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Abstract
We prove sharp upper bounds for the first and second non-trivial eigenvalues of the
Neumann Laplacian in two classes of domains: parallelograms and domains of con-
stant width. This gives in particular a new proof of an isoperimetric inequality for
parallelograms recently obtained by A. Henrot, A. Lemenant and I. Lucardesi.
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1 Introduction

We are concerned in this article with planar domains �, that is, open, bounded and
connected subsets of R2. We always assume that � is a Lipschitz domain, and we
consider the sequence

0 = μ1(�) < μ2(�) ≤ μ3(�) ≤ . . . ,
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consisting of the eigenvalues for the Neumann Laplacian, counted with multiplicities.
We recall that the corresponding eigenvalue problem is

{−�u = μu in �,
∂u
∂ν

= 0 on ∂�,

where ∂u
∂ν

denotes the outward-pointing normal derivative; in general, the derivative
on ∂� in the direction of ν is defined in a weak sense, see Sect. 2.

It was proved in 1954 by G. Szegő [12] that, among all simply-connected domains
of a given area, the disk is the unique maximizer of μ2(�). Equivalently, for simply-
connected domains � ⊂ R

2,

μ2(�)|�| ≤ μ2(D) π, (1.1)

where |�| denotes the area of � and D the unit disk in R
2. We can note that the

expression on the left-hand side of (1.1) is invariant under scaling of �. Inequality
(1.1) was extended to domains in any dimension, without the assumption of simple
connectedness, by H.F. Weinberger in 1956 [15]. Equality in (1.1) is attained only for
disks (in higher dimension, only for balls).

Following R.L. Laugesen and B. Siudeja [7], we investigate how large μ2(�) can
be when the perimeter is fixed, rather than the area. Equivalently, we look for upper
bounds of the product

L(�)2 μ2(�),

where L(�) denotes the perimeter of � (this product is also scaling-invariant). As
stressed by Laugesen and Siudeja in Problem 9.2 of the paper [7] and by Laugesen in
Problem 3, page 405 of the proceedings [14], this product is not maximized by disks.
Indeed, the known formulas for the Neumann eigenvalues of the unit disk D give

4π2 μ2(D) < 16π2,

while
L(�)2 μ2(�) = 16π2

when � is either a square or an equilateral triangle. In addition, Laugesen and Siudeja
proved that

L(T )2μ2(T ) ≤ 16π2,

for any triangle T , with equality only when T is equilateral [7, Theorem 3.1]. The
question asked by Laugesen in [14, p. 405, Problem 3] immediately suggests the
following conjecture.

Conjecture 1.1 For any convex domain � in R2,

L(�)2 μ2(�) ≤ 16π2,

and equality is attained only for squares and equilateral triangles.
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Besides the work of Laugesen and Siudeja mentioned above, Conjecture 1.1 was
verified by A. Raiko for parallelograms subject to certain geometrical restrictions [10,
Theorem 2]. As shown in [13, Section 3], [5, Proposition 3.3], [7, Problem 9.2] or
[9], the convexity hypothesis cannot be removed: one can construct sequences (�n)

of non-convex domains such that

L(�n)
2μ2(�n) → +∞.

Motivated byConjecture 1.1,we find geometric upper bounds ofμ2(�) andμ3(�), for
two classes of domains�. The first consists of all parallelograms. The second consists,
in a certain sense, of domains of constant width, some of which are neither polygonal
nor convex.We show that in these classes only the squares, respectively the rectangles,
realize equality.As a corollary,weverifyConjecture 1.1 for all parallelograms, namely,
the product L(P)2 μ2(P), with P a parallelogram, is maximized only by squares (see
Theorem 3.7 below).

Our proofs use Rayleigh’s principle, with trial functions constructed from a suitable
mapping of the domain onto the unit square. We introduce the necessary tools in Sect.
2, then study parallelograms in Sect. 3 (Theorem 3.1) and domains of constant width
in Sect. 4 (Theorem 4.2). Finally, we sketch in Sect. 5 a simple perturbation argument
that shows the existence of non-convex domains �, close to the unit square, satisfying
L(�)2μ2(�) > 16π2.

During the preparation of this manuscript, we became aware of the recent work
by A. Henrot, A. Lemenant and I. Lucardesi [5]. The authors prove the existence of
a maximizer in the class of convex domains [5, Proposition 3.1]. They also verify
Conjecture 1.1 for all convex domains having two axes of symmetry (not necessarily
perpendicular) [5, Theorem 1.2] and, as in our Theorem 3.7, for all parallelograms [5,
Proposition 4.3]. However, our work uses a different method and leads to new explicit
estimates forμ2(�) andμ3(�)which, as far as we can tell, cannot be directly deduced
from [5].

2 Preliminaries

During thewhole article,� ⊂ R
2 is a bounded, connected Lipschitz domain. Themain

object of our interest is the Laplacian−�N on�with Neumann boundary conditions.
This self-adjoint, non-negative operator can be defined via its quadratic form

H1(�) � u �→
∫

�

|∇u|2.

Its domain consists of all u ∈ H1(�) such that �u, taken distributionally, belongs to
L2(�) and u satisfies the boundary condition ∂u

∂ν
|∂� = 0 in a weak sense. We denote

by

0 = μ1(�) < μ2(�) ≤ . . .
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the eigenvalues of −�N, counted with multiplicities.
In the course of our investigations, certain auxiliary second-order elliptic differ-

ential operators with a weight function will play a role, which we define now. We
point out that this approach is not new and appears, e.g., in work by V. Gol’dshtein,
V. Pchelintsev and A. Ukhlov [3, 4] in a much more general setting using the theory
of weak quasiconformal mappings and the characterization of composition operators
on Sobolev spaces.

For w : � → (0,∞) measurable, the space L2
w(�) consists of all measurable

u : � → R such that

‖u‖2w :=
∫

�

w(x, y)|u(x, y)|2 d(x, y) < ∞.

Then ‖ · ‖w defines a norm, with which L2
w(�) is a Hilbert space, and we denote by

〈·, ·〉w the corresponding inner product. In the rest of this section, let f : � → R be
a measurable function such that

c ≤ f (x, y) ≤ C

for some fixed constants 0 < c ≤ C and for almost every (x, y) ∈ �. Moreover, we
denote by A : � → R

2×2 a continuous matrix function such that A(x, y) = A(x, y)
and A(x, y) is a positive definite matrix for all (x, y) ∈ �.

Proposition 2.1 With the above hypotheses, the quadratic form tA,� in L2
1/ f (�) given

by

tA,�[u, v] =
∫

�

〈A(x, y)∇u(x, y),∇v(x, y)〉 d(x, y)

with

dom tA,� = H1(�)

is symmetric, non-negative (hence semi-bounded below) and closed.

The symmetry and the non-negativity of tA,� follow from that of A(x, y). The fact
that tA,� is closed is an immediate consequence of the following lemma, which one
can easily deduce from the hypotheses on f and A.

Lemma 2.2 The norm associated with the form tA,�, defined for u ∈ H1(�) by

‖u‖2A,� := tA,�[u, u] + ‖u‖21/ f ,

is equivalent to the norm of H1(�).



Estimates for the lowest Neumann… Page 5 of 24    42 

As described in [11, Theorem VIII.15], we can associate with the form tA,� a
self-adjoint operator TA,�, formally given by

TA,�u = − f (·) div (A(·)∇u).

More precisely, we define

dom TA,� =
{
u ∈ H1(�) : ∃v ∈ L2

1/ f (�), ∀ϕ ∈ H1(�), tA,�[u, ϕ] = 〈v, ϕ〉1/ f
}

,

and set TA,�u = v for u ∈ dom TA,�.
In order to give a more concrete description of dom TA,�, we note that for any

u ∈ H1(�), the mapping

ϕ �→ tA,�[u, ϕ],

restricted to ϕ ∈ C∞
c (�), defines a distribution in D′(�) which we denote by Pu.

Moreover, it follows from Lemma 2.2 that Pu belongs to the dual of H1(�). From
this and [8, Lemma 4.3], there exists an element γ1u in H−1/2(∂�) such that, for all
ϕ ∈ H1(�),

〈−Pu, ϕ〉(H1(�))
′×H1(�)

+ tA,�[u, ϕ] = 〈γ1u, γ0ϕ〉H−1/2(∂�)×H1/2(∂�). (2.1)

In the previous formula,

(i) γ0 : H1(�) → H1/2(∂�) is the usual boundary trace operator,
(ii) 〈ζ, z〉Z ′×Z denotes the image of an element z in a normed space Z by an element

ζ in the dual Z ′ (note that H−1/2(∂�) = (H1/2(∂�))′).

To understand the meaning of γ1u, let us assume for a moment that u ∈ C1(�). Then
γ1u is the co-normal derivative, defined on ∂� by

(s, t) �→ 〈A(s, t)∇u(s, t), ν(s, t)〉,

where ν(s, t) denotes the outward-pointing normal unit vector on ∂�.We can therefore
see γ1u as a generalized co-normal derivative and (2.1) as a generalizedGreen formula.

The following can be obtained by a standard argument.

Proposition 2.3 The self-adjoint operator TA,� can alternatively be defined by

dom TA,� =
{
u ∈ H1(�) : Pu ∈ L2(�) and γ1u = 0

}

and
TA,�u = f Pu.
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Next we consider instances of the operator TA,� that arise from a diffeomorphic
transformation of the Neumann Laplacian. The following lemma and Corollary 2.5
below can be found in greater generality in, e.g., [4, Section 3] and also in earlier works
for Lipschitz transformations (see e.g. the paper by V. I. Burenkov, P.D. Lamberti and
M. Lanza de Cristoforis [2] and references therein). However, to be self-contained we
provide a short proof for our setting.

Lemma 2.4 Let �,�′ ⊂ R
2 be two bounded, connected Lipschitz domains such that

there exists a C1-diffeomorphism 
 which maps � onto �′ such that both 
 and 
−1

have bounded partial derivatives of order one. Let

A(s, t) =
[

1∣∣ det D

∣∣ (D
)(D
)

]
(
−1(s, t)), (s, t) ∈ �′, (2.2)

where D
 denotes the Jacobi matrix of 
. Then a function u belongs to H1(�′) if
and only if u ◦ 
 belongs to H1(�), and in this case

∫
�

|∇(u ◦ 
)(x, y)|2 d(x, y) =
∫

�′
〈A(s, t)∇u(s, t),∇u(s, t)〉 d(s, t). (2.3)

In particular, if we set f (s, t) = | det(D
)(
−1(s, t))|, then the Laplacian −�N
in L2(�) with Neumann boundary conditions is isomorphic to the operator TA,�′ in
L2
1/ f (�

′), and their spectra coincide.

Proof Let u ∈ H1(�′). As 
 maps � onto the bounded domain �′, 
 is bounded.
Moreover, by assumption, 
 has bounded partial derivatives. Hence u ◦ 
 ∈ H1(�).
Moreover,

∫
�

|∇(u ◦ 
)(x, y)|2 d(x, y) =
∫

�

|(D
)(x, y)(∇u)(
(x, y))|2 d(x, y)

=
∫

�′
1

| det D
| |(D
)(
−1(s, t))(∇u)(s, t)|2 d(s, t)

=
∫

�′
〈A(s, t)∇u(s, t),∇u(s, t)〉 d(s, t).

Conversely, by analogous reasoning, for v ∈ H1(�) the function u = v◦
−1 belongs
to H1(�′). In particular, the mapping H1(�′) � u �→ u ◦ 
 ∈ H1(�) provides an
isomorphism between the quadratic forms corresponding to the operators TA,�′ in
L2
1/ f (�

′) and −�N in L2(�). Hence, the two operators are isomorphic. ��

A for us important consequence of Lemma 2.4 is the following.

Corollary 2.5 Let�,�′ ⊂ R
2 be two bounded, connected Lipschitz domains such that

there exists a C1-diffeomorphism 
 which maps � onto �′ such that both 
 and 
−1
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have bounded partial derivatives of order one. Moreover, assume that A and f are
defined as in Lemma 2.4. Then

μk(�) = min
F⊂H1(�′)
dim F=k

max
u∈F
u �=0

∫
�′ 〈A(s, t)∇u(s, t),∇u(s, t)〉 d(s, t)∫

�′ 1
f (s,t) |u(s, t)|2 d(s, t)

holds for all k ∈ N. In particular,

μ2(�) = min
u∈H1(�′)\{0}∫

�′ 1
f u=0

∫
�′ 〈A(s, t)∇u(s, t),∇u(s, t)〉 d(s, t)∫

�′ 1
f (s,t) |u(s, t)|2 d(s, t) . (2.4)

Moreover, a non-trivial function u ∈ H1(�′)which satisfies
∫
�′ 1

f u = 0 is aminimizer
of (2.4) if and only if u ∈ ker(TA, f − μ2(�)).

3 Bounds for low eigenvalues of parallelograms

In this section we derive eigenvalue bounds for the lowest non-zero eigenvaluesμ2(P)

and μ3(P) of the Neumann Laplacian on any parallelogram P . Our main result are
the following sharp estimates.

Theorem 3.1 LetP ⊂ R
2 be any parallelogram with side lengths �1, �2, area |P| and

one angle ϕ. Without loss of generality, let us assume �1 ≤ �2. Define

λ± = π2

2|P|2
(

�21 + �22 ±
√(

�21 − �22

)2 + 256

π4 �21�
2
2 cos

2 ϕ

)

and

η± = 6

|P|2
(

�21 + �22 ±
√(

�21 − �22

)2 + 4�21�
2
2 cos

2 ϕ

)
.

Then

μ2(P) ≤ min{λ−, η−} (3.1)

and

μ3(P) ≤ λ+. (3.2)

In particular,

μ2(P) + μ3(P)

2
≤ π2

|P|2
�21 + �22

2
. (3.3)
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In (3.1) equality holds if, and only if, P is a rectangle, in which case

μ2(P) = λ− = π2

�22
.

In (3.2) and (3.3) equality holds if, and only if, P is a rectangle and �2 ≤ 2�1. In this
case,

μ2(P) = λ− = π2

�22
and μ3(P) = λ+ = π2

�21
.

Remark 3.2 We can immediately make an observation that will be useful to study the
case of equality. If λ+ = λ−, an examination of the formulas reveals that we must
have �1 = �2 and cosϕ = 0, so that P is a square and μ2(P) = λ− = μ3(P) =
λ+ = π2/�2, where � is the length of an arbitrary side. Conversely, if P is a square of
side-length �, μ2(P) = λ− = μ3(P) = λ+ = π2/�2.

Proof Let P ⊂ R
2 be the parallelogram spanned by the vectors (a, b) and (c, d),

and let �1 = √
a2 + b2 and �2 = √

c2 + d2 be its side lengths; without loss of
generality, �1 ≤ �2. Then the linear transformation given by


(x, y) = 1

ad − bc

(
d −c
−b a

) (
x

y

)

maps P onto the unit square Q := (0, 1)2. The constant matrix A associated with 


in (2.2) is then given by

A = 1

|ad − bc|
(
c2 + d2 −ac − bd
−ac − bd a2 + b2

)
= 1

|P|
(

�22 −�1�2 cosϕ

−�1�2 cosϕ �21

)
,

(3.4)

whereϕ is the angle of (a, b) towards (c, d) and |P| denotes the area ofP . For using
Corollary 2.5, note that, in the notation of the corollary, f (s, t) = |ad−bc|−1 = |P|−1

constantly.
In order to obtain eigenvalue estimates, we use two types of trial functions. Firstly,

we consider the function

u(s, t) = α cos(πs) + β cos(π t), (s, t) ∈ Q, (3.5)

where α and β are arbitrary real numbers. Note that u is an eigenfunction of the
Neumann Laplacian on Q corresponding to μ2(Q) = π2 (in particular,

∫
Q u = 0 =∫

Q
1
f u) and that

∇u(s, t) = −π

(
α sin(πs)
β sin(π t)

)
.
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Then
∫
Q

〈A∇u,∇u〉 = 1

|P|
∫
Q

(
�22(∂1u)2 − 2�1�2 cosϕ(∂1u)(∂2u) + �21(∂2u)2

)

= π2

|P|
(
�22

α2

2
− 2�1�2 cosϕ

4αβ

π2 + �21
β2

2

)

= π2

2|P|
〈
Ã

(
α

β

)
,

(
α

β

)〉
, (3.6)

where the matrix Ã is given by

Ã =
(

�22 − 8
π2 �1�2 cosϕ

− 8
π2 �1�2 cosϕ �21

)
.

Furthermore,

∫
Q

1

f
|u|2 = |P|

2
(α2 + β2).

The matrix Ã has the eigenvalues

|P|2
π2 λ±,

and we choose corresponding mutually orthogonal eigenvectors (α−, β−) and
(α+, β+). Let, moreover, u±(s, t) = α± cos(πs) + β± cos(π t) be the versions
of (3.5) with coefficients corresponding to the chosen eigenvectors of Ã. Then we
get

∫
Q〈A∇u−,∇u−〉∫

Q
1
f |u−|2 = λ− (3.7)

and
∫
Q〈A∇u+,∇u+〉∫

Q
1
f |u+|2 = λ+.

Applying the min-max principle we get

μ2(P) ≤ λ− (3.8)

and, noting that
∫
Q

1
f u−u+ = 0 due to orthogonality of (α−, β−) and (α+, β+),

μ3(P) ≤ λ+. (3.9)
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The latter estimates constitute (3.2) and parts of (3.1) and yield in their combination
(3.3).

Secondly, consider the function

u(s, t) = α(s − 1/2) + β(t − 1/2), (s, t) ∈ Q,

where α, β are again arbitrary real coefficients. Clearly,
∫
Q u = 0 = ∫

Q
1
f u holds and

∇u(x) = (α, β). Hence,
∫
Q

〈A∇u,∇u〉 =
〈
A

(
α

β

)
,

(
α

β

)〉
.

On the other hand,

∫
Q

1

f
|u|2 = |P|

12
(α2 + β2).

The eigenvalues of the matrix A are given by

|P|
12

η±.

We choose an eigenvector (α−, β−) corresponding to |P|η−/12 and let u−(s, t) =
α−(s − 1/2) + β−(t − 1/2). As in the previous case we get

∫
Q〈A∇u−,∇u−〉∫

Q
1
f |u−|2 = η−. (3.10)

From this identity we conclude

μ2(P) ≤ η−.

The latter together with (3.8) proves (3.1).
Let us now consider the cases of equality. The case where λ+ = λ− follows

immediately fromRemark 3.2.Hence,we assume in the rest of the proof thatλ− < λ+,
or equivalently that P is not a square.

Let us first assume that equality holds in (3.1). Then μ2(P) = λ− or μ2(P) = η−;
in the second case, the function α−(s − 1/2) + β−(t − 1/2) is an eigenfunction of
u �→ − f (·)div (A∇u) on Q with vanishing co-normal derivative corresponding to
μ2(P), which is impossible, as the left-hand side of the equation − f (·)div (A∇u) =
μ2(P)u is constantly zero in this case. Therefore we must have μ2(P) = λ−, and
from the equation (3.7) we then get that u−(s, t) = α− cos(πs) + β− cos(π t) is an
eigenfunction of u �→ − f (·)div (A∇u) on Q with vanishing co-normal derivative
corresponding to μ2(P), i.e.

− f (·)div (A∇u−) = μ2(P)u− in Q, 〈A∇u−, ν〉 = 0 on ∂Q.



Estimates for the lowest Neumann… Page 11 of 24    42 

The eigenvalue equation is

0 = − f (s, t)div (A∇u−)(s, t) − λ±u−(s, t)

= α−

(
π2�22

|P|2 − λ−

)
cos(πs) + β−

(
π2�21

|P|2 − λ−

)
cos(π t)

for all (t, s) ∈ Q. Since u− is not zero, one of α− and β− is not zero. If none of them
are zero,

λ− = π2�22

|P|2 = π2�21

|P|2 ,

so that �1 = �2 and, from the explicit formula for λ−, cosϕ = 0. Then, P is a
square, which contradicts our initial assumption. Therefore either α− = 0 or β− = 0,
meaning that either (1, 0) or (0, 1) is an eigenvector of the matrix Ã, corresponding
respectively to the eigenvalue �22 or �21. Using the explicit formula for Ã, this implies
cosϕ = 0, so that P is a rectangle. It is easy to check, however, that in this case
μ2(P) = λ− is true.

Next, let us assume that equality holds in (3.2). Then the variational characterization
of Corollary 2.5 yields that there exists a linear combination u = γ u− + δu+ of u−
and u+ which is an eigenfunction of u �→ − f (·)div (A∇u) on Q with vanishing
co-normal derivative corresponding to λ+ = μ3(P); in particular,

∫
Q

〈A∇u,∇u〉 = λ+
∫
Q

1

f
|u|2.

Since, similarly to (3.6),

∫
Q

〈A∇u−,∇u+〉 = π2

2|P|
〈
Ã

(
α−
β−

)
,

(
α+
β+

)〉
= |P|

2
λ+

〈(
α−
β−

)
,

(
α+
β+

)〉
= 0

and
∫
Q

1
f u−u+ = 0, it follows from the previous two formulas that

λ+
∫
Q

1

f

(
γ 2|u−|2 + δ2|u+|2

)
=

∫
Q

〈A∇u,∇u〉

= λ−
∫
Q

1

f
γ 2|u−|2 + λ+

∫
Q

1

f
δ2|u+|2.

As λ− < λ+ by assumption, it follows γ = 0, i.e., u+(s, t) = α+ cos(πs) +
β+ cos(π t) is an eigenfunction of u �→ − f (·)div (A∇u) on Q with vanishing co-
normal derivative corresponding to μ3(P). Repeating the argument from the previous
case, we obtain that P is a rectangle. Then

μ3(P) = min

{
π2

�21
,
4π2

�22

}
,
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while

λ+ = π2

�21
.

Since μ3(P) = λ+ by hypothesis, we necessarily have π2/�21 ≤ 4π2/�22, that is
�2 ≤ 2�1.

Let us finally assume that equality holds in (3.3). Since μ2(P) ≤ λ−, μ3(P) ≤ λ+
and

π2

|P|2
�21 + �22

2
= λ− + λ+

2
,

this implies μ2(P) = λ− and μ3(P) = λ+, so that the previous case applies and we
obtain the same conclusion. ��
Remark 3.3 Using the affine linear trial functions in the second part of the previous
proof one can easily derive the additional estimateμ3(P) ≤ η+ for eachparallelogram.
However, it is easy to see that the estimate (3.2) is always better, i.e. λ+ < η+ for
each choice of the side lengths �1, �2 and the angle ϕ. On the other hand, depending
on these parameters, one or the other estimate given in (3.1) may be stronger. This
depends on the side lengths and the angle. Roughly speaking, the estimate μ2 ≤ λ−
obtained from cosinoidal trial functions is better as long as P is close enough to a
square. However, for instance if �1 = �2 = 1 and ϕ = π

4 , then

λ− = 1

|P|2
(

π2 − 8√
2

)
>

1

|P|2
(
12 − 12√

2

)
= η−.

Remark 3.4 The estimates in Theorem 3.1 are sharp as they yield the exact eigenvalues
in the case of a square and for certain rectangles.

If P is a rhombus, i.e. an equilateral parallelogram, then the estimates simplify:

Corollary 3.5 Assume that P is a rhombus. If � denotes the length of an arbitrary side
and ϕ is one of the angles then

μ2(P) ≤ min

{
π2

|P|2 �2
(
1 − 8

π2 | cosϕ|
)

,
12

|P|2 �2 (1 − | cosϕ|)
}
,

μ3(P) ≤ π2

|P|2 �2
(
1 + 8

π2 | cosϕ|
)

,

and

μ2(P) + μ3(P)

2
≤ π2

|P|2 �2.
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In each estimate, equality holds if and only if P is a square.

The following may be compared with [7, Theorem 3.5], where triangular domains
are considered; note that the quantity on the left-hand side of (3.11) below is scaling-
invariant.

Corollary 3.6 Let P be any parallelogram and let S :=
√

�21 + �22. Then

μ2(P) + μ3(P)

2

|P|2
S2

≤ π2

2
, (3.11)

with equality if and only if P is a rectangle with �2 ≤ 2�1, where �1 ≤ �2 are its side
lengths.

As a further indication of sharpness, we deduce an isoperimetric inequality from the
above spectral estimates. More specifically, we prove that among all parallelograms
of fixed perimeter, the square is the only maximizer of μ2(P).

As mentioned in the introduction, the same result was proved recently in [5, Propo-
sition 4.3], using a different technique. It complements [7, Theorem 3.1], which shows
that among all triangles T of fixed perimeter L(T ), the equilateral one is the onlymax-
imizer ofμ2(T ) and gives the same value ofμ2(T )L(T )2 as the square. This partially
answers the question, raised by Laugesen in [14, p. 405, Problem 3], of whether those
two shapes maximize μ2(�)L(�)2 among all bounded convex domains �.

Theorem 3.7 Let P ⊂ R
2 be any parallelogram and let L(P) denote its perimeter.

Then

μ2(P)L(P)2 ≤ 16π2.

Equality holds if and only if P is a square.

Proof Since the quantity μ2(P)L(P)2 is scaling-invariant, after possible rotation,
reflection and rescaling we may assume that P is spanned by the vectors (a, b) and
(1, 0), where a ≥ 0, b > 0, and a2 + b2 ≤ 1. In this case, the estimates in Theorem
3.1 yield

μ2(P)L(P)2 ≤ 2π2

b2
(1 +

√
a2 + b2)2

(
a2 + b2 + 1 −

√(
a2 + b2 − 1

)2 + 256

π4 a2

)

(3.12)

and

μ2(P)L(P)2 ≤ 24

b2
(1 +

√
a2 + b2)2

(
a2 + b2 + 1 −

√(
a2 + b2 − 1

)2 + 4a2
)

,

(3.13)
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where we have used �1 = √
a2 + b2, �2 = 1, cosϕ = a/�1, |P| = b, and L(P) =

2(1 + √
a2 + b2).

We distinguish three (not mutually distinct) cases. Firstly, consider the case

b >

√
1 − 64

π4 ≈ 0.59. (3.14)

By this assumption we have

(a2 + b2 − 1)2 + 256

π4 a2 = a4 + 2a2
(
b2 − 1 + 128

π4

)
+ (b2 − 1)2

= a4 + 2a2
(
2b2 − 1 + 128

π4 − b2
)

+ (b2 − 1)2

≥ a4 + 2a2(1 − b2) + (1 − b2)2

= (a2 + 1 − b2)2,

where equality is only possible if a = 0. Hence (3.12) implies

μ2(P)L(P)2 ≤ 4π2(1 +
√
a2 + b2)2 ≤ 16π2, (3.15)

where we have used a2 + b2 ≤ 1; equality in (3.15) holds if and only if a = 0 and
a2 + b2 = 1, that is, if (a, b) = (0, 1), which is the case that P is a square.

Secondly, let

√
a2 + b2 <

π√
3

− 1 ≈ 0.81. (3.16)

Note that

(a2 + b2 − 1)2 + 4a2 = a4 + 2a2(b2 − 1) + (b2 − 1)2 + 4a2

= a4 + 2a2(b2 + 1) + (b2 − 1)2

≥ a4 + 2a2(1 − b2) + (1 − b2)2

= (a2 + 1 − b2)2.

Then (3.13) together with (3.16) gives

μ2(P)L(P)2 ≤ 48(1 +
√
a2 + b2)2 < 48

π2

3
= 16π2.

In the third and final case we assume

a >
12

π2 + 1 − π√
3

≈ 0.40 and
√
a2 + b2 ≥ π√

3
− 1. (3.17)
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Writing r = �1 = √
a2 + b2 ≤ 1, note first that

0 ≥ 4(a − r)(1 − r)2 = 4(r − a)
(
r + a + r − a − r2 − 1

)
= 4

(
r2 − a2 + (r − a)2 − (r2 + 1)(r − a)

)
= (r2 + 1)2 − (r2 − 1)2 + 4(r − a)2 − 4(r2 + 1)(r − a) − 4a2,

and thus

(r2 + 1)2 − 4(r2 + 1)(r − a) + 4(r − a)2 ≤ (r2 − 1)2 + 4a2.

As the left-hand side equals (r2 + 1 − 2(r − a))2 and both sides are positive, we get

r2 + 1 − 2(r − a) ≤
√

(r2 − 1)2 + 4a2

or, equivalently,

a2 + b2 + 1 −
√

(a2 + b2 − 1)2 + 4a2 ≤ 2
(√

a2 + b2 − a
)
.

From this and (3.13) we conclude

μ2(P)L(P)2 ≤ 48

(
√
a2 + b2 − a)(

√
a2 + b2 + a)

(1 +
√
a2 + b2)2

(√
a2 + b2 − a

) = 48
(1 + √

a2 + b2)2√
a2 + b2 + a

.

Applying the assumption (3.17) and a2 + b2 ≤ 1 to the latter estimate yields

μ2(P)L(P)2 <
192
12
π2

= 16π2.

Sinceone easily observes that each choice of (a, b) witha ≥ 0, b > 0 anda2+b2 ≤ 1
satisfies one of the assumptions (3.14), (3.16) or (3.17), the proof is complete. ��

As a direct consequence, among all parallelograms of fixed area, the square maxi-
mizes μ2(P).

Corollary 3.8 Let P ⊂ R
2 be any parallelogram and let |P| denote its area. Then

μ2(P)|P| ≤ π2.

Equality holds if and only if P is a square.
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Proof Let nowQ denote a squarewith the same perimeter asP . Then, by Theorem3.7,
μ2(P) ≤ μ2(Q). As |Q| ≥ |P|,

μ2(P)|P| ≤ μ2(Q)|Q| = π2.

Moreover, in all these estimates, equality holds if and only if P is a square. ��

4 Domains of constant width

In this section we use the approach of tranforming the Laplacian on a domain into
an elliptic operator with a weight function on a square discussed in Sect. 2 to obtain
spectral estimates for another class of domains. We make the following assumption.

Assumption 4.1 � ⊂ R
2 has the form

� =
{
(x, y) : 0 < x < �, g(x) < y < h(x)

}
,

where g, h ∈ C1([0, �]) are real-valued functions such that d(x) := h(x) − g(x) is
uniformly positive on [0, �].

To map a domain as in Assumption 4.1 onto a square, consider the mapping


(x, y) =
(

x/�
y−g(x)
d(x)

)
, (x, y) ∈ �.

It maps � one-to-one onto the square Q := (0, 1)2. The Jacobian of 
 is given by

(D
)(x, y) =
(

1/� 0
−g′(x)d(x)−(y−g(x))d ′(x)

d(x)2
1/d(x)

)
.

Note that 
 is a C1-diffeomorphism and that all first-order partial derivatives of 


and 
−1 are bounded due to the assumption that d is uniformly positive and bounded.
Furthermore,

det(D
)(x, y) = 1

�d(x)
.

Then the matrix A(s, t) defined in (2.2) is given by

(A ◦ 
)(x, y) =
⎛
⎝

d(x)
�

−g′(x)d(x)−(y−g(x))d ′(x)
d(x)

−g′(x)d(x)−(y−g(x))d ′(x)
d(x)

�
d(x) +

(
g′(x)d(x)+(y−g(x))d ′(x)

)2
d(x)3

�

⎞
⎠
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Fig. 1 A domain of constant width

for (x, y) ∈ � and, hence,

A(s, t) =
( d(�s)

�
−g′(�s) − td ′(�s)

−g′(�s) − td ′(�s) �
d(�s)

(
1 + (

g′(�s) + td ′(�s)
)2)

)

for (s, t) ∈ (0, 1)2. This transformation can be used to obtain estimates for the
eigenvalues of the Neumann Laplacian on�.Wewill now illustrate this at the example
of domains of constant width; cf. Fig. 1.

Let us point out that all these domains are non-convex, except for the rectangle.

Theorem 4.2 Suppose Assumption 4.1 holds and d is constant. Define

λ± = π2

2�d

(
d

�
+ 1

d

∫ �

0

(
1 + g′(x)2

)
dx

±
√(

d

�
− 1

d

∫ �

0

(
1 + g′(x)2

)
dx

)2

+ 64

π2�2

(∫ �

0
g′(x) sin(πx/�)dx

)2)
.

Then

μ2(�) ≤ λ− and μ3(�) ≤ λ+. (4.1)

In particular,

μ2(�) ≤ min

{
π2

�2
,

π2

d2�

∫ �

0

(
1 + g′(x)2

)
dx

}
(4.2)
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and

μ2(�) + μ3(�)

2
≤ π2

2

(
1

�2
+ 1

�d2

∫ �

0

(
1 + g′(x)2

)
dx

)
(4.3)

hold. Moreover, equality in the first estimate in (4.1) or in (4.2) holds if, and only if,
� is a rectangle.

Proof As d is constant, in the notation of Lemma 2.4 also 1/ f = �d is constant. Thus
the function

u(s, t) = α cos(πs) + β cos(π t), (4.4)

where α, β are arbitrary real constants, satisfies
∫
Q

1
f u = 0, and

∫
Q

1

f
|u|2 = �d

2
(α2 + β2).

Moreover,
∫
Q

〈A∇u, ∇u〉 = π2
(

α2 d

�

∫ 1

0
sin2(πs) ds − 2αβ

∫ 1

0
g′(�s) sin(πs) ds

∫ 1

0
sin(π t) dt

+ β2 �

d

∫ 1

0

(
1 + g′(�s)2

)
ds

∫ 1

0
sin2(π t) dt

)

= π2
(

α2 d

2�
− 4αβ

π�

∫ �

0
g′(x) sin(πx/�) dx + β2

2d

∫ �

0

(
1 + g′(x)2

)
dx

)

=
〈
M

(
α

β

)
,

(
α

β

)〉
,

where

M = π2

2

(
d
�

− 4
π�

∫ �

0 g′(x) sin(πx/�) dx
− 4

π�

∫ �

0 g′(x) sin(πx/�) dx 1
d

∫ �

0

(
1 + g′(x)2

)
dx

)
.

The matrix M has eigenvalues �d
2 λ±, with λ± given in the theorem. Choosing (α, β)

equal to the corresponding eigenvectors and applyingCorollary 2.5 yields the estimates
(4.1). On the other hand, choosing (α, β) equal to the standard basis vectors gives

μ2(�) ≤ π2 d

2�

2

�d

and

μ2(�) ≤ π2

2d

∫ �

0

(
1 + g′(x)2

)
dx

2

�d
,
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respectively, which yields (4.2). Finally, the estimate (4.3) is a direct consequence of
(4.1).

It remains to discuss the cases of equality. First we show that μ2(�) = λ− is only
possible if � is a rectangle. Assume for a contradiction that this equality holds for a
non-rectangle �. Then there exists a nonempty open interval I ⊂ (0, �) on which g′
is nowhere vanishing. Moreover, there exists a coefficient pair (α, β) �= (0, 0) such
that the function u in (4.4) is an eigenfunction of − 1

�d div (A(·)∇u) on Q = (0, 1)2

with vanishing co-normal derivative; for (s, 0) ∈ ∂Q the latter read

( d
�

−g′(�s)
−g′(�s) �

d

(
1 + g′(�s)2

)
)

∇u ·
(

0

−1

)
= 0

and can be written

πg′(�s)α sin(πs) = 0.

Choosing �s ∈ I this implies α = 0, i.e. u(s, t) = β cos(π t). Let us now show that
the eigenvalue equation, of which u is a distributional solution, implies that g is linear.
To simplify notation, we temporarily set

a(s) := − 1

�d
g′(�s);

b(s) := 1

d2

(
1 + g′(�s)2

)
.

Then, for any ϕ ∈ C∞
c (Q),

β

∫
Q

(π sin(π t) (a(s)∂sϕ(s, t) + b(s)∂tϕ(s, t)) + μ2(�) cos(π t)ϕ(s, t)) d(s, t) = 0.

Integrating by parts,

∫ 1

0
sin(π t)∂tϕ(s, t) dt = −π

∫ 1

0
cos(π t)ϕ(s, t) dt = 0.

Using Fubini’s theorem and the previous equality, we find that for any ϕ ∈ C∞
c (Q),

β

∫
Q

(
π sin(π t)a(s)∂sϕ(s, t) + cos(π t)

(
μ2(�) − π2b(s)

)
ϕ(s, t)

)
d(s, t) = 0.

We now apply the previous formula to ϕ(s, t) = ξ(s)χn(t), where ξ is an arbitrary
function in C∞

c ((0, 1)) and (χn) is a sequence in C∞
c ((0, 1)) converging to the δ-

distribution centered at t = 1/2. Taking n → ∞, we get that

β

∫ 1

0
a(s)ξ ′(s) ds = 0
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for any ξ ∈ C∞
c ((0, 1)). Since β cannot be 0, this means that the distributional

derivative of the function a is 0, which implies that a is a constant. Therefore g′ is a
constant and g is linear. On the other hand, on the boundary lines s = 0 and s = 1 the
boundary condition gets

∓πg′(�s)β sin(π t) = 0,

t ∈ (0, 1) and, thus, g′(0) = 0 = g′(�); but then the linear function g is constant and
� a rectangle, another contradiction.

Now assume that equality holds in (4.2) and that � is not a rectangle. Then either
cos(πs) or cos(π t) is an eigenfunction of − 1

�d div (A(·)∇u) with Neumann boundary
conditions and a reasoning analogous to the above one leads to a contradiction.

To complete the proof of the theorem, it remains to note that if � is a rectangle,
i.e. g is constant, then the bounds for μ2(�) in both the first estimate in (4.1) and
(4.2) read min{π2/�2, π2/d2}, being equal to the lowest positive eigenvalue of the
rectangle of length � and width d. ��
Example 4.3 Although all the domains that are admissible in the theorem have area
�d, the estimate for μ2(�) given in the theorem is not necessarily below π2

�d , the first
eigenvalue of the square of the same area. Consider, for instance, the domain given by

�ε =
{
(x, y) : 0 < x < π, sin(x) −

(π

2
+ ε

)
< y < sin(x) +

(π

2
+ ε

)}

for sufficiently small ε > 0. In this case, d = π + 2ε and � = π . Moreover, note that

∫ �

0
g′(x) sin(πx/�)dx = 0

in this case. Therefore Theorem 4.2 yields

μ2(�ε) ≤ π2

2�d

(
d

�
+ 1

d

∫ �

0

(
1 + g′(x)2

)
dx −

∣∣∣∣ d

�
− 1

d

∫ �

0

(
1 + g′(x)2

)
dx

∣∣∣∣
)

= π2

2�d

(
d

�
+ 1

d

3π

2
−

∣∣∣∣d� − 1

d

3π

2

∣∣∣∣
)

.

Note that for sufficiently small ε the term inside the modulus is negative and, hence,
the estimate yields

μ2(�ε) ≤ π2

�2
.

Since � < d, the latter is larger than π2

�d , the first eigenvalue of the square with the
same area as �.

Despite the previous example, the estimate (4.2) in Theorem 4.2 has the following
immediate implication.
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Corollary 4.4 Suppose that � is a domain of the form as given in Assumption 4.1 with
constant d and with � ≥ d. Then

μ2(�) ≤ π2

�2
. (4.5)

Equality holds if and only if � is a rectangle.

Finally, we point out that this corollary yields the inequality of Conjecture 1.1 when
� is a domain, of the previous form, close to a sufficiently elongated rectangle. Let us
give a more precise and quantitative statement.

Proposition 4.5 For any ρ ∈ (0, 1), let Aρ denote the set of domains satisfying
Assumption 4.1, with constant d, and for which, in addition,

d

�
≤ ρ and ‖g′‖∞ ≤ Mρ,

with

Mρ :=
√

(2 − ρ)2 − 1.

Then, for any � ∈ Aρ ,
L(�)2μ2(�) < 16π2.

Remark 4.6 For any ρ ∈ (0, 1),Aρ mostly contains non-convex domains. Indeed, the
only convex domains in Aρ are rectangles.

Proof (Proof of Proposition 4.5) Let � be a set in Aρ . From Corollary 4.4, it follows
that

L(�)2μ2(�) ≤ π2

�2

(
2d + 2

∫ �

0

√
1 + g′(x)2 dx

)2

≤ 4π2
(
d

�
+

√
1 + ‖g′‖2∞

)2

≤ 4π2
(
ρ +

√
1 + M2

ρ

)2
= 16π2.

To obtain the strict inequality, we recall that equality in (4.5) implies that � is a
rectangle, in which case

L(�)2μ2(�) < 16π2,

since � is not a square. ��
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5 Perturbation approach

Let us conclude with some remarks concerning the behavior of the shape functional
� �→ μ2(�)L(�)2 when� is a small perturbation of the unit squareQ = (0, 1)2. We
use here aHadamard-type formula for the shape derivative of aNeumann eigenfunction
(see [6, Sect. 2.5.3] for a general discussion and [1, p. 1596, Eq. (3.12)] for the specific
formula). We are not attempting a full justification of its validity. Our goal is merely to
check formally that we can find a suitable small perturbation of Q into a non-convex
domain � such that μ2(�)L(�)2 > 16π2 and we are therefore not overly concerning
ourselves with regularity assumptions.

In complement to this discussion, we recall that [5, 9, 13] provide sequences of
non-convex domains along which the functional diverges to +∞, as described in
more detail in the introduction.

In general, we can deform Q in the following way. We fix a smooth vector field
χ : R2 → R

2 with compact support, and define the mapping 
t (x, y) = (x, y) +
tχ(x, y), depending on a real parameter t . It is easily checked that 
t is a C∞-
diffeomorphism for |t | small enough. We then set �t := 
t (Q) and L(t) := L(�t ).
To avoid regularity issues, we assume that χ vanishes near the corners ofQ. We have
therefore reduced the problem to studying F(t) := μ2(�t )L(t)2 for t close to 0.

We first note that, according to classical differential geometry,

L ′(0) =
∫

∂Q
h(χ · ν),

where h is the curvature of ∂Q and ν the unit normal vector to ∂Q, pointing outwards.
Since ∂Q is straight in the support of χ ,

L ′(0) = 0. (5.1)

When writing the Hadamard formula, we have to account for the fact thatμ2(Q) =
μ3(Q) = π2 is a double eigenvalue. We denote it by μ and recall that the functions

u1(x, y) :=√
2 cos(πx);

u2(x, y) :=√
2 cos(π y);

form an orthonormal basis of the associated eigenspace. Then, we can find two differ-
entiable (indeed, real-analytic) functions t �→ μ1(t), μ2(t) satisfying the following.

(i) For |t | small enough, {μ1(t), μ2(t)} = {μ2(�t ), μ3(�t )} (note that the labeling
of μ1(t), μ2(t) does not necessarily coincide with their order in the Neumann
spectrum of �t ).

(ii) The derivatives μ′
1(0) and μ′

2(0) are the eigenvalues of the 2 × 2 matrix

( ∫
∂Q

(|∇u1|2 − μu21
)
(χ · ν)

∫
∂Q (∇u1 · ∇u2 − μu1u2) (χ · ν)∫

∂Q (∇u1 · ∇u2 − μu1u2) (χ · ν)
∫
∂Q

(|∇u2|2 − μu22
)
(χ · ν)

)
,
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which we denote by M .

To carry on with our analysis, we write

∂Q = �1 ∪ �2 ∪ �3 ∪ �4,

with �1 = [0, 1] × {0}, �2 = {1} × [0, 1], �3 = [0, 1] × {1} and �4 = {0} × [0, 1],
and we start imposing additional conditions on χ . First, we assume that the support
of χ intersects only one side of Q, say �1, and that we have, on �1,

χ(x, 0) = (0,− f (x)),

with f a non-negative smooth function supported in (0, 1), symmetric with respect to
the midpoint x = 1/2. Using these hypotheses, and the explicit formulas for u1 and
u2, we find

M = 2π2

(
− ∫ 1

0 cos(2πx) f (x) dx 0
0 − ∫ 1

0 f (x) dx

)
.

If we make the additional assumption that f is not identically 0 and is supported in
(0, 1/4) ∪ (3/4, 1), we find

M =
(−α1 0

0 −α2

)
, (5.2)

with α2 > α1 > 0. Up to relabeling the functions t �→ μ1(t), t �→ μ2(t), we can
assume that μ′

1(0) = −α1 and μ′
2(0) = −α2.

Under the previous hypotheses onχ , the above computations imply that the function
t �→ F(t) has a left derivative at 0, given by

F ′−(0) = μ′
1(0)L(0)2 + 2μ1(0)L

′(0)L(0) = −16α1 < 0.

Thus, we have F(t) > F(0) = 16π2 for t negative and close enough to 0. Since the
vector field χ , by construction, points outwards ofQ, the corresponding deformation
pushes the side �1 inwards, making the domain �t slightly non-convex.
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