ∗ x] ā

|a|
= [

(1− x̄ ā)(|x |2ā2 − 2x0ā + 1)−1a − (x − |x |2ā)(|x |2ā2 − 2x0ā + 1)−1
] ā

|a| .
(8.1)

Similarly to the holomorphic case also in the slice hyperholomorphic setting it is
possible to have a series expansion at the origin of the Blaschke factor at a.

Proposition 8.3 Let a ∈ B. Then it holds that

Ba(x) = |a| +
∞∑
n=0

xn+1ān+1
(
|a| − 1

|a|
)

.

A regular counterpart of the Blaschke factor is given in [16] for the quaternionic
Arverson space. Precisely, it is given by

Ba(x) =
(
1− ξν(a)(ξν(a))∗

) 1
2 (1− ξν(a)(ξν(a))∗)−�CK �CK (ξν(x)− ξν(a))

(1− (ξν(a))∗ξν(a))−
1
2 , a ∈ E,

where ξν are the Fueter polynomials defined in (2.2). In this section we introduce and
study the Blaschke products in the framework of the Clifford-Appell polynomials.

Definition 8.4 Let a ∈ H and |a| < 1. The function

Ba(x) = (1−Q1(x)ā)−�GCK �GCK (a −Q1(x))
ā

|a| (8.2)

is called Clifford-Appell-Blaschke factor at a.
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This definition leads to the following result.

Proposition 8.5 Let a ∈ H and |a| < 1. The Clifford-Appell-Blaschke factor Ba is an
axially regular function in B.

Remark 8.6 The Clifford-Appell-Blaschke factor in the Clifford-Appell setting can be
deduced as a particular example of Schur multiplier. Precisely, if we consider

(
A B
C D

)
=

(
ā

√
1− |a|2√

1− |a|2 −a

)
,

where a ∈ B, by formula (7.4) we get

Ba(x) = −a + (1−Q1(x)ā)−�GCK �GCK [Q1(x)(1− |a|2)]
= (1−Q1(x)ā)−�GCK �GCK (Q1(x)− a).

It is interesting to note that our definition leads to a series expansion of the Clifford-
Appell-Blaschke factor in terms of Clifford-Appell polynomials.

Proposition 8.7 Let a, x ∈ B. Then it holds that

Ba(x) = |a| +
∞∑
n=0

Qn+1(x)ān+1
(
|a| − 1

|a|
)

.

Proof We start by observing that

(1−Q1(x)a)−�GCK = GCK [(1− x0ā)−1]

= GCK

[ ∞∑
n=0

xn0 ā
n

]

=
∞∑
n=0

Qn(x)ā
n .

By Definition 8.4 we get

Ba(x) =
( ∞∑
n=0

Qn(x)ā
n

)
�GCK (a −Q1(x))

ā

|a|

=
∞∑
n=0

(Qn(x)ā
na −Qn+1(x)ān

) ā

|a|

=
∞∑
n=0

Qn(x)ā
n+1 a

|a| −
∞∑
n=0

Qn+1(x)ān+1
1

|a|

= |a| +
∞∑
n=1

Qn(x)ā
n+1 a

|a| −
∞∑
n=0

Qn+1(x)ān+1
1

|a|
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= |a| +
∞∑
n=0

Qn+1(x)ān+1
(
|a| − 1

|a|
)

.

This concludes the proof. ��
The result above implies the following.

Theorem 8.8 Let a ∈ H, |a| < 1. Then the Clifford-Appell-Blaschke factor Ba maps
the unit ball B into itself.

Proof We have to show that if |x | < 1 than |Ba(x)| < 1. By Proposition 8.7 and the
fact that in particular |Qn(x)| < |x |n , we have

|Ba(x)| < |a| +
∞∑
n=0

|Qn+1(x)||an+1|
(
|a| + 1

|a|
)

< |a| + |x ||a|
∞∑
n=0

|x |n|a|n
(
|a| + 1

|a|
)

= |a| + |xa|(1+ |a|
2)

|a|(1− |xa|)
= |a| + |x |

1− |xa| .

To prove that |Ba(x)| < 1 we have to prove that |a| + |x | < 1 − |a||x |, which is
equivalent to |a| + |x | < 1+ |a||x |. Taking the square we get

(|x |2 − 1)(1− |a|2) < 0.

The previous inequality follows from |x | < 1 and |a| < 1. ��
Theorem 8.9 Let Ba be a Clifford-Appell-Blaschke factor. The operator

Ma : f �→ Ba �GCK f

is an isometry from H2(B) into itself.

Proof We start by considering the functions f (x) = Qu(x)h and g(x) = Qv(x)k,
where u, v ∈ N0 and h, k ∈ H. We prove

〈Ba �GCK f ,Ba �GCK g〉H2(B) = δuv k̄h. (8.3)

By Theorem 8.7 and using f and g defined as above, we have

(Ba � f )(x) = Qu(x)h|a| +
∞∑
n=0

Qn+1+u(x)ān+1
(
|a| − 1

|a|
)
h
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and

(Ba � g)(x) = Qv(x)h|a| +
∞∑
n=0

Qn+1+v(x)ā
n+1

(
|a| − 1

|a|
)
k.

We begin by considering the case u = v, we have

〈Ba �GCK f ,Ba �GCK g〉H2(B) = k̄h

(
|a|2 +

∞∑
n=0

|a|2n+2
(
|a| − 1

|a|
)2

)

= k̄h

(
|a|2 + |a|2

1− |a|2
(
|a| − 1

|a|
)2

)

= k̄h

= 〈 f , g〉H2(B).

Now, we consider the case u < v, we have that

〈Qu(x)h|a|,Qv(x)k|a|〉H2(B) = 0

and

〈
Qu(x)h|a|,

∞∑
n=0

Qn+1+v(x)ā
n+1

(
|a| − 1

|a|
)
k

〉

H2(B)

= 0.

It follows that

〈Ba �GCK f ,Ba �GCK g〉H2(B)

=
〈 ∞∑
n=0

Qn+1+u(x)ān+1
(
|a| − 1

|a|
)
h,Qv(x)|a|k

〉

+
〈 ∞∑
n=0

Qn+1+u(x)ān+1
(
|a| − 1

|a|
)
h,

∞∑
m=0

Qm+1+v(x)ā
m+1

(
|a| − 1

|a|
)
k

〉

= |a|k̄āv−u
(
|a| − 1

|a|
)
h

+
〈 ∞∑
m=0

Qm+1+v(x)ā
m+1+v−u

(
|a| − 1

|a|
)
h,

∞∑
m=0

Qm+1+v(x)ā
m+1

(
|a| − 1

|a|
)
k

〉

= |a|k̄āv−u
(
|a| − 1

|a|
)
h + k̄

(
|a| − 1

|a|
)2

āv−u
∞∑

m=0
|a|2m+2h

= |a|k̄āv−u
(
|a| − 1

|a|
)
h + k̄

(
|a| − 1

|a|
)2

āv−u |a|2
1− |a|2 h

= 0

= 〈 f , g〉H2(B).
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The case v < u follows by using similar arguments. By continuity for f g ∈ H2(B)

we get

〈Ba �GCK f ,Ba �GCK g〉H2(B) = 〈 f , g〉H2(B).

This concludes the proof. ��

9 Blaschke factor through the Fueter map

Another way to define the Blaschke factor in the regular setting is to apply the Fueter
map to the slice hyperholomorphic Blaschke factor.

Definition 9.1 Let a ∈ H, |a| < 1. Let Ba(x) be the slice-hyperholomorphic Blaschke
factor at a. The Fueter-Blaschke factor at a is defined as �Ba(x) = B̆a(x).

Theorem 9.2 Let a ∈ H and |a| < 1. Then the Fueter-Blaschke factor can be written
as

B̆a(x) = �Ba(x) = 4(1− x̄ ā)(|x |2ā2 + 1− 2x0ā)−2(1− ā)
ā2

|a| .

Proof We apply the Laplace operator in four real variables to the slice hyperholomor-
phic Blaschke product, see (8.1). By formula (3.3) with c = 1 we get

�[(x − |x |2ā)Qx (ā)−1] = −4(1− x̄ ā)Qx (ā)−2ā,

Qx (ā)−1 := |x |2ā2 − 2x0ā + 1. (9.1)

Now, we have to compute

�[(1− x̄ ā)Qx (ā)−1].

We set

G(x) := (1− x̄ ā)Qx (ā)−1.

We start performing the derivation of G(x) with respect to x0, we get

∂G(x)

∂x0
= −āQx (ā)−1 − (1− x̄ ā)Qx (ā)−2(2x0ā2 − 2ā),

and

∂2G(x)

∂x20
= 2Qx (ā)−2(2x0ā2 − 2ā)ā + 2(1− x̄ ā)Qx (ā)−3(2x0ā2 − 2ā)2

−2(1− x̄ ā)Qx (ā)−2ā2.
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Now, we perform the computations with respect to the variables xi , with 1 ≤ i ≤ 3,
we get

∂G(x)

∂xi
= ei āQx (ā)−1 − (1− x̄ ā)Qx (ā)−22xi ā2,

and

∂2G(x)

∂x2i
= −4xi ei Qx (ā)−2ā3 + 8(1− x̄ ā)Qx (ā)−3ā4x2i − 2(1− x̄ ā)Qx (ā)−2ā2.

These computations imply that

�G(x) =
(

∂2

∂x20
+

3∑
i=1

∂2

∂x2i

)
G(x)

= 4x0Qx (ā)−2ā3 − 4Qx (ā)−2ā2 + 2(1− x̄ ā)Qx (ā)−3(4x20 ā4 + 4ā2 − 8x0ā
3)

−2(1− x̄ ā)Qx (ā)−2ā2 − 4xQx (ā)−2ā3 + 8(1− x̄ ā)Qx (ā)−3|x |ā4
−6(1− x̄ ā)Qx (ā)−2ā2

= 4x̄ Qx (ā)−2ā3 − 4Qx (ā)−2ā2 − 8(1− x̄ ā)Qx (ā)−2ā2 + 8|x |2(1− x̄ ā)Qx (ā)−3ā4

+8(1− x̄ ā)Qx (ā)−3ā2 − 16(1− x̄ ā)x0Qx (ā)−3ā3

= −12(1− x̄ ā)Qx (ā)−2ā2 + 8(1− x̄ ā)(|x |2ā2 − 2x0ā + 1)Qx (ā)−3ā2

= −12(1− x̄ ā)Qx (ā)−2ā2 + 8(1− x̄ ā)Qx (ā)−2ā2

= −4(1− x̄ ā)Qx (ā)−2ā2.

Therefore we have

�G(x) = −4(1− x̄ ā)Qx (ā)−2ā2. (9.2)

Finally, by putting together (9.1) and (9.2) we have

B̆a(x) = �Ba(x)

= 4
[
−(1− x̄ ā)Qx (ā)−2ā2ā2 + (1− x̄ ā)Qx (ā)−2ā

] ā

|a|
= 4(1− x̄ ā)Qx (ā)−2(1− ā)

ā2

|a| .

��
Theorem 9.3 Let a ∈ H, then we have

B̆a(x) = −2
∞∑
n=0

(n + 1)(n + 2)Qn(x)ā
n+2

(
|a| − 1

|a|
)

.
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Proof By Proposition 8.3 and from the fact that �(xn) = −2n(n − 1)Qn−2(x) for
n ≥ 2 we get

B̆a(x) = �Ba(x)

=
∞∑
n=1

�(xn+1)ān+1
(
|a| − 1

|a|
)

= −2
∞∑
n=1

(n + 1)nQn−1(x)ān+1
(
|a| − 1

|a|
)

= −2
∞∑
n=0

(n + 1)(n + 2)Qn(x)ā
n+2

(
|a| − 1

|a|
)

.

��
Theorem 9.4 Let a ∈ H and |a| < 1. Then the Fueter-Blaschke factor B̆a(x) satisfy
the following properties

1. it maps the unit ball B into itself.
2. it has a zero at x = a

|a|2 .

Proof 1. We have to show that if |x | < 1 then |B̆a(x)| < 1. By Theorem 9.3 and the
fact that |Qn(x)| < |x |n we get

|B̆a(x)| < 2
∞∑
n=1

(n + 1)(n + 2)|Qn(x)||a|n+2
(
|a| + 1

|a|
)

< |a|2
∞∑
n=1

(n + 1)(n + 2)|xa|n
(
|a| + 1

|a|
)

.

Now from the fact that
∑∞

n=1 n2|xa|n = −|xa|(|xa|+1)
(|ax |−1)3 and

∑∞
n=1 n|xa|n =

− |xa|
(|ax |−1)2 we get

|a|2
∞∑
n=1

(n + 1)(n + 2)|xa|n
(
|a| + 1

|a|
)

=
(
−|a|

2|xa|(1+ |xa|)
(|xa| − 1)3

+ 3
|a|2|ax |

(|ax | − 1)2
− 2

|a|2|xa|
(|xa| − 1)

)( |a|2 + 1

|a|
)

= 2|x ||a|2(1+ |a|2)(3|x ||a| − 3− |x |2|a|2)
(|xa| − 1)3

.

Now, since x , a ∈ B we get

2|x ||a|2(1+ |a|2)(3|x ||a| − 3− |x |2|a|2)
(|xa| − 1)3

<
2(1+ |a|2)|x |2|a|2

(1− |x ||a|)3 .
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To finish the proof we have to show that

2(1+ |a|2)|x |2|a|2
(1− |x ||a|)3 < 1.

Since 1
1+|a|2 < 1 we have to prove that

2|x |2|a|2
(1− |x ||a|)3 < 1.

This is equivalent to show the following inequality

3|x ||a| < 1+ |x |3|a|3 + |x |2|a|2.

The previous inequality is verified for all x , a ∈ B.
2. By Theorem 9.2 to study the zero of the function B̆a we need to study the zeros

of the polynomial 1− x̄ ā. It is obvious that the zeros of the previous polynomials
are given by x = ā−1 = a

|a|2 . ��
Remark 9.5 The Fueter-Blaschke factor at a does not satisfy an isometry property like
the one showed in Proposition 8.9.
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