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Abstract
Rollings of reductive homogeneous spaces are investigated. More precisely, for a
reductive homogeneous spaceG/H with reductive decomposition g = h⊕m, we con-
sider rollings ofm over G/H without slip and without twist, where G/H is equipped
with an invariant covariant derivative. To this end, an intrinsic point of view is taken,
meaning that a rolling is a curve in the configuration space Q which is tangent to a
certain distribution. By considering an H -principal fiber bundle π : Q → Q over the
configuration space equipped with a suitable principal connection, rollings of m over
G/H can be expressed in terms of horizontally lifted curves on Q. The total space of
π : Q → Q is a product of Lie groups. In particular, for a given control curve, this point
of view allows for characterizing rollings of m over G/H as solutions of an explicit,
time-variant ordinary differential equation (ODE) on Q, the so-called kinematic equa-
tion.An explicit solution for the associated initial value problem is obtained for rollings
with respect to the canonical invariant covariant derivative of first and second kind if
the development curve in G/H is the projection of a one-parameter subgroup in G.
Lie groups and Stiefel manifolds are discussed as examples.

Keywords Distributions · Frame bundles · Horizontal lifts · Reductive homogeneous
spaces · Rolling without slip and without twist · Stiefel manifolds
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1 Introduction

Meanwhile, there is a vast literature on rolling manifolds without slip and without
twist. First, we mention some works, where concrete expressions for extrinsic rollings
of certain submanifolds of (pseudo-)Euclidean vector spaces over their affine tangent
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spaces are derived. Using the definition from [1, Ap. B] as starting point, extrinsic
rollings of spheres Sn ⊆ R

n+1, real Grassmann manifolds Grn,k ⊆ R
n×n
sym and spe-

cial orthogonal groups SO(n) ⊆ R
n×n over their affine tangent spaces are studied

in [2]. In a similar context, the Stiefel manifold Stn,k ⊆ R
n×k , endowed with the

Euclidean metric, is investigated in [3] while rollings of pseudo-orthogonal groups
are considered in [4]. For these works, the need to solve interpolation problems on
these submanifolds in various applications seems to serve as a motivation. Indeed,
the rolling and unwrapping technique from [2], see also the more recent work [5], is
a method to compute a C 2-curve connecting a finite number of given points on the
manifolds Sn , Grn,k and SO(n), where the velocities at the initial and final point are
prescribed. This algorithm relies on having an explicit expression for the rolling of
the manifold over its affine tangent space along a curve joining the initial point with
the final point.

Beside these works, there is the paper [6], where a notion of intrinsic rolling of
an oriented Riemannian manifold M over another oriented Riemannian manifold ̂M
is introduced assuming dim(M) = dim( ̂M). In [7], this notion of intrinsic rolling is
generalized to pseudo-Riemannianmanifolds. A further generalization can be found in
[8, Sec. 7] and [9, p. 35], where the Levi-Civita covariant derivatives coming from the
pseudo-Riemannian metrics on M and ̂M are replaced by arbitrary covariant deriva-
tives on M and ̂M , respectively.

In this text, we investigate the following situation. LetG be a Lie group and H ⊆ G
a closed subgroup such thatG/H is a reductive homogeneous spacewith a fixed reduc-
tive decomposition g = h⊕m. ThenG/H can be equipped with an invariant covariant
derivative corresponding to an invariant affine connection from [10]. Motivated by the
study of rollings of (pseudo-Riemannian) symmetric spaces over flat spaces in [11],
we consider rollings of m over G/H . Here we generalize the above mentioned defi-
nition proposed in [8] and [9, p. 35] slightly in order take additional structures of the
involved manifolds into account. In particular, this definition allows for considering
rollings of not necessarily oriented manifolds.

Moreover, if one is interested in getting rather simple formulas describing the
rollings, it might be convenient to consider rollings of m over G/H with respect to
the canonical covariant derivative of first or second kind on G/H . These covariant
derivatives can be defined independently of a pseudo-Riemannianmetric although they
are in some sense similar the Levi-Civita covariant derivatives on naturally reductive
homogeneous spaces or pseudo-Riemannian symmetric spaces, respectively.

We now give an overview of this text. In Sect. 2, we start with introducing some
notations and recalling some definitions and well-known facts related to Lie groups
and principal fiber bundles.Moreover, we recall some facts on reductive homogeneous
spaces with an emphasis on invariant covariant derivatives.

In Sect. 3, we briefly recall the notion of rolling intrinsically a manifold M over
another manifold ̂M of equal dimension from the literature. More precisely, as already
announced above, a slightly generalized definition of intrinsic rolling is introduced.

As preparation to determine the configuration space for the intrinsic rollings consid-
ered in Sect. 5, an explicit description of the frame bundle of a reductive homogeneous
space G/H is needed. Therefore frame bundles of reductive homogeneous spaces are
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investigated in Sect. 4. Here we first consider a more general situation. The frame bun-
dle of a vector bundle associated to an H -principal fiber bundle P → M is identified
with an other fiber bundle associated to P → M . Afterwards, reductive homogeneous
spaces are treated as a special case.

In Sect. 5, we turn our attention to rollings of a reductive homogeneous space G/H
with reductive decomposition g = h ⊕ m. We consider the intrinsic rolling of m over
G/H with respect to an invariant covariant derivative∇α . To this end, the configuration
space Q → m×G/H is investigated in detail. Here we determine an H -principal fiber
bundle π : Q → Q over Q which is equipped with a suitable principal connection.
Its total space is given by Q = m × G × G(m), where G(m) ⊆ GL(m) is a closed
subgroup, i.e. the manifold Q is a product of Lie groups.

For afixed invariant covariant derivative∇α onG/H definedby anAd(H)-invariant
billinear map α : m × m → m, we determine a distribution Dα on Q that projects to
a distribution Dα on Q with the following property. A curve q : I → Q is horizontal
with respect to Dα iff it is a rolling of m over G/H with respect to ∇α . Moreover,
horizontal lifts of curves on Q with respect to the principal connection on π : Q → Q
mentioned above are horizontal with respect to Dα iff they are horizontal with respect
to Dα . In particular, this fact allows for characterizing rollings ofm overG/H in terms
of an ODE on Q. More precisely, for a prescribed control curve u : I → m, we obtain
an explicit, time-variant ODE on Q = m × G × G(m) whose solutions projected
to Q are rollings of m over G/H with respect to ∇α . This ODE can be seen as a
generalization of the kinematic equation for rollings of oriented pseudo-Riemannian
symmetric spaces over flat spaces from [11, Sec. 4.2].

In Sect. 5.4, we turn our attention to rollings of m over G/H with respect to the
canonical covariant derivative of first and second kind such that the development curve
is of the form I � t �→ pr(exp(tξ)) ∈ G/H with some ξ ∈ g, i.e. a projection of a not
necessarily horizontal one-parameter subgroup in G. For this special case, an explicit
solution of the kinematic equation is obtained.

We end this text by discussing intrinsic rollings of Lie groups and Stiefel manifolds
as examples.

2 Notations, terminology and background

In this section, we introduce the notation and terminology that is used throughout
this text. Moreover, some facts concerning Lie groups and principal fiber bundles are
recalled. We end this section by discussing reductive homogeneous spaces with an
emphasis on invariant covariant derivatives.

2.1 Notations and terminology

We start with introducing some notations and terminology concerning differential
geometry. This subsection is based on [12, Sec. 2] partially copied word by word.
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Notation 2.1 Throughout this text we follow the convention in [13, Chap. 2]. A scalar
product is defined as a non-degenerated symmetric bilinear form. An inner product is
a positive definite symmetric bilinear form.

Next we introduce some notations concerning differential geometry. Let M be a
smooth (finite-dimensional) manifold. We denote by T M and T ∗M the tangent and
cotangent bundle of M , respectively. A smooth vector subbundle D of the tangent
bundle T M is called a regular distribution on M . For a smooth map f : M → N
between manifolds M and N , the tangent map of f is denoted by T f : T M → T N .
We write C∞(M) for the algebra of smooth real-valued functions on M .

Let E → M be a vector bundle over M with typical fiber V . The smooth sections
of E are denoted by �∞(E). We write End(E) ∼= E∗ ⊗ E for the endomorphism
bundle of E . Moreover, we denote by E⊗k , Sk E and �k E the k-th tensor power, the
k-th symmetrized tensor power and the k-th anti-symmetrized tensor power of E . If
ω ∈ �∞(

�k(T ∗N )
)⊗V is a differential form taking values in a finite dimensionalR-

vector space V , its pull-back by f : M → N is denoted by f ∗ω. Next let S1×· · ·× Sk
be a product of sets and let i ∈ {1, . . . , k}. Then pri : S1 × · · · × Sk → Si denotes the
projection onto the i-th factor.

We now recall a well-known fact on surjective submersions. This is the next lemma,
see e.g. [14, Thm. 4.29], which is used frequently without referencing it explicitly.

Lemma 2.2 Let pr : P → M be a surjective submersion and let N be some manifold.
Let f : M → N be a map. Then f is smooth iff f ◦ pr : P → N is smooth.

Concerning the regularity of curves on manifolds, we use the following convention.

Notation 2.3 Whenever c : I → M denotes a curve in a manifold M defined on an
interval I ⊆ R, we assume for simplicity that c is smooth if not indicated otherwise.
If I is not open, we assume that c can be extended to smooth curve defined on an open
interval J ⊆ R containing I . Moreover, we implicitly assume that 0 is contained in
I if we write 0 ∈ I . Nevertheless, many results can be generalized by requiring less
regularity.

Notation 2.4 If not indicated otherwise, we use Einstein summation convention.

2.2 Lie groups

Copying and adapting [12, Sec. 3.1],we now introduce somenotations andwell-known
facts concerning Lie groups and Lie algebras.

Let G be a Lie group and denote its Lie algebra by g. The identity of G is usually
denoted by e. The left translation by an element g ∈ G is denoted by

�g : G → G, h �→ �g(h) = gh (2.1)

and we write
rg : G → G, h �→ rg(h) = hg (2.2)
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for the right translation by g ∈ G. The conjugation by an element g ∈ G is given by

Conjg : G → G, h �→ Conjg(h) = (�g◦rg−1)(h) = (rg−1 ◦�g)(h) = ghg−1 (2.3)

and the adjoint representation of G is defined as

Ad : G → GL(g), g �→ Adg = (

ξ �→ Adg(ξ) = TeConjgξ
)

. (2.4)

Moreover, we denote the adjoint representation of g by

ad : g → gl(g), ξ �→ (

η �→ adξ (η) = [ξ, η]). (2.5)

For ξ ∈ g, we denote by ξ L ∈ �∞(TG) and ξ R ∈ �∞(TG) the corresponding left
and right-invariant vector fields, respectively, which are given by

ξ L(g) = Te�gξ and ξ R(g) = Tergξ, g ∈ G. (2.6)

The exponential map of the Lie group G is denoted by exp : g → G. One has for
ξ ∈ g and t ∈ R

d
dt exp(tξ) = Te�exp(tξ)ξ = Terexp(tξ)ξ (2.7)

by the proof of [15, Prop. 19.5].
Next we recall that the tangent map of the group multiplication m : G × G �

(g, h) �→ gh ∈ G is given by

T(g,h)m(vg, wh) = Tgrhvg + Th�gwh (2.8)

for all (g, h) ∈ G×G and (vg, vh) ∈ TgG×ThG, see e.g. [16, Lem. 4.2]. The tangent
map of the inversion inv : G � g �→ inv(g) = g−1 ∈ G reads

Tginvvg = −(Te�g−1 ◦ Tgrg−1)vg (2.9)

for all g ∈ G and vg ∈ TgG, see e.g. [16, Cor. 4.3].
We now introduce the notation for some Lie groups that play a crucial role in this

text.

Notation 2.5 Let V be a finite dimensional R-vector space. We write GL(V ) for the
general linear group of V . If V is a pseudo-Euclidean vector space, i.e. V is endowed
with a scalar product 〈·, ·〉 : V × V → R, we denote the corresponding pseudo-
orthogonal group by O(V , 〈·, ·〉). Moreover, we often write O(V ) = O(V , 〈·, ·〉)
for short. Similarly, the special (pseudo-)orthogonal group is denoted by SO(V ) =
SO(V , 〈·, ·〉). More generally, a closed subgroup ofGL(V ), which is not further spec-
ified, is often denoted by G(V ) and we write g(V ) ⊆ gl(V ) for the corresponding Lie
algebra. Sometimes, the exponential map of G(V ) is denoted by

g(V ) → G(V ), ξ �→ eξ =
∞
∑

k=0

1
k!ξ

k . (2.10)
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In the sequel, it is often convenient to denote the evaluation of A ∈ GL(V ) at v ∈ V
by Av instead of writing A(v).

2.3 Principal fiber bundles

Next we recall some well-known facts on principal fiber bundles and introduce some
notations. For general facts on principal fiber bundles we refer to [16, Sec. 18–19] and
[17, Sec. 1.1−1.3].

Notation 2.6 Let P → M be an H-principal fiber bundle over M and let h be the Lie
algebra of H. The principal action is usually denoted by

�: P × H → P, (p, h) �→ p � h (2.11)

and we denote for fixed h ∈ H by (· � h) : P � p �→ p � h ∈ P the induced
diffeomorphism.

Next, let η ∈ h. Then ηP ∈ �∞(T P) denotes the fundamental vector field associ-
ated to the principal action. For p ∈ P , it is given by

ηP (p) = d
dt (p � exp(tη))

∣

∣

t=0. (2.12)

As a consequence of [17, Lem. 1.3.1], see also [16, Sec. 18.18], the vertical bundle
Ver(P) = ker(T pr) ⊆ T P of P → M is fiber-wise given by

Ver(P)p = {

ηP (p) | η ∈ h
} = { d

dt (p � exp(tη))
∣

∣

t=0 | η ∈ h
} ⊆ TpP, p ∈ P.

(2.13)
Recall that a complement of Ver(P), i.e. a subbundle Hor(P) ⊆ T P fulfilling
Hor(P)⊕Ver(P) = T P is called horizontal bundle. It is well-known that such a com-
plement defines a unique connection on P , i.e. an endomorphismP ∈ �∞(

End(T P)
)

such that P2 = P and im(P) = Ver(P) as well as ker(P) = Hor(P) holds. This fact
can be regarded as a consequence of [16, Sec. 17.3]. Moreover, P corresponds to an
h-valued one-form ω ∈ �∞(T ∗P) ⊗ h via

ω
∣

∣

p(vp) = (

Te(p � ·))−1P∣

∣

p(vp), p ∈ P, vp ∈ TpP, (2.14)

see e.g. [16, Sec. 19.1, Eq. (1)]. A connection P ∈ �∞(

End(T P)
)

is called principal
connection if

Tp(· � h)
(P∣

∣

p(vp)
) = P∣

∣

p�h
(

Tp(· � h)vp
)

, p ∈ P, vp ∈ TpP (2.15)

holds for all h ∈ H , see e.g. [16, Sec. 19.1]. Next we recall how a principal con-
nection P ∈ �∞(

End(T P)
)

is related to the corresponding connection one-form
ω ∈ �∞(T P) ⊗ h given by (2.14). This is the next lemma which is taken from [16,
Sec. 19.1]
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Lemma 2.7 Let P ∈ �∞(

End(T P)
)

be a principal connection. Then the correspond-
ing connection one-form ω ∈ �∞(T ∗P) ⊗ h satisfies:

1. For each η ∈ h, one has ω
∣

∣

p

(

ηP (p)
) = η for all p ∈ P.

2. For each h ∈ H one has
(

(· � h)∗ω
)∣

∣

p(vp) = Adh−1
(

ω
∣

∣

p(vp)
)

for all p ∈ P and
vp ∈ TpP.

Conversely, an h-valued one-form ω ∈ �∞(T ∗P)⊗h fulfilling Claim 1. and Claim 2.
defines a principal connection on P → M via

P∣

∣

p(vp) = (

Te(p � ·))ω∣

∣

p(vp) = (

ω
∣

∣

p(vp)
)

P (p) (2.16)

for p ∈ P and vp ∈ TpP with the map (p � ·) : H � h �→ p � h ∈ P for fixed p ∈ P.

Next we recall the notion of reductions of principal fiber bundles, see e.g. [16,
Sec. 18.6]. Let P → M be an H -principal fiber bundle. Then an H2-principal fiber
bundle P2 → M is called a reduction of P if there is a morphism of Lie groups
f : H2 → H and amorphism
 : P2 → P of principal fiber bundles along f covering
idM : M → M . In particular, 
(p2 � h2) = 
(p2) � f (h2) holds for all h2 ∈ H2 and
p2 ∈ P2.

Furthermore, we need the notion of an associated bundle which we recall briefly
from [16, Sec. 18.7]. Let F be some manifold and let �: H × F → F be a smooth
action of H on F from the left. Then the corresponding associated bundle is denoted
by π : P ×H F → M , whose elements are given by

P ×H F = {[p, s] | (p, s) ∈ P × F
}

. (2.17)

Here [p, s] denotes the equivalence class of (p, s) ∈ P × F defined by the H -action

�: (P × F) × H � (

(p, f ), h
) �→ (

p � h, h−1 � f
) ∈ P × F, (2.18)

i.e. (p, s) ∼ (p′, s′) iff there exists an h ∈ H such that (p′, s′) = (p � h, h−1 � s) is
fulfilled. The projection π : P ×H F → M , sometimes denoted by πP×H F : P ×H

F → M to refer to P ×H F explicitly, is given by π([p, s]) = prP (p), where
prP : P → M denotes the projection of the principal fiber bundle. Furthermore we
often write

π : P × F → (P × F)/H = P ×H F, (p, f ) �→ [p, f ] (2.19)

for the H -principal fiber bundle over the associated bundle P×H F , where the principal
action is given by (2.18). We also denote the projection in (2.19) by π P×F : P × F →
P ×H F to refer to P × F explicitly.

We will use the following identification of the tangent bundle of an associated
bundle P ×H F → M of an H -principal fiber bundle P → M

T (P×H F) ∼= T P×T H T F = {[vp, vs] | (vp, vs) ∈ T(p,s)(P×F), (p, s) ∈ P×F
}

,

(2.20)
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see e.g. [16, Sec. 18.18]. Here T P is considered as a T H -principal fiber bundle over
T M with principal action T�: T P × T H → T P , see e.g. [16, Sec. 18.18], and T H
acts on T F via the tangent map of the H -action on F .

Finally, we introduce some notations concerning frame bundles of vector bundles.
We refer to [16, Sec. 18.11] for general information on frame bundles.

Notation 2.8 The frame bundle of a vector bundle E → M with typical fiber V
is denoted by GL(V , E) → M. If E is equipped with a not necesarrily positive
definite fiber metric, we denote the corresponding (pseudo-)orthogonal frame bundle
by O(V , E) → M. More generally, let G(V ) ⊆ GL(V ) be a closed subgroup of
the general linear group GL(V ). Then a G(V )-reduction of GL(V , E) along the
canonical inclusion G(V ) → GL(V ) is often denoted by G(V , E) if it exists. We
write prG(V ,E) : G(V , E) → M for the bundle projection.

2.4 Reductive homogeneous spaces

In this subsection, we recall some well-known facts on reductive homogeneous spaces
by adapting and copying some parts of [12, Sec. 3.2−3.3]. We refer to [15, Sec. 23.4]
or [13, Chap. 11] for details.

Since reductive homogeneous spaces play a central role in this text, we recall their
definition from [15, Def. 23.8], see also [10, Sec. 7] or [13, Chap. 11, Def. 21].

Definition 2.9 Let G be a Lie group and g be its Lie algebra. Moreover, let H ⊆ G
be a closed subgroup and denote its Lie algebra by h ⊆ g. Then the homogeneous
space G/H is called reductive if there exists a subspace m ⊆ g such that g = h ⊕ m
is fulfilled and

Adh(m) ⊆ m (2.21)

holds for all h ∈ H .

In the remainder part of this section, G/H always denotes a reductive homogeneous
space with a fixed reductive decomposition g = h ⊕ m if not indicated otherwise.

The projection onto m whose kernel is given by h is denoted by prm : g → m.
Analogously, we write prh : g → h for the projection whose kernel is given by m.
Moreover, we write for ξ ∈ g

ξm = prm(ξ) and ξh = prh(ξ). (2.22)

The map
τ : G × G/H → G/H , (g, g′ · H) �→ (gg′) · H (2.23)

is a smooth G-action on G/H from the left, where g · H ∈ G/H denotes the coset
defined by g ∈ G. Borrowing the notation from [15, p. 676], for fixed g ∈ G, the
associated diffeomorphism is denote by

τg : G/H → G/H , g′ · H �→ τg(g
′ · H) = (gg′) · H . (2.24)
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In addition, we write

pr : G → G/H , g �→ pr(g) = g · H (2.25)

for the canonical projection. It is well-known that pr : G → G/H carries the structure
of an H -principle fiber bundle, see e.g. [16, Sec. 18.15]. In the sequel, we write

�: G × H → G, (g, h) �→ g � h = rh(g) = �g(h) = gh (2.26)

for the H -principal action on G if not indicated otherwise. The reductive decomposi-
tion g = h ⊕ m can be used to define a principal connection on pr : G → G/H , see
e.g. [18, Thm. 11.1]. Since this well-known fact will be used several times below, we
state the next proposition which is copied from [12, Sec. 3.3].

Proposition 2.10 Consider pr : G → G/H as an H-principal fiber bundle, where
G/H is a reductive homogeneous space with reductive decomposition g = h⊕m and
define Hor(G) ⊆ TG fiber-wise by

Hor(G)g = (Te�g)m, g ∈ G. (2.27)

Then Hor(G) is a subbundle of TG defining a horizontal bundle on TG, i.e. a com-
plement of the vertical bundle Ver(G) = ker(T pr) ⊆ TG which yields a principal
connection on pr : G → G/H. This principal connection P ∈ �∞(

End(TG)
)

corre-
sponding to Hor(G) is given by

P∣

∣

g(vg) = Te�g ◦ prh ◦ (Te�g)
−1vg, g ∈ G, vg ∈ TgG. (2.28)

The corresponding connection one-form ω ∈ �∞(T ∗G) ⊗ h reads

ω
∣

∣

g(vg) = prh ◦ (Te�g)
−1vg (2.29)

for g ∈ G and vg ∈ TgG.

In the next lemma, following [15, Prop. 23.22], we recall a well-known property
of the isotropy representation of a reductive homogeneous space.

Lemma 2.11 The isotropy representation of a reductive homogeneous spaceG/H with
reductive decomposition g = h ⊕ m given by H � h �→ Tpr(e)τh ∈ GL

(

Tpr(e)G/H
)

is equivalent to the representation H � h �→ Adh
∣

∣

m
= (

X �→ Adh(X)
) ∈ GL(m),

i.e.
Tpr(e)τh ◦ Tepr

∣

∣

m
= Tepr ◦ Adh

∣

∣

m
(2.30)

is fulfilled for all h ∈ H.

Next we discuss invariant pseudo-Riemannian metrics on G/H briefly. A scalar
product 〈·, ·〉 : m × m → R is called Ad(H)-invariant if

〈

Adh(X),Adh(Y )
〉 = 〈

X ,Y
〉

(2.31)
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holds for all h ∈ H and X ,Y ∈ m, see e.g [13, p. 301] or [15, Sec. 23.4] for the
positive definite case. Reformulating and adapting [15, Def. 23.5], we call a pseudo-
Riemannian metric 〈〈·, ·〉〉 ∈ �∞(

S2T ∗(G/H)
)

invariant if

〈〈vp, wp〉〉p = 〈〈Tpτgvp, Tpτgwp〉〉τg(p), p ∈ G/H , vp, wp ∈ Tp(G/H) (2.32)

holds for all g ∈ G. By requiring the linear isomorphism

Tepr
∣

∣

m
: m → Tpr(e)(G/H) (2.33)

to be an isometry, there is a one-to-one correspondence between Ad(H)-invariant
scalar products onm and invariant pseudo-Riemannian metrics on G/H , see e.g. [13,
Chap. 11, Prop. 22] and also [15, Prop. 23.22] for the Riemannian case.

Naturally reductive homogeneous spaces are special reductive homogeneous
spaces. We recall their definition from [13, Chap. 11, Def. 23].

Definition 2.12 Let G/H be a reductive homogeneous space equipped with an invari-
ant pseudo-Riemannian metric and denote by 〈·, ·〉 : m × m → R the corresponding
Ad(H)-invariant scalar product on m. Then G/H is called naturally reductive homo-
geneous space if

〈[X ,Y ]m, Z
〉 = 〈

X , [Y , Z ]m
〉

(2.34)

holds for all X ,Y , Z ∈ m.

The following lemma can be considered as a generalization of [15, Prop. 23.29 (1)–(2)]
to pseudo-Riemannian metrics and Lie groups which are not necessarily connected.

Lemma 2.13 Let G be a Lie group and denote by g its Lie algebra. Moreover, let G be
equipped with a bi-invariant metric and let 〈·, ·〉 : g × g → R be the corresponding
Ad(G)-invariant scalar product. Moreover, let H ⊆ G be a closed subgroup such that
its Lie algebra h ⊆ g is non-degenerated with respect to 〈·, ·〉. Then G/H is a reductive
homogeneous space with reductive decomposition g = h ⊕ m, where m = h⊥ is the
orthogonal complement of h with respect to 〈·, ·〉. Moreover, if G/H is equipped with
the invariant metric corresponding to the scalar product on m that is obtained by
restricting 〈·, ·〉 to m, the reductive homogeneous space G/H is naturally reductive.

Proof The claim can be proven analogously to the proof of [15, Prop. 23.29 (1)–(2)]
by taking the assumption h ⊕ h⊥ = h ⊕ m = g into account. ��
Remark 2.14 Inspired by the terminology in [15, Sec. 23.6, p. 710], we refer to the
naturally reductive spaces from Lemma 2.13 as normal naturally reductive spaces.

We now consider another special class of reductive homogeneous spaces. To this
end, we state the following definition which can be found in [19, p. 209].

Definition 2.15 Let G be a connected Lie group and let H be a closed subgroup. Then
(G, H) is called a symmetric pair if there exists a smooth involutive automorphism
σ : G → G, i.e. an automorphism of Lie groups fulfilling σ 2 = σ , such that (Hσ )0 ⊆
H ⊆ Hσ holds. Here Hσ denotes the set of fixed points of σ and (Hσ )0 denotes the
connected component of Hσ containing the identity e ∈ G.
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Inspired by the terminology used in [15, Def. 23.13], we refer to the triple (G, H , σ )

as symmetric pair, as well, where (G, H) is a symmetric pair with respect to the involu-
tive automorphism σ : G → G. These symmetric pairs lead to reductive homogeneous
spaceswhich are called symmetric homogeneous spaces if a certain “canonical” reduc-
tive decomposition g = h ⊕ m is chosen, see e.g. [10, Sec. 14]. This decomposition
is given by

h = {X ∈ g | Teσ X = X} ⊆ g and m = {X ∈ g | Teσ X = −X} ⊆ g. (2.35)

One can show that the decomposition from (2.35) turns G/H into a reductive homo-
geneous space and fulfills the inclusion [m,m] ⊆ h, see e.g. [10, Sec. 14] and also
[15, Prop. 23.33]. Note that the definition in [10, Sec. 14] does not require an invariant
pseudo-Riemannian metric on G/H . Next we define symmetric homogeneous spaces
and canonical reductive decompositions following [10, Sec. 14].

Definition 2.16 Let (G, H , σ ) be a symmetric pair. Then the reductive decomposition
g = h ⊕ m from (2.35) is called canonical reductive decomposition. Moreover, the
reductive homogeneous space G/H with the canonical reductive decomposition g =
h ⊕ m is called symmetric homogeneous space.

2.4.1 Invariant covariant derivatives

We discuss briefly invariant covariant derivatives on the reductive homogeneous space
G/H corresponding to the well-known invariant affine connections from [10, Thm.
8.1]. In this context, we refer to [10, 12] for more details. We define invariant covariant
derivatives and relate them to certain bilinearmaps by adapting and copying some parts
of [12, Sec. 4.1].

Definition 2.17 A covariant derivative ∇ : �∞(

T (G/H)
) × �∞(

T (G/H)
) →

�∞(

T (G/H)
)

on G/H is called G-invariant, or invariant for short, if

∇XY = (τg−1)∗
(∇(τg)∗X (τg)∗Y

)

(2.36)

holds for all g ∈ G and X ,Y ∈ �∞(

T (G/H)
)

. Here (τg)∗X denotes the push-forward
of X by τg : G/H → G/H , i.e. (τg)∗X = T τg ◦ X ◦ τg−1 .

Definition 2.18 A bilinear map α : m × m → m is called Ad(H)-invariant if

Adh
(

α(X ,Y )
) = α

(

Adh(X),Adh(Y )
)

(2.37)

holds for all X ,Y ∈ m and h ∈ H .

Let X ∈ g and let XG/H ∈ �∞(

T (G/H)
)

denote the fundamental vector field
associated with the action τ : G × G/H → G/H , i.e

XG/H (p) = d
dt τexp(t X)(p)

∣

∣

t=0, p ∈ G/H . (2.38)
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We denote by ∇α : �∞(

T (G/H)
) × �∞(

T (G/H)
) → �∞(

T (G/H)
)

the unique
covariant derivative, see [12, Def. 4.16], corresponding to (or associated with) the
Ad(H)-invariant bilinear map α : m × m → m by requiring

∇α
XG/H

YG/H
∣

∣

pr(e) = Tepr
( − [X ,Y ]m + α(X ,Y )

)

, X ,Y ∈ m. (2.39)

A characterization of parallel vector fields along curves on G/H with respect to
∇α is given in next proposition which is a reformulation of [12, Cor. 4.27].

Proposition 2.19 Let γ : I → G/H be a curve and let g : I → G be a horizontal
lift of γ with respect to the principal connection from Proposition 2.10 defined by the
reductive decomposition g = h⊕m. Moreover, let ̂Z : I → T (G/H) be a vector field
along γ with horizontal lift Z : I � t �→ (

Tg(t)pr
∣

∣

Hor(G)g(t)

)−1
̂Z(t) ∈ Hor(G) along

g : I → G. Define the curves x, z : I → m by

x(t) = (Te�g(t))
−1ġ(t) and z(t) = (Te�g(t))

−1Z(t) (2.40)

for t ∈ I . Then ̂Z : I → T (G/H) is parallel along γ : I → G/H with respect to ∇α

defined by the Ad(H)-invariant bilinear map α : m × m → m iff the ODE

ż(t) = −α
(

x(t), z(t)
)

(2.41)

is satisfied for all t ∈ I .

The next Proposition which is copied from [12, Prop. 4.22] characterizes metric
invariant covariant derivatives.

Proposition 2.20 Let α : m × m → m be an Ad(H)-invariant bilinear map defining
the invariant covariant derivative ∇α on G/H. Then ∇α is metric with respect to the
invariant pseudo-Riemannian metric on G/H defined by the Ad(H)-invariant scalar
product 〈·, ·〉 : m × m → R iff for each X ∈ m the linear map

α(X , ·) : m → m, Y �→ α(X ,Y ) (2.42)

is skew-adjoint with respect to 〈·, ·〉, i.e.
〈

α(X ,Y ), Z
〉 = −〈

Y , α(X , Z)
〉

(2.43)

holds for all X ,Y , Z ∈ m.

Following [12, Sec. 4.6], we introduce the canonical invariant covariant derivatives.
They correspond to the canonical affine connections from [10, Sec. 10].

Definition 2.21 1. The canonical invariant covariant derivative of first kind ∇can1

corresponds to the Ad(H)-invariant bilinear mapm×m � (X ,Y ) �→ 1
2 [X ,Y ]m ∈

m.



Rolling reductive homogeneous spaces Page 13 of 64 34

2. The canonical invariant covariant derivative of second kind ∇can2 corresponds to
the Ad(H)-invariant bilinear map m × m � (X ,Y ) �→ 0 ∈ m.

The canonical invariant covariant derivatives correspond to the Levi-Civita covariant
derivatives on certain pseudo-Riemannian homogeneous spaces. Following [12, Re.
4.36], we state the next remark.

Remark 2.22 Assume thatG/H is a naturally reductive homogeneous space. Then the
Levi-Civita covariant derivative coincides with the canonical covariant derivative of
first kind, i.e ∇LC = ∇can1. This has already been proven in [10, Thm. 13.1 and Eq.
(13.2)].

Concerning the canonical covariant derivatives on symmetric homogeneous spaces,
we state the next remark following [10, Thm. 15.1], see also [12, Sec. 4.6].

Remark 2.23 Let (G, H , σ ) be a symmetric pair and let G/H be the correspond-
ing symmetric homogeneous space. Let g = h ⊕ m denote the canonical reductive
decomposition. Then 1

2 [X ,Y ]m = 0 holds for all X ,Y ∈ m due to [m,m] ⊆ h. Hence
∇can1 = ∇can2 is fulfilled. Moreover, if G/H is a pseudo-Riemannian symmetric
space, i.e. G/H is equipped with an invariant pseudo-Riemannian metric correspond-
ing to an Ad(H)-invariant scalar product on m, then ∇LC = ∇can1 = ∇can2 holds.

3 Intrinsic rolling

In this section, a notion of rolling intrinsically a manifold M over another manifold
̂M of equal dimension dim(M) = n = dim( ̂M) is recalled from the literature and
slightly generalized. As preparation to define the configuration space, we state the
following lemma which can be regarded as a slight generalization of the definition of
the configuration space in [6, Sec. 3.1]. In particular, the definition of the map 
 in
Lemma 3.1, Claim 2., below, is very similar to [6, Eq. (4)].

Lemma 3.1 Let E → M and ̂E → ̂M be two vector bundles both having typical fiber
V and let G(V ) ⊆ GL(V ) be a closed subgroup. Assume that the frame bundles of E
and ̂E admit both a G(V )-reduction along the canonical inclusion G(V ) → GL(V )

which we denote by G(V , E) → M and G(V , ̂E) → ̂M, respectively. Let

Q = (

G(V , E) × G(V , ̂E)
)

/G(V ) (3.1)

be defined as the quotient of G(V , E) × G(V , ̂E) by the diagonal action of G(V ),
where the action on each component is given by theG(V )-principal action. Moreover,
define

π : Q → M × ̂M, [ f , ̂f ] �→ (

prG(V ,E)( f ), prG(V ,̂E)(
̂f )

)

, (3.2)

where [ f , ̂f ] ∈ Q denotes the equivalence class defined by ( f , ̂f ) ∈ G(V , E) ×
G(V , ̂E). Then the following assertions are fulfilled:

1. π : Q = (

G(V , E) × G(V , ̂E)
)

/G(V ) → M × ̂M is a G(V )-fiber bundle over
M × ̂M.
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2. Let (x, x̂) ∈ M × ̂M and define

˜Q(x ,̂x) = {

q̃ : Ex → ̂Ex̂ | ̂f −1◦ q̃ ◦ f ∈ G(V ) for all ( f , ̂f ) ∈ G(V , E)x ×G(V , ̂Ex̂ )}.
(3.3)

Then the map


 : Q = ((

G(V , E) × G(V , ̂E)
)

/G(V )
)

(x ,̂x) � [ f , ̂f ] �→ ̂f ◦ f −1 ∈ ˜Q(x ,̂x)

(3.4)
is bijective.

Proof The action

(

G(V , E) × G(V , ̂E)
) × G(V ) → G(V , E) × G(V , ̂E),

(( f , ̂f ), A) �→ ( f � A, ̂f � A)

is free and proper since the action on each component is free and proper. Thus Q =
(

G(V , E) × G(V , ̂E)
)

/G(V ) is a smooth manifold. Moreover, ( f , ̂f ) ∼ ( f ′, ̂f ′)
holds iff there is an A ∈ G(V ) such that ( f ′, ̂f ′) = ( f � A, ̂f � A) is fulfilled. Let
(x, x̂) ∈ M × ̂M and let U ⊆ M and ̂U ⊆ ̂M be open neighbourhoods of x and x̂ ,
respectively, such that

ϕ : G(V , E)
∣

∣

U → U × G(V ) and ϕ̂ : G(V , ̂E)
∣

∣

̂U → ̂U × G(V )

are local trivializations of G(V , E) → M and G(V , ̂E) → ̂M as G(V )-principal fiber
bundles, respectively. Locally, one obtains for the principal action for A ∈ G(V )

ϕ( f � A) = (pr1(ϕ( f )), pr2(ϕ( f )) ◦ A), ϕ̂( ̂f � A) = (pr1(ϕ̂( ̂f )), pr2(ϕ̂( ̂f )) ◦ A),

(3.5)
see e.g. [16, Sec. 18, p. 211]. We now define the local trivialization φ : Q∣

∣

U×̂U →
U × ̂U × G(V ) of π : Q → M × ̂M by

φ
([ f , ̂f ]) = (

pr1(ϕ( f )), pr1(ϕ̂( ̂f )),
(

pr2(ϕ( f ))
) ◦ (

pr2(ϕ̂( ̂f ))
)−1)

, [ f , ̂f ] ∈ Q
∣

∣

U×̂U .

Using (3.5), one shows that φ is well-defined. Moreover, it is straightforward to verify
that φ is a local trivialization of π : Q → M × ̂M . This shows Claim 1..

It remains to prove Claim 2.. Let (x, x̂) ∈ M × ̂M and f ∈ G(V , E)x as well
as ̂f ∈ G(V , ̂E)x̂ . In particular, f : V → Ex and ̂f : V → ̂Ex̂ are invertible linear
maps. Hence ̂f ◦ f −1 : Ex → ̂Ex̂ is a linear isomorphism.

Moreover, 

([ f , ̂f ]) is independent of the representative of [ f , ̂f ] ∈ Q due to



([ f ◦ A, ̂f ◦ A]) = ( ̂f ◦ A) ◦ ( f ◦ A)−1 = ̂f ◦ f −1 = 


([ f , ̂f ])

for all A ∈ G(V ).
Next we show that 


([ f , ̂f ]) ∈ ˜Q(x ,̂x) holds for all [ f , ̂f ] ∈ Q(x ,̂x). Let [ f , ̂f ] ∈
Q(x ,̂x). By the fiber-wise transitivity of the principal G(V )-actions on G(V , E) and
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G(V , ̂E), respectively, we obtain for A, B ∈ G(V )

( ̂f ◦ B)−1 ◦

([ f , ̂f ])◦ ( f ◦ A) = B−1 ◦ ̂f −1 ◦(

̂f ◦ f −1)◦ f ◦ A = B−1 ◦ A ∈ G(V )

showing

([ f , ̂f ]) ∈ ˜Q(x ,̂x) for all [ f , ̂f ] ∈ Q(x ,̂x), i.e.
 : Q(x ,̂x) → ˜Q(x ,̂x) is well-

defined. Moreover, 
 is injective. Let [ f , ̂f ], [ f ′, ̂f ′] ∈ Q(x ,̂x) with 

([ f , ̂f ]) =



([ f ′, ̂f ′]). Since the G(V )-principal actions on G(V , E) and G(V , ̂E) are free and

fiber-wise transitive, we can write f ′ = f ◦ A and ̂f ′ = ̂f ◦ B with some uniquely
determined A, B ∈ G(V ). By this notation, we obtain

̂f ◦ f −1 = 

([ f , ̂f ]) = 


([ f ◦A, ̂f ◦B]) = ( ̂f ◦B)◦( f ◦A)−1 = ̂f ◦(B◦A−1)◦ f −1,

implying B ◦ A−1 = idV ⇐⇒ A = B because f : V → Ex and ̂f : V → ̂Ex̂

are both linear isomorphisms. Thus [ f ′, ̂f ′] = [ f ◦ A, ̂f ◦ A] = [ f , ̂f ] is shown.
It remains to show that 
 is surjective. To this end, let q̃ ∈ ˜Q(x ,̂x) and chose some
f ∈ G(V , E)(x ,̂x) and ̂f ∈ G(V , ̂E)(x ,̂x). Then ̂f −1 ◦ q̃ ◦ f ∈ G(V ) holds. We now
compute



([ f , ̂f ◦( ̂f −1◦q̃◦ f )]) = (

̂f ◦( ̂f −1◦q̃◦ f )
)◦ f −1 = ( ̂f ◦ ̂f −1)◦q̃◦( f ◦ f −1) = q̃,

i.e. 
 is surjective. This yields the desired result. ��
After this preparation,we consider intrinsic rollings. LetM and ̂M be twomanifolds

with dim(M) = n = dim( ̂M). Moreover, let G(Rn) ⊆ GL(Rn) be a closed subgroup
and assume that the frame bundles GL(Rn, T M) → M and GL(Rn, T ̂M) → ̂M
admit both a G(Rn)-reduction along the canonical inclusion G(Rn) → GL(Rn).
These reductions are denoted by

G(Rn, T M) → GL(Rn, T M) and G(Rn, T ̂M) → GL(Rn, T ̂M), (3.6)

respectively. In this section, we denote by

π : Q = (

G(Rn, T M) × G(Rn, T ̂M)
)

/G(Rn) → M × ̂M (3.7)

the G(Rn)-fiber bundle over M × ̂M obtained by applying Lemma 3.1 to the frame
bundles from (3.6).

We now define a notion of rolling of M over ̂M intrinsically, where M and ̂M are
both equipped with a covariant derivative ∇ and ̂∇, respectively.

Definition 3.2 An intrinsic (G(Rn)-reduced) rolling of (M,∇) over ( ̂M, ̂∇) is a curve

q : I → Q = (

G(Rn, T M) × G(Rn, T ̂M)
)

/G(Rn) (3.8)

with projection (x, x̂) = π ◦ q : I → M × ̂M such that the following conditions are
fulfilled:
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1. No slip condition: ˙̂x(t) = q(t)ẋ(t) for all t ∈ I .
2. No twist condition: Z : I → T M is a parallel vector field along x iff ̂Z : I → T ̂M

defined by ̂Z(t) = q(t)Z(t) for t ∈ I is parallel along x̂ .

Here Lemma 3.1, Claim 2. is used to identify q(t) with the linear isomorphism
q(t) : Tx(t)M → T̂x(t) ̂M which is denoted by q(t), as well. We call the curve
x : I → M rolling curve. The curve x̂ : I → ̂M is called development curve. The
curve q : I → Q is often called rolling for short.

The next remark yields an other perspective on the intrinsic rollings from Defini-
tion 3.2.

Remark 3.3 Let q : I → Q be a (G(Rn)-reduced) intrinsic rolling of M over ̂M in the
sense of Definition 3.2 and write (x, x̂) = π ◦ q : I → M × ̂M . Then we can view
this rolling as a triple (x(t), x̂(t), A(t)), where A(t) = q(t) : Tx(t)M → T̂x(t) ̂M is
the linear isomorphism defined by q(t) as in Lemma 3.1, Claim 2.. This point of view
allows for relating a rolling q : I → Q from Definition 3.2 to [11, Def. 1], where a
rolling is defined as a triple (x(t), x̂(t), A(t)) satisfying certain properties.

Definition 3.2 of an intrinsic rolling of M over ̂M generalizes several notions of
intrinsic rolling from the literature.

Remark 3.4 Assume that M and ̂M are both orientible and both equipped with a Rie-
mannian metric. Let SO(Rn, T M) and SO(Rn, T ̂M) be the corresponding reductions
of their frame bundles. Moreover, let M and ̂M be endowed with the Levi-Civita
covariant derivatives ∇LC and ∇̂LC corresponding to the Riemannian metrics on M
and ̂M , respectively. Then Definition 3.2 specializes to [6, Def. 3]. Here the no twist
condition is rewritten as in [11, Prop. 2]. More generally, if M and ̂M are oriented
and equipped with a pseudo-Riemannian metric, Definition 3.2 specializes to [7, Def.
4]. If M and ̂M are both equipped with an arbitrary covariant derivative ∇ and ̂∇,
respectively, Definition 3.2 yields the definition proposed in [9, p. 35] and [8, Sec. 7]
by setting G(Rn, T M) = GL(Rn, T M) and G(Rn, T ̂M) = GL(Rn, T ̂M).

Studying properties of rollings in the sense of Definition 3.2 for general manifolds
is out of the scope of this text. However, in Sect. 5 below, we discuss intrinsic rollings
in the context of reductive homogeneous spaces in detail.

4 Frame bundles of associated vector bundles

In this section, we identify (certain reductions of) the frame bundle of a reductive
homogeneous space G/H with certain principal fiber bundles obtained as associated
bundles of the H -principal fiber bundle pr : G → G/H . We point out that the results
of this sectionmight be well-known since the statement of Corollary 4.11 can be found
as an exercise in the German book [20, Ex. 2.7]. However, we were not able to find a
reference including a proof. Hence we provide one in this section in order to keep this
text as self-contained as possible.Herewefirst startwith amore general situation that is
applied to reductive homogeneous spaces later. We first determine (certain reductions
of) the frame bundles of vector bundles given as associated bundles of some principal
fiber bundle.
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4.1 Frame bundles of associated vector bundles

Let P → M be an H -principal fiber bundle. We describe (reductions of) the frame
bundle of a vector bundle associated to P in terms of another fiber bundle associated
to P . To this end, we state the following lemma as preparation.

Lemma 4.1 Let P → M be an H-principal fiber bundle and let ρ : H → GL(V ) be
a smooth representation of H on a finite dimensional R-vector space V . Moreover, let
G(V ) ⊆ GL(V ) be a closed subgroup such that ρh ∈ G(V ) is fulfilled for all h ∈ H.
Then the following assertions are fulfilled:

1. The Lie group H acts on G(V ) via

H × G(V ) → G(V ), (h, A) �→ ρh ◦ A (4.1)

smoothly from the left.
2. The map

�: (P ×H G(V )) × G(V ) → P ×H G(V ) ([g, A], B) → [g, A ◦ B], (4.2)

denoted by the same symbol as the principal action �: P × H → P, yields a
well-defined, smooth, free and proper G(V )-right action on the associated bundle

π : P ×H G(V ) → M (4.3)

turning
π̃ : P ×H G(V ) → (

P ×H G(V )
)

/G(V ) (4.4)

into a G(V )-principal fiber bundle, where π̃ denotes the canonical projection.
3. The map

φ : (P ×H G(V ))/G(V ) � π̃([p, S]) �→ pr(p) ∈ M (4.5)

is a diffeomorphism such that φ ◦ π̃ = π holds. Moreover,

idG×HG(m) : G ×H G(m) → G ×H G(m) (4.6)

is an isomorphism of G(V )-principal fiber bundles covering φ.

Proof Claim 1. is obvious.
We now show Claim 2.. The G(V )-right action � on P ×H G(V ) is well-defined

due to

[p � h, ρh−1 ◦ A] � B = [p � h, ρh−1 ◦ A ◦ B] = [g, A ◦ B] = [g, A] � B
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for all p ∈ P , h ∈ H and A, B ∈ G(V ). Next we show that � is smooth. To this end,
we consider the diagram

(P × G(V )) × G(V )

(P ×H G(V )) × G(V ) P ×H G(V )

π × idG(V )

�

(π × idG(V )) ◦ �̃

(4.7)

where π : P × G(V ) → (P × G(V ))/H = P ×H G(V ) denotes the canonical
projection and �̃ is given by

�̃ : (P × G(V )) × G(V ) → P × G(V ), ((p, A), B) �→ (p, A ◦ B)

which is clearly a smooth and free G(V )-right action on P × G(V ). Moreover, the
action �̃ is proper since the G(V )-action on G(V ) by right translations is proper, see
e.g. [21, Prop. 9.29].

The map π × idG(V ) is a surjective submersion and (π × idG(V )) ◦ �̃ is smooth as
the composition of smooth maps. Thus the action � is smooth since the diagram (4.7)
commutes.

Next let [p, A] ∈ P ×H G(V ) and B ∈ G(V ). Then

[p, A] � B = [p, A ◦ B] = [p, A] �⇒ B = idV

holds proving that � is free.
We now show that � is proper. To this end, we use the characterization of a proper

Lie group action in terms of sequences, see e.g. [16, Sec. 6.20].
Let ([pi , Ai ])i∈N be a convergent sequence in P ×H G(V ) with limit [p, A] ∈

P ×H G(V ). Next let (Bi )i∈N be a sequence in G(V ) such that the sequence defined
by [pi , Ai ]�Bi = [pi , Ai ◦Bi ] converges. Then the action � is proper iff (Bi )i∈N has a
convergent subsequence. Let s : U → P ×G(V ) be a local section of the H -principal
fiber bundle π : P × G(V ) → P ×H G(V ) defined on some open U ⊆ P ×H G(V )

such that [p, A] ∈ U holds. Then [pi , Ai ] ∈ U is fulfilled for all i ≥ N with N ∈ N

sufficiently large. We define the sequence ( p̂i , ̂Ai )i∈N in P × G(V ) by setting

( p̂i , ̂Ai ) = s([pi , Ai ]), i ≥ N

and choosing ( p̂i , ̂Ai ) ∈ π−1([pi , Ai ]) for i < N arbitrarily. By construction, we
have

[pi , Ai ] = (π ◦ s)([pi , Ai ]) = π( p̂i , ̂Ai ) = [ p̂i , ̂Ai ] (4.8)

for all i ∈ N. Moreover, the sequence ( p̂i , ̂Ai )i∈N converges to

( p̂, ̂A) = lim
i→∞ s([pi , Ai ]) = s([p, A]) ∈ P × G(V )
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by the continuity of the local section s : U → P × G(V ) and the convergence of
[pi , Ai ]. Moreover, let (Bi )i∈N be a sequence in G(V ) such that the sequence defined
by

[pi , Ai ] � Bi = [pi , Ai ◦ Bi ], i ∈ N

is convergent in P ×H G(V ). We denote its limit by [p,C] = limi→∞[pi , Ai ◦ Bi ] ∈
P ×H G(V ). Clearly,

[pi , Ai ] � Bi = [ p̂i , ̂Ai ] � Bi = [ p̂i , ̂Ai ◦ Bi ], i ∈ N

holds by (4.8).Nextwe choose a local section s2 : U2 → P×G(V ) ofπ : P×G(V ) →
P ×H G(V ) such that [p,C] ∈ U2 ⊆ P ×H G(V ) is fulfilled. Then there exists an
N2 ∈ N with [pi , Ai ◦ Bi ] ∈ U2 for all i ≥ N2. We define the sequence

( p̃i , ˜Ci ) = s2([ p̂i , ̂Ai ◦ Bi ]), i ≥ N2 (4.9)

and select ( p̃i , ˜Ci ) ∈ π−1([pi , ̂Ai ◦ Bi ]) for i < N2 arbitrarily. Recall from [16, Sec.
18, p. 211] that the map

σ : P ⊕ P → H , (p, p′) �→ σ(p, p′)

is smooth, where σ(p, p′) ∈ H is defined by p � σ(p, p′) = p′ for (p, p′) ∈ P ⊕ P .
Next we define the map

� : (P ⊕ P) × G(V ) → P × G(V ),
(

(p, p′), A
) �→ (

p, ρσ(p,p′)−1 ◦ A
)

which is a smooth map as the composition of smooth maps. The definition of
( p̃i , ˜Ci )i∈N in (4.9) implies

( p̃i , ˜Ci ) = s2([ p̂i , ̂Ai ◦ Bi ])
= (

p̂i � σ( p̂i , p̃i ), ρ(σ( p̂i , p̃i ))−1 ◦ ̂Ai ◦ Bi
)

= (

p̃i , ρ(σ( p̂i , p̃i ))−1 ◦ ̂Ai ◦ Bi
)

(4.10)

since [ p̃i , ˜Ci ] = [ p̂i , ̂Ai ◦ Bi ] holds iff there exists a hi ∈ H with p̃i = p̂i � hi and
˜Ci = ρh−1

i
◦ ̂Ai ◦ Bi . Next consider the sequence defined for i ∈ N by

�
(

( p̃i , p̂i ), ̂Ai
) = ( p̂i � σ( p̂i , p̃i ), ρ(σ( p̂i , p̃i ))−1 ◦ ̂Ai ) = ( p̃i , ρ(σ( p̂i , p̃i ))−1 ◦ ̂Ai ),

(4.11)
which converges by the continuity of � as well as the convergence of the sequences
( p̃i , ˜Ci )i∈N and ( p̂i , ̂Ai )i∈N in P × G(V ). By (4.11), we obtain

�
(

( p̃i , p̂i ), ̂Ai
)�̃Bi = (

p̃i , ρ(σ( p̂i , p̃i ))−1 ◦ ̂Ai
)�̃Bi

= (

p̃i , ρ(σ( p̂i , p̃i ))−1 ◦ ̂Ai ◦ Bi
)

= ( p̃i , ˜Ci ) → ( p̃, ˜C), i → ∞,
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where we used (4.10) to obtain last equality. Since the action �̃ : (P × G(V )) ×
G(V ) → P×G(V ) is proper and the sequence

(

�(( p̃i , p̂i ), ̂Ai )
)

i∈N defined in (4.11)
is convergent in P ×G(V ), the sequence (Bi )i∈N has a convergent subsequence. Thus
the right action �: (P ×H G(V ))×G(V ) → P ×H G(V ) is indeed proper. Therefore
P ×H G(V ) → (P ×H G(V ))/G(V ) is a principal fiber bundle by [17, Re. 1.1.2].

It remains to prove Caim 3.. We first show that φ is a diffeomorphism. The equiv-
alence classes π̃([p, A])) = π̃([p, A ◦ B]) ∈ (

P ×H G(V )
)

/G(V ) represented by
[p, A], [p, A ◦ B] ∈ P ×H G(V ) are equal, where p ∈ P , A, B ∈ G(V ). Thus we
have

φ
(

π̃([p, A ◦ B])) = pr(p) = φ
(

π̃([p, A]))

showing that φ is well-defined. We now consider the diagrams

P ×H G(V ) P ×H G(V )

(

P ×H G(V )
)

/G(V ) M

π̃

φ

π

id(P×HG(V ))

(4.12)

and

P ×H G(V ) P ×H G(V )

(

P ×H G(V )
)

/G(V ) M

π̃

φ−1

π

id(P×HG(V ))

, (4.13)

where φ−1 is given by

φ−1 : M � pr(p) �→ π̃([p, idV ]) ∈ (

P ×H G(V )
)

/G(V ).

Clearly φ−1 ◦ φ = idM and φ ◦ φ−1 = id(P×HG(V ))/G(V ) holds showing that φ is
bijective. In addition, φ and φ−1 are smooth since (4.12) and (4.13) commute and π̃ as
well as π are both surjective submersions. Hence the commutativity of (4.12) implies
that idP×HG(V ) is indeed an isomorphism of G(V )-principal fiber bundles over φ as
desired. ��
Remark 4.2 ByLemma4.1, Claim 3., we view P×HG(V ) → (

P×HG(V )
)

/G(V ) ∼=
M as an G(V )-principal fiber bundle over M which is denoted by the same symbol as
the associated bundle, i.e. from now on, we write

π : P ×H G(V ) → M, (4.14)

if we view P ×H G(V ) as an G(V )-principal fiber bundle over M .
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Under certain conditions on the representation ρ : H → GL(V ), one can determine
a reduction of the GL(V )-principal fiber bundle P ×H GL(V ) → M obtained by
setting G(V ) = GL(V ) in Lemma 4.1.

Corollary 4.3 Let P → M be an H-principal fiber bundle and let ρ : H → GL(V )

be a representation of H on V . Moreover, let G(V ) ⊆ GL(V ) be a closed subgroup
such that ρh ∈ G(V ) holds for all h ∈ H. Then

ιP×HG(V ) : P ×H G(V ) → P ×H GL(V ), [p, A] �→ [p, A] (4.15)

is a reduction of the GL(V )-principal fiber bundle πP×GL(V ) : P ×H GL(V ) → M
along the canonical inclusion G(V ) → GL(V ).

Proof Let ιP×HG(V ) : P × G(V ) → P × GL(V ) denote the canonical inclusion.
Consider the diagram

P × G(V ) P × GL(V )

P ×H G(V ) P ×H GL(V )

ιP×HG(V )

π P×G(V ) π P×GL(V )

ιP×HG(V )

(4.16)

which clearly commutes. Since the map π P×G(V ) is a surjective submersion and
πGL(V ) ◦ ιP×G(V ) is smooth as the composition of smooth maps, the map ιP×HG(V )

is smooth, as well, because (4.16) commutes. Clearly, the map ιP×HG(V ) covers the
map idM : M → M . We now compute for [p, A] ∈ P ×H G(V ) and B ∈ G(V )

ιP×HG(V )([p, A] � B) = [p, A] � B = (

ιP×HG(V )([p, A])) � B

showing that ιP×HG(V ) is a morphism of principal fiber bundles along the canon-
ical inclusion G(V ) → GL(V ) covering idM , i.e. ιP×HG(V ) is a reduction of
P ×H GL(V ) → M . ��

The next proposition shows that π : P ×H GL(V ) → M can be identified with the
frame bundle of the associated vector bundle P ×H V → M , where H acts on V via
the representation viewed as the left action

ρ : H × V → V , (h, v) �→ ρh(v). (4.17)

Proposition 4.4 Let pr : P → M be an H-principal fiber bundle and let ρ : H →
GL(V ) be a representation of H. The frame bundle of the associated vector bundle
P×H V → M is isomorphic to P×H GL(V ) → M asGL(V )-principal fiber bundle
via the isomorphism


 : P ×H GL(V ) → GL(V , P ×H V ), [p, A] �→ 
([p, A]) (4.18)
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covering idM, where, for fixed [p, A] ∈ P × GL(V ), the linear isomorphism

([p, A]) : {pr(p)} × V ∼= V → (P ×H V )pr(p) is given by

(


([p, A]))(v) = [p, Av] (4.19)

for all v ∈ V . Here we view GL(V , P ×H V ) as an open subset of the morphism
bundle Hom(M × V , P ×H V ) → M as in [16, Sec. 18.11]. Moreover, we write
(


([p, A]))(v) = (


([p, A]))(pr(p), v) for short, i.e. we suppress the first compo-
nent pr(p) ∈ M of (pr(p), v) ∈ M × V in the notation.

Proof We start with showing that 
 is well-defined. Let h ∈ H . Indeed, 
 is inde-
pendent of the chosen representative of [p, A] ∈ P ×H GL(V ) due to

(


([p � h, ρh−1 ◦ A]))(v) = [p � h, (ρh−1 ◦ A)(v)] = [p, Av]

for all v ∈ V . Moreover, for fixed [p, A] ∈ P ×H GL(V ), the map

V � v �→ 
([p, A])(v) ∈ (P ×H V )pr(p)

is clearly linear. In addition, this map is invertible and its inverse is given by

(


([p, A]))−1 : (P ×H V )pr(p) � ([p, v]) �→ (


([p, A])−1
([p, v]) = A−1v ∈ V .

Indeed,
(


([p, A]))−1 is well-defined. Let h, h′ ∈ H . Then one has p � h′ = (

p �
(hh−1)

) � h′ = (p � h) � (h−1h′). Thus we obtain

(


(p � h, ρh−1 ◦ A)
)−1

([p � h′, ρh′−1(v)]) = (ρ(h−1h′)−1 ◦ A)−1(ρ(h−1h′)−1(v))

= A−1v

= (


([p, A]))−1
([p, v])

for all v ∈ V showing that
(


([p, A]))−1 is well-defined. Moreover, one has

(


([p, A])◦ (


([p, A]))−1)
([p, v]) = (


([p, A]))(A−1v) = [p, AA−1v] = [p, v]

as well as

(

(
([p, A]))−1 ◦ 
([p, A]))(v) = (


([p, A]))−1
([p, Av]) = A−1(Av) = v

showing that
([p, A]) : V → (P×H V )pr(p) is a linear isomorphism for all [p, A] ∈
P ×H GL(V ). Thus 
 : P ×H GL(V ) → GL(V , P ×H V ) is well-defined.

Next we show that 
 is a morphism of principal fiber bundles over idM . Clearly,
idM ◦ πP×HGL(V ) = prGL(V ,P×H V ) holds, i.e. 
 covers idM .
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We now show that 
 is smooth. To this end, let P ×H End(V ) → M denote the
vector bundle associated to the H -principal fiber bundle pr : P → M with typical
fiber End(V ), where H acts on End(V ) via

H × End(V ) � (h, A) �→ ρh ◦ A ∈ End(V )

from the left. We now define the map

˜
 : P ×H End(V ) → Hom(M × V , P ×H V ),

[p, A] �→ ˜
([p, A]) = (

(x, v) �→ (

˜
([p, A]))(x, v) = [p, Av]).
An argument analogously to the one at the beginning of this proof, showing that 


is well-defined, proves that the map ˜
 is well-defined, i.e. ˜
 is independent of the
representative (p, A) ∈ P × End(V ) of [p, A] ∈ P ×H End(V ) and that ˜
 takes
values in Hom(M × V , P ×H V ) → M . Next we show that ˜
 is a smooth morphism
of vector bundles. To this end, we prove that


 : �∞(

P ×H End(V )
) → �∞(

Hom(M × V , P ×H V )
)

, s �→ ˜
 ◦ s (4.20)

is C∞(M)-linear. Then the desired properties of ˜
 follow by [14, Lem. 10.29].
We first show that
 is well-defined, i.e. that
(s) ∈ �∞(

Hom(M ×V , P ×H V )
)

is a smooth section of Hom(M × V , P ×H V ) → M for all s ∈ �∞(

P ×H End(V )
)

.
In other words, we have to show that for fixed s ∈ �∞(

P ×H End(V )
)

the map

(s) is a smooth vector bundle morphism 
(s) : M × V → P ×H V over idM .
Obviously,
(s) is fiber-wise linear and covers idM . It remains to prove the smoothness
of 
(s). To this end, we proceed locally. Let x0 ∈ M and let U ⊆ M be open with
x0 ∈ U . Moreover, after shrinkingU if necessary, let ˜U ⊆ P×H End(V ) be open with
s(x) ∈ ˜U for all x ∈ U such that there is a smooth local section s : ˜U → P ×End(V )

of the H -principal fiber bundle π P×End(V ) : P × End(V ) → P ×H End(V ). Then
s ◦ s : U → P ×End(V ) is smooth and (s ◦ s)(x) = (p(x), A(x)) holds for all x ∈ U
with some smooth maps U � x �→ p(x) ∈ P and U � x �→ A(x) ∈ End(V ). Thus
s(x) = (π P×End(V ) ◦ s ◦ s)(x) = [p(x), A(x)] is fulfilled for all x ∈ U . By this
notation, we obtain for (x, v) ∈ U × V

(


(s)
)

(x, v) = [p(x), A(x)v] = π P×V ◦ (idP × e) ◦ ((s ◦ s) × idV )(x, v) (4.21)

with e : End(V ) × V � (A, v) �→ Av ∈ V . Hence the map 
(s)
∣

∣

U×V is smooth as

the composition of smooth maps by (4.21). Thus 
(s) is smooth since x0 ∈ M is
arbitrary.

Next we prove the C∞(M)-linearity of
. Let s1, s2 ∈ �∞(

P ×H End(V )
)

be two
sections point-wise given by

s1(x) = [p(x), A1(x)] and s2(x) = [p(x), A2(x)], x ∈ M .

Here we assume without loss of generality that their first component is represented
by the same element p(x) ∈ P for all x ∈ M . Moreover, let f , g ∈ C∞(M). By
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the vector bundle structure on associated vector bundles, see e.g. [17, Re. 1.2.9], we
obtain for (x, v) ∈ M × V

(

˜
 ◦ ( f s1 + gs1)
)

(x, v) = (

˜

(

f (x)[p(x), A1(x)] + g(x)[p(x), A2(x)]
))

(x, v)

= [

p(x),
(

f (x)A1(x) + g(x)A2(x)
)

v
]

= f (x)[p(x), A1(x)v] + g(x)[p(x), A2(x)v]
= (

f (˜
 ◦ s1)
)

(x, v) + (

g(˜
 ◦ s2)
)

(x, v)

showing the C∞(M)-linearity of 
 by its definition in (4.20). Hence ˜
 is indeed a
smooth morphism of vector bundles by [14, Lem. 10.29].

In order to prove the smoothness of 
, we consider the map

i : P ×H GL(V ) → P ×H End(V ), [p, A] �→ [p, A]

whose smoothness can be proven analogously to the proof of Corollary 4.3 by exploit-
ing the smoothness of the canonical inclusion P × GL(V ) → P × End(V ). We now
obtain for [p, A] ∈ P ×H GL(V ) and (x, v) ∈ M × V

(

(˜
 ◦ i)([p, A]))(x, v) = (

˜
([p, A]))(x, v) = [p, Av] = (


([p, A]))(x, v).

Thus 
 = ˜
 ◦ i is smooth as the composition of smooth maps.
It remains to show that 
 is an isomorphism of GL(V )-principal fiber bundles. To

this end, we recall that the GL(V )-action on GL(V , P×H V ) is given by composition
from the right, see e.g. [16, Sec. 18.11]. Thus we have for [p, A] ∈ P ×H GL(V ) and
B ∈ GL(V ) as well as v ∈ V

(


([p, A] � B)
)

(v) = (


([p, A ◦ B]))(v) = [p, (A ◦ B)v] = 
([p, A])(Bv) = (


[p, A] ◦ B
)

(v).

proving that 
 is a morphism of GL(V )-principal fiber bundles over idM : M → M .
Therefore it is an isomorphism of principal fiber bundles by [21, Prop. 9.23]. ��

Assuming that P ×H GL(V ) admits a reduction as in Corollary 4.3, we obtain a
reduction of GL(V , P ×H V ).

Corollary 4.5 Let P → M be an H-principal fiber bundle and let ρ : H → GL(V )

be a representation of H on V such that ρh ∈ G(V ) holds for all h ∈ H,
where G(V ) ⊆ GL(V ) is a closed subgroup. Moreover, let 
 : P ×H GL(V ) →
GL(V , P ×H V ) be the isomorphism of principal fiber bundles from Proposition 4.4
and let ιP×HG(V ) : P ×H G(V ) → P ×H GL(V ) be the reduction of principal fiber
bundles from Corollary 4.3. Then

P ×H G(V ) → GL(V , P ×H V ), [p, A] �→ (


 ◦ ιP×HG(V )

)

([p, A]) (4.22)

is aG(V )-reduction of the framebundleGL(V , P×H V )along the canonical inclusion
G(V ) → GL(V ).



Rolling reductive homogeneous spaces Page 25 of 64 34

Proof Obviously, the map 
 ◦ ιP×HG(V ) is smooth as the composition of smooth
maps. Moreover, since 
 is an isomorphism of principal fiber bundles covering idM
by Proposition 4.4 and ιP×HG(V ) is a reduction of principal fiber bundles along the
canonical inclusion G(V ) → GL(V ) by Corollary 4.3, one verifies by a straight-
forward computation that (4.22) is a reduction of principal fiber bundles along the
canonical inclusion G(V ) → GL(V ). ��
Corollary 4.6 Let P ×H V → M be a vector bundle associated to P → M, where
ρ : H → GL(V ) is a representation. Moreover, let E → N be another vector bun-
dle and let � : P ×H V → E be an isomorphism of vector bundles covering the
diffeomorphism φ : M → N. Then

χ : P ×H GL(V ) → GL(V , E), [p, A] �→ χ([p, A]) = (� ◦ 
)([p, A]) (4.23)

is an isomorphismofGL(V )-principal fiber bundles over the diffeomorphismφ : M →
N, where 
 : P ×H GL(V ) → GL(V , P ×H V ) denotes the isomorphism from
Proposition 4.4.

Proof Obviously, for fixed [p, A] ∈ P ×H GL(V ), the map χ([p, A]) = (� ◦

)([p, A]) : V → Eφ(pr(p)) is linear and invertible since � is an isomorphism of
vector bundles. Hence χ is well-defined. Moreover, the map χ is smooth as the com-
position of the smooth maps 
 and �. Its inverse is given by the composition of the
smooth maps χ−1 = 
−1 ◦ �−1 : GL(V , E) → P ×H GL(V ), i.e. χ−1 is clearly
smooth, as well. Let B ∈ GL(V ) and [p, A] ∈ P ×H GL(V ). Then

χ([p, A]�B)(v) = (�◦
)([p, A◦B])(v) = (�◦
)([p, A])(Bv) = (χ([p, A])◦B)(v)

holds for all v ∈ V by the definition of 
. Hence χ is an isomorphism of GL(V )-
principal fiber bundles which covers the diffeomorphism φ : M → N . ��

4.2 Principal fiber bundles over frame bundles and principal connections

Since the G(V )-principal fiber bundle π : P ×H G(V ) → M is obtained as a fiber
bundle associated to the H -principal fiber bundle P → M , we have the H -principal
fiber bundle π : P × G(V ) → P ×H G(V ) over P ×H G(V ). Given a principal
connection on P → M , we construct a principal connection on π : P × G(V ) →
P×HG(V ). This construction will be applied to the configuration space of an intrinsic
rolling of a reductive homogeneous space in Proposition 5.4 below.

Proposition 4.7 Let pr : P → M be an H-principal fiber bundle and let ρ : H →
GL(V ) be a representation of H on the finite dimensional R-vector space V . Assume
that there exists a closed subgroup G(V ) ⊆ GL(V ) with Lie algebra g(V ) ⊆ gl(V )

such that ρh ∈ G(V ) holds for all h ∈ H. Moreover, let

ρ′ : h → g(V ) ⊆ gl(V ), η �→ (Teρ)η = ρ′
η ∈ g(V ) ⊆ gl(V ) (4.24)
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denote the induced morphism of Lie algebras. Consider the H-principal fiber bundle

π : P × G(V ) → P ×H G(V ) (4.25)

over the associated bundle π : P ×H G(V ) → M, where H acts on G(V ) via

H × G(V ) � (h, A) �→ ρh ◦ A ∈ G(V ). (4.26)

Moreover, let P ∈ �∞(

End(T P)
)

be a principal connection on pr : P → M with
corresponding connection one-formω ∈ �∞(T ∗M)⊗h. Then the following assertions
are fulfilled:

1. The vertical bundleVer(P×G(V )) ⊆ T (P×G(V )) ∼= T P×TG(V ) is fiber-wise
given by

Ver(P × G(V ))(p,A) = {( d
dt

(

p � exp(tη)
)∣

∣

t=0,−ρ′
η ◦ A

) | η ∈ h
}

(4.27)

where (p, A) ∈ P × G(V ).
2. Defining P ∈ �∞(

End(T (P ×GL(V )))
)

for (p, A) ∈ P ×G(V ) and (vp, vA) ∈
T(p,A)(P × G(V )) by

P∣

∣

(p,A)
(vp, vA) = (P∣

∣

p(vp),−ρ′
ω

∣

∣

p
(vp)

◦ A) (4.28)

yields a principal connection onπ : P×G(V ) → P×HG(V )with corresponding
connection one-form ω ∈ �∞(

T ∗(P × G(V ))
) ⊗ h given by

ω
∣

∣

(p,A)
(vp, vA) = ω

∣

∣

p(vp) (4.29)

for all (p, A) ∈ P × G(V ) and (vp, vA) ∈ T(p,A)(P × G(V )).
3. Let q : I � t �→ q(t) = (p(t), A(t)) ∈ P × G(V ) be a curve which is horizontal

with respect to the principal connection P . Then the curve p : I → P given by
the first component of q is horizontal with respect to the principal connection P
on P → M.

Proof First we recall that ρ′ : h → g(V ) is indeed a morphism of Lie algebras, see
e.g. [16, Lem. 4.13]. Next we prove Claim 1.. To this end, we compute for (p, A) ∈
P × G(V )

Ver(P × G(V ))(p,A) = { d
dt

(

(p, A)� exp(tη)
)∣

∣

t=0 | η ∈ h
}

= {( d
dt

(

p � (exp(tη))
)∣

∣

t=0,
d
dt

(

ρexp(−tη) ◦ A
)∣

∣

t=0

) | η ∈ h
}

= {( d
dt

(

p � (exp(tη))
)∣

∣

t=0,−ρ′
η ◦ A

) | η ∈ h
}

showing Claim 1., where � denotes the H -principal action on P × G(V ) similar
to (2.18).
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We now prove Claim 2.. Obviously, P ∈ �∞(

End(T (P ×G(V )))
)

holds. Next we

show that P is a projection, i.e. P2 = P is fulfilled. By using the correspondence of
P and ω from (2.14) as well as P2 = P , we calculate for p ∈ P and vp ∈ TpP

ω
∣

∣

p(P
∣

∣

p(vp)) = (

Te(p � ·))−1P∣

∣

p

(P∣

∣

p(vp)
)

= (

Te(p � ·))−1P∣

∣

p(vp)

= ω
∣

∣

p(vp).

(4.30)

Using (4.30) and P2 = P , we have for (p, A) ∈ P × G(V ) and (vp, vA) ∈ TpP ×
TAG(V )

P∣

∣

(p,A)

(P∣

∣

p,A(vp, vA)
) = P∣

∣

(p,A)

(P∣

∣

p(vp),−ρ′
ω

∣

∣

p
(vp)

◦ A
)

= (P∣

∣

p

(P∣

∣

p(vp)
)

,−ρ′
ω

∣

∣

p
(P

∣

∣

p
(vp))

◦ A
)

= (P∣

∣

p(vp),−ρ′
ω

∣

∣

p
(vp)

◦ A
)

= P∣

∣

(p,A)
(vp, A),

proving that P2 = P ∈ �∞(

End(T (P × G(V )))
)

is a projection.
Moreover, im(P) = Ver(P ×G(V )) holds by im(P) = Ver(P) and the character-

ization of the vertical bundle in (4.27).
We now show that P corresponds to ω. To this end, let η ∈ h and denote by

ηP×G(V ) ∈ �∞(

T (P×G(V ))
)

the corresponding fundamental vector field associated
to the H -principal action given by

ηP×G(V )(p, A) = d
dt

(

(p, A)� exp(tη)
)∣

∣

t=0, (p, A) ∈ P × G(V ).

By this notation and the definition of ω in (4.29), we obtain

(

ω
∣

∣

(p,A)
(vp, vA)

)

P×G(V )
(p, A)

= d
dt

(

(p, A)� exp (

tω
∣

∣

(p,A)
(vp, vA)

))∣

∣

t=0

= ( d
dt

(

p � exp
(

tω
∣

∣

p(vp)
))∣

∣

t=0,
d
dt

(

ρ
exp(−tω

∣

∣

p
(vp))

◦ A
)∣

∣

t=0

)

= (P∣

∣

g(vg),−ρ′
ω

∣

∣

p
(vp)

◦ A
)

= P∣

∣

(u,A)
(vp, vA).

(4.31)
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Moreover, denoting by ηP ∈ �∞(T P) the fundamental vector field on P defined by
η ∈ h, as usual, we compute

ω
∣

∣

(p,A)

(

ηP×G(V )(p, A)
) = ω

∣

∣

(p,A)

( d
dt

(

p � exp(tη)
)∣

∣

t=0,
d
dt

(

ρexp(−tη) ◦ A
)∣

∣

t=0

)

= ω
∣

∣

p

(

ηP (p)
)

= η

(4.32)
since ω, being the connection one-form associated to P , fulfills ω(ηP ) = η for all
η ∈ h. Thus ω is the connection one-form corresponding to the connection P due
to (4.31) and (4.32). In order to show that P is a principal connection, we show that
ω has the desired equivarience-property. By exploiting that ω ∈ �∞(T ∗G) ⊗ h is a
principal connection one-form, we compute for h ∈ H

(

(·�h)∗ω
)∣

∣

(p,A)
(vp, vA) = ω

∣

∣

(p,A)�h
(

T(p,A)(·�h)(vp, vA)
)

= ω
∣

∣

(p�h,ρh−1◦A)

(

Tp(· � h)vp, TA(ρh−1 ◦ (·))vA
)

= ωp�h
(

Tp(· � h)vp
)

= Adh−1
(

ω
∣

∣

p(vp)
)

= Adh−1
(

ω
∣

∣

(p,A)
(vp, vA)

)

as desired.
It remains to show Claim 3.. Let q : I � t �→ q(t) = (p(t), A(t)) ∈ P × G(V ) be

horizontal with respect to P . Then

0 = P∣

∣

q(t)(q̇(t)) = (P∣

∣

p(t)( ṗ(t)),−ad
ω

∣

∣

p(t)
( ṗ(t))

◦ A(t)
)

holds. In particular, this implies P∣

∣

p(t)( ṗ(t)) = 0. Hence p : I → P is horizontal
with respect to the principal connection P on P → M . ��

4.3 Frame bundles of reductive homogeneous spaces

We now consider (certain reductions) of the frame bundle of a reductive homogeneous
space by applying Proposition 4.4 to the H -principal fiber bundle pr : G → G/H .
To this end, we recall that the tangent bundle of a reductive homogeneous space
G/H with reductive decomposition g = h ⊕ m is isomorphic to the vector bundle
G ×H m → G/H , where H acts on m via

H × m � (h, X) �→ Adh(X) ∈ m. (4.33)

This statement as well as the statement of Corollary 4.11 below seem to bewell-known
since they can be found in [20, Ex. 2.7]. Moreover, exploiting that the isotropy repre-
sentation H � h �→ Tpr(e)τh ∈ GL(Tpr(e)(G/H)) is equivalent to the representation



Rolling reductive homogeneous spaces Page 29 of 64 34

H �→ Adh
∣

∣

m
∈ GL(m), see Lemma 2.11, one obtains that

G ×H m → T (G/H), [g, X ] �→ (Tgpr ◦ Te�g)X (4.34)

is an isomorphism of vector bundles over idG/H by adapting the proof in [16, Sec.
18.16].

Corollary 4.8 Let G/H be a reductive homogeneous space with reductive decompo-
sition g = h ⊕ m. Moreover, assume that Adh

∣

∣

m
∈ G(m) holds for all h ∈ H, where

G(m) is some closed subgroup of GL(m). Then

G ×H G(m) � [g, A] �→ (X �→ [g, AX ]) ∈ GL(m,G ×H m) (4.35)

is a reduction of the frame bundle of G ×H m → G/H along the canonical inclusion
G(m) → GL(m). Moreover, the map

G ×H G(m) → GL(m, T (G/H)), [g, A] �→ (

X �→ (Tgpr ◦ Te�g ◦ A)X
)

(4.36)

is a reduction of GL(m, T (G/H)) along the canonical inclusion G(m) → GL(m).

Proof Themap defined in (4.35) is a reduction of the frame bundle ofG×Hm → G/H
by Proposition 4.4.

It remains to show that (4.36) is a reduction of principal fiber bundles. In fact,

G×H GL(m) → GL(m, T (G/H)), [g, A] �→ (

X �→ (Tgpr ◦Te�g ◦ A)X
)

(4.37)

is an isomorphism of principal fiber bundles covering idG/H by Corollary 4.6
since (4.34) is an isomorphism of vector bundles covering idG/H . The desired result
follows by exploiting that (4.36) is the composition of the isomorphism (4.37) and the
reduction (4.35). ��
Remark 4.9 In the sequel, under the assumption of Corollary 4.8, we often identify
G ×H G(m) with the image of the reduction (4.36) from Corollary 4.8 as in [17, Re.
1.1.8]. This is indicated by the notation G(m, T (G/H)) ⊆ GL(m, T (G/H)).

Corollary 4.10 Let G/H be a pseudo-Riemannian reductive homogeneous space
whose invariant metric corresponds to theAd(H)-invariant scalar product 〈·, ·〉 : m×
m → R. Moreover, denote by O(m) the pseudo-orthogonal group of m with respect
to 〈·, ·〉. Then

G ×H O(m) → GL(m, T (G/H)), [g, S] �→ (

X �→ (Tgpr ◦ Te�g ◦ S)X
)

(4.38)

is a reduction of the frame bundle of T (G/H) along the canonical inclusionO(m) →
GL(m).

Proof This is a consequence of Corollary 4.8. ��
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If G ×H O(m) is identified with the image of (4.38), it is often denoted by
O(m, T (G/H)).

Corollary 4.11 Let G/H be a reductive homogeneous space with reductive decompo-
sition g = h⊕m. Then the frame bundle of T (G/H) is isomorphic to G×HGL(m) →
G/H as GL(m)-principal fiber bundle via the isomorphism

G ×H GL(m) → GL(m, T (G/H)), [g, A] �→ (

X �→ (Tgpr ◦ Te�g ◦ A)X
)

(4.39)

of GL(m)-principal fiber bundles.

Proof This follows by setting G(m) = GL(m) in Corollary 4.8. ��
Remark 4.12 Corollary 4.11 seems to be well-known since the statement that G ×H

GL(m) → G/H is isomorphic to the frame bundle of G/H can be found in [20, Ex.
2.7].

5 Intrinsic rollings of reductive homogeneous spaces

Let G/H be a reductive homogeneous space with fixed reductive decomposition g =
h ⊕ m. In the sequel, we always endow m with the covariant derivative ∇m which is
defined in (5.1) below. Let V : m � v �→ (v, V2(v)) ∈ m × m ∼= Tm and W : m �
v �→ (v,W2(v)) ∈ m × m ∼= Tm by vector fields on m, where V2,W2 : m → m are
smooth maps. Then ∇m : �∞(Tm) × �∞(Tm) → �∞(Tm) is defined by

∇m
V W

∣

∣

v
= (

v, (TvW2)V2(v)
)

, v ∈ m. (5.1)

Clearly, form = R
n the covariant derivative∇m coincideswith the covariant derivative

from [13, Chap. 3, Def. 8].
In this section, we consider intrinsic (G(m)-reduced) rollings of (m,∇m) overG/H

equipped with an invariant covariant derivative ∇α . Such intrinsic rollings are called
rollings of m over G/H with respect to ∇α , rollings of G/H with respect to ∇α , or
simply rollings of G/H , for short.

Notation 5.1 In the sequel, we do not explicitly refer to the G(m)-reduction if this
reduction is clear by the context, for instance by denoting the configuration space by
Q = m × (G × G(m)) as in Lemma 5.2, below.

5.1 Configuration space

The goal of this subsection is to derive an explicit description of the configuration
space for rollings of m over G/H with respect to an invariant covariant derivative
∇α . Moreover, we consider an H -principal fiber bundle over the configuration space
equipped with a suitable principal connection. This allows for lifting rollings, i.e.
certain curves on the configuration space, horizontally to curves on that principal fiber
bundle. We start with investigating the configuration space.
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Lemma 5.2 Let G/H be a reductive homogeneous space and let G(m) ⊆ GL(m) be
a closed subgroup such that Adh

∣

∣

m
∈ G(m) holds for all h ∈ H. Then the following

assertions are fulfilled:

1. Let Q = m × (G ×H G(m)) and define

π : Q → m × G/H , (v, [g, S]) �→ π(v, [g, S]) = (v, pr(g)). (5.2)

Then π : Q → m×G/H is isomorphic to the configuration space of the intrinsic
rolling of m over G/H, i.e. to the G(m)-fiber bundle

(

G(m, Tm) × G(m, T (G/H))
)

/G(m)

∼= (

(m × G(m)) × (G ×H G(m))
)

/G(m) → m × G/H
(5.3)

via the isomorphism of G(m)-fiber bundles


 : (

(m × G(m)) × (G ×H G(m))
)

/G(m) → m × (G ×H G(m)),
[

(v, S1), [g, S2]
] �→ (

v, [g, S2 ◦ S−1
1 ]) (5.4)

covering the identity idm×G/H : m × G/H → m × G/H whose inverse is given
by


−1 : m × (G ×H G(m)) → (

(m × G(m)) × (G ×H G(m))
)

/G(m),

(v, [g, S]) �→ [

(v, idm), [g, S]]. (5.5)

2. Let q = (v, [g, S]) ∈ Q with π(q) = (v, pr(g)). Then q defines the linear
isomorphism

Tvm ∼= m � Z �→ (

Tgpr ◦ Te�g ◦ S
)

Z ∈ Tpr(g)G/H (5.6)

via Lemma 3.1, Claim 2., where q is identified with 
−1(q) ∈ (

(m × G(m)) ×
(G ×H G(m))

)

/G(m). In the sequel, we often denote this isomorphism by q, as
well, i.e. we write q(Z) = qZ = (

Tgpr ◦ Te�g ◦ S
)

Z.

Proof By Corollary 4.8 we have G(m, T (G/H)) ∼= G ×H G(m). Moreover,
G(m, Tm) ∼= m × G(m) is clearly fulfilled. We first show that 
 is smooth. Con-
sider

(m × G(m)) × (G ×H G(m))

(

(m × G(m)) × (G ×H G(m))
)

/G(m) m × (G ×H G(m))

pr 





,

(5.7)
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where pr is the canonical projection and 
 is given by



(

(v, S1), [g, S2]
) = (v, [g, S2 ◦ S−1

1 ]) (5.8)

for ((v, S1), [g, S2]) ∈ (m × G(m)) × (G ×H G(m)). Clearly, since (5.7) commutes
and the canonical projection pr is a surjective submersion, the map 
 defined by (5.4)
is smooth by the smoothness of 
. In addition, 
 maps fibers into fibers, i.e. it is a
morphism of G(m)-fiber bundles covering the identity of m × G/H . Therefore 
 is
an isomorphism of fiber bundles, see e.g. [21, Prop. 9.3]. The formula (5.5) for 
−1

is verified by a straightforward calculation.
It remains to show Claim 2.. Let q = (v, [g, S]) ∈ Q and let Z ∈ Tvm. Then


−1((v, [g, S])) = [

(v, idm), [g, S]] holds. Using the bijection from Lemma 3.1,
Claim 2., this element is identified with a linear isomorphism which we denote by the
same symbol. Evaluated at Z ∈ Tvm ∼= m, it is given by

(
−1(v, [g, S])))(Z) = (([

(v, idm), [g, S]))(Z)

= ((

Tgpr ◦ Te�g ◦ S
) ◦ (idm)−1)(Z)

= (

Tgpr ◦ Te�g ◦ S
)

Z ,

where the second equality follows by Lemma 3.1, Claim 2. and Corollary 4.8. ��
Remark 5.3 The configuration space π : Q → m × G/H can be viewed as a G(m)-
principal fiber bundle. Indeed, as a consequence of Lemma 4.1, the G(m)-right action

Q × G(m) → Q,
(

(v, [g, S]), S2
) �→ (v, [g, S ◦ S2]) (5.9)

is a principal action.

Moreover, since the configuration space Q = m × (G ×H G(m)) is the product of m
and the associated bundle G×H G(m), we obtain an H -principal fiber bundle over Q.

Proposition 5.4 Let G/H be a reductive homogeneous space and let G(m) ⊆ GL(m)

be a closed subgroup such thatAdh
∣

∣

m
∈ G(m) holds for all h ∈ H. Then the following

assertions are fulfilled:

1. Define Q = m × G × G(m). Then

π : Q � (v, g, S) �→ (v, [g, S]) ∈ Q (5.10)

becomes an H-principal fiber bundle over Q = m × (G ×H G(m)) with H-
principal action given by

�Q : Q × H → Q,

(v, g, S) �→ (v, g, S) �Q h = (v, gh,Adh−1 ◦ S) = (v, g � h,Adh−1 ◦ S),

(5.11)
where �: G × H � (g, h) �→ g � h = gh ∈ G denotes the H-principal action
from (2.26) on pr : G → G/H.
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2. For (v, g, S) ∈ Q = m × G × G(m) the vertical bundle Ver(Q) ⊆ T Q is given
by

Ver(Q)(v,g,S) = {

(0, Te�gη,−adη ◦ S) | η ∈ h
} ⊆ T(v,g,S)(m × G × G(m)).

(5.12)
3. Let P ∈ �∞(

End(TG)
)

and let ω ∈ �∞(T ∗G) ⊗ h denote the principal con-
nection and connection one-form from Proposition 2.10 on pr : G → G/H,
respectively. Defining for (v, g, S) ∈ Q and (u, vg, vS) ∈ T(v,g,S)Q

P∣

∣

(v,g,S)
(u, vg, vS) = (0,P∣

∣

g(vg),−ad
ω

∣

∣

g
(vg)

◦ S), (5.13)

yields a principal connection on π : Q → Q with corresponding connection one-
form ω ∈ �∞(T ∗Q) ⊗ h given by

ω
∣

∣

(v,g,S)
(u, vg, vS) = ω

∣

∣

g(vg), (v, g, S) ∈ Q, (u, vg, vS) ∈ T(v,g,S)Q.

(5.14)
4. Let q : I � t �→ q(t) = (v(t), g(t), S(t)) ∈ Q be a horizontal curve with respect

to the principal connection P . Then the curve g : I → G defined by the second
component of q is horizontal with respect to Hor(G) from Proposition 2.10.

Proof We consider pr : G → G/H as an H -principal fiber bundle. Then m × G �
(v, g) �→ (v, pr(g)) ∈ m × G/H becomes clearly an H -principal fiber bundle with
principal action

(m × G) × H � ((v, g), h) �→ (v, g � h) = (v, gh) ∈ m × G/H

and Q can be viewed as a G(m)-fiber bundle associated to the H -principal fiber bundle
m × G/H , where H acts on G(m) via

H × G(V ) → G(V ), (h, S) �→ Adh
∣

∣

m
◦ S.

Thus, by the definition of an associated bundle, π : Q → Q becomes an H -principal
fiber bundle over Q with principal action given by (5.11), i.e. Claim 1. is shown.

Next, let P ∈ �∞(

End(T P)
)

be the principal connection on G from Proposi-
tion 2.10. It is straightforward to verify that ˜P ∈ �∞(

End(T P)
)

defined by

˜P∣

∣

(v,g)(u, vg) = (

0,P(vg)
)

, (v, g) ∈ m× G, (u, vg) ∈ m× TgG ∼= Tvm× TgG

yields a principal connection onm×G → m×G/H with corresponding connection
one-formgiven by ω̃

∣

∣

(v,g)(u, vg) = ω
∣

∣

g(vg). Thus Proposition 4.7 applied tom×G →
m × G/H equipped with the principal connection ˜P yields Claim 2., Claim 3., and
Claim 4.. ��
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5.2 The distribution characterizing intrinsic rollings

Motivated by [6, Sec. 4], we determine a distribution on Q characterizing intrinsic
rollings ofm over G/H . More precisely, a curve q : I → Q is horizontal with respect
to this distributions iff it is a rolling of G/H with respect to ∇α .

Applying the description of the tangent bundle of an associated bundle from (2.20)
to the configuration space Q, we obtain for its tangent bundle

T Q = T (m×(G×H G(m))) ∼= Tm×T (G×H G(m))) ∼= Tm×(TG×T H TG(m)).

(5.15)
Before we proceed, we state a simple lemma concerning this identification. We start
with considering a situation which is slightly more general than (5.15).

Lemma 5.5 Let V be a finite dimensional R-vector space and let ρ : H → GL(V )

be a representation. Moreover, let G(V ) ⊆ GL(V ) be a closed subgroup such that
ρh ∈ G(V ) holds for all h ∈ H and consider the associated bundle G ×H G(V ) →
G/H, where H acts on G(V ) via H × G(V ) � (h, S) �→ ρh ◦ S ∈ G(V ). Let
(vg, vS) ∈ TG × TG(V ) and h ∈ H. Then

[vg, vS] = [Tgrhvg, ρh−1 ◦ vS] ∈ TG ×T H G(V ) (5.16)

holds.

Proof We denote by �: G × H � (g, h) �→ g � h = gh ∈ G the principal action on
G → G/H . Its tangent map is given by

T(g,h)(· � ·)(vg, vh) = Th�gvh + Tgrhvg, (5.17)

due to (2.8). Moreover, the tangent map of

φ : H × G(V ) → G(V ), (h, S) �→ ρh−1 ◦ S

reads
T(h,S)φ(vh, vS) = T(h,S)φ(0, vS) + T(h,S)φ(vh, 0), (5.18)

where we identify T (H × G(V )) = T H × TG(V ). By setting vh = 0 in (5.17)
and (5.18), respectively, we obtain T(g,h)(· � ·)(vg, 0) = Tgrhvg and

T(h,S)φ(vh, vS) = T(h,S)φ(0, vS) = TSφ(h, ·)vS = TS
(

ρh−1 ◦ (·))vS = ρh−1 ◦ vS .

Thus the desired result follows by the definition of the equivalence relation in TG×T H

TG(V ), i.e. (vg, vS) ∼ (v′
g, v

′
S) ∈ TG × TG(V ) iff there exists an h ∈ H and

vh ∈ ThH such that

v′
g = T(g,h)(· � ·)(vg, vh) and v′

S = T(h,S)φ(vh, vS)

holds. ��
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Corollary 5.6 Let G/H be a reductive homogeneous space and let G(m) ⊆ GL(m)

be a closed subgroup such that Adh
∣

∣

m
∈ G(m) holds for all h ∈ H. Let (vg, vS) ∈

TG × TG(m) and h ∈ H. Then

[vg, vS] = [Tgrhvg,Adh−1 ◦ vS] ∈ TG ×T H G(m) (5.19)

is fulfilled.

Proof Applying Lemma 5.5 to the representation H � h �→ Adh
∣

∣

m
∈ GL(m) yields

the desired result because of Adh
∣

∣

m
∈ G(m) for all h ∈ H . ��

In order to determine the distribution on Q which characterizes rollings of m over
G/H with respect to ∇α , we first define a distribution on Q. Afterwards, this distri-
bution is used to obtain the desired distribution on the configuration space Q.

Lemma 5.7 Let G/H be a reductive homogenoues space. Moreover, let G(m) ⊆
GL(m) be a closed subgroup and let g(m) ⊆ gl(m) denote its Lie algebra. Assume that
Adh

∣

∣

m
∈ G(m) holds for all h ∈ H and let α : m × m → m be an Ad(H)-invariant

bilinear map such that for each X ∈ m the linear map

α(X , ·) : m → m, Y �→ α(X , ·)(Y ) = α(X ,Y ) (5.20)

is an element in g(m), i.e. α(X , ·) ∈ g(m). Moreover, let Q = m × G × G(m) as in
Proposition 5.4 and define


α : Q × m → T Q, (q, u) = ((v, g, S), u) �→ (

u, (Te�g ◦ S)u,−α(Su, ·) ◦ S
)

.

(5.21)
Then 
α is a morphism of vector bundles covering idQ : Q → Q and Dα =
im(
α) ⊆ T Q is a regular distribution on Q given fiber-wise by

Dα
(v,g,S) = {

(u, (Te�g ◦ S)u,−α(Su, ·) ◦ S) | u ∈ Tvm ∼= m
} ⊆ T(v,g,S)Q (5.22)

for all (v, g, S) ∈ Q. Moreover, Dα is contained in the the horizontal bundle defined
by the principal connection P from Proposition 5.4, i.e.

P∣

∣

(v,g,S)
(u, vg, vS) = 0 for all (v, g, S) ∈ Q, (u, vg, vS) ∈ Dα

(v,g,S) (5.23)

is fulfilled.

Proof The image of 
α defined by (5.21) is contained in T Q. Indeed, by the assump-
tion on α : m × m → m, we have α(Su, ·) ∈ g(m) for S ∈ G(m) and u ∈ m. Hence
we obtain

α(Su, ·) ◦ S = (TidmrS)(α(Su, ·)) ∈ TSG(m)

proving
α((v, g, S), u) ∈ Tvm×TgG×TSG(m) ∼= T(v,g,S)Q for all ((v, g, S), u) ∈
Q × m. Thus 
α is clearly a smooth vector bundle morphism covering the identity.
Furthermore, the rank of 
α is obviously constant. Hence its image Dα = im(
α)
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is a vector subbundle of T Q by [14, Thm. 10.34]. The fiber-wise description of Dα

in (5.22) holds by the definition of 
α due to Dα = im(
α).
We now show that Dα is contained in the horizontal bundle. Obviously, this is equiv-

alent to P∣

∣

(v,g,S)
(u, vg, vS) = 0 for all (v, g, S) ∈ Q and (u, vg, vS) ∈ Dα

(v,g,S).

Using the definition of P ∈ �∞(

End(T Q)
)

from Proposition 5.4 and writing
(u, vg, vS) ∈ Dα

(v,g,S) as

(u, vg, vS) = (u, (Te�g ◦ S)u,−α(Su, ·) ◦ S)

for some u ∈ m, we obtain

P∣

∣

(v,g,S)
(u, vg, vS) = P∣

∣

(v,g,S)
(u, (Te�g ◦ S)u,−α(Su, ·) ◦ S)

= (0,P∣

∣

g(vg),−ad
ω

∣

∣

g
(vg)

◦ S)

= (0, 0, 0)

due to vg = (Te�g◦S)u ∈ Hor(G)g because of Su ∈ m, whereweusedP∣

∣

g(vg) = 0 as

well asω
∣

∣

g(vg) = 0 by the definitions ofP ∈ �∞(

End(TG)
)

andω ∈ �∞(T ∗G)⊗h

in Proposition 2.10. ��
Next we use the distribution Dα on Q to construct the desired distribution on Q.

Lemma 5.8 Using the notations and assumptions of Lemma 5.7, we define Dα ⊆ T Q
by

Dα = (Tπ)(Dα) ⊆ T Q. (5.24)

Then the following assertions are fulfilled:

1. Let (v, [g, S]) ∈ Q. Then Dα is fiber-wise given by

Dα
(v,[g,S]) = {

(u, [(Te�g ◦ S)u,−α(Su, ·) ◦ S]) | u ∈ Tvm ∼= m
} ⊆ T(v,[g,S])Q

(5.25)
using the identification (5.15) implicitly.

2. Let (v, g, S) ∈ Q. Then the map

T(v,g,S)π
∣

∣

Dα
(v,g,S)

: Dα
(v,g,S) → Dα

(v,[g,S]) (5.26)

is a linear isomorphism.
3. Let q : I → Q be a curve and let q : I → Q denote a horizontal lift of q with

respect to the principal connection from Proposition 5.4. Then q is horizontal
with respect to Dα , i.e. q̇(t) ∈ Dα

q(t) iff q is horizontal with respect to Dα , i.e.

q̇(t) ∈ Dα
q(t).

4. Dα is the image of the morphism of vector bundles


α : Q×m → T Q, ((v, [g, S]), u) �→ (u, [(Te�g◦S)u,−α(Su, ·)◦S]) (5.27)
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over idQ : Q → Q of constant rank. In particular, Dα is a regular distribution on
Q.

Proof We start with determining Dα point-wise. Let (v, g, S) ∈ Q = m×G ×G(m)

and (u, vg, vS) ∈ T Q ∼= Tm × TG × TG(m). Then

π(v, g, S) = (v, [g, S]) and Tπ(u, vg, vS) = (u, [vg, vS]) (5.28)

holds by the identification (5.15). Evaluating (5.28) at (u, vg, vS) ∈ Dα
(v,g,S), i.e.

(u, vg, vS) = (u, (Te�g ◦ S)u,−α(Su, ·) ◦ S)

for some u ∈ m, yields Claim 1. because of Dα
π(v,g,S) = (Tπ)

(

Dα
(v,g,S)

)

.
Next we show Claim 2., i.e. that the restriction

T(v,g,S)π
∣

∣

Dα
(v,g,S)

: Dα
(v,g,S) → Dα

(v,[g,S]) (5.29)

is bijective. Clearly, the linear map in (5.29) is injective since Dα
(v,g,S) ⊆

Hor(Q)(v,g,S) holds according to Lemma 5.7. We now show that (5.29) is surjec-
tive. Let h ∈ H . Moreover, let (v, g, S) ∈ Q and (v, gh,Adh−1 ◦ S) ∈ Q be two
representatives of

π
(

v, g, S
) = (v, [g, S]) = (v, [gh,Adh−1 ◦ S]) = π

(

v, gh,Adh−1 ◦ S
) ∈ Q

and let (u, vg, vS) ∈ Dα
(v,g,S). We show that there exists a (u, v′

g, v
′
S) ∈

Dα
(v,gh,Adh−1◦S) such that

T(v,g,S)π(u, vg, vS) = T(v,gh,Adh−1◦S)π(u, v′
g, v

′
S)

holds. To this end, we define

v′
g = Tg(· � h)vg = Tgrhvg and v′

S = TS
(

Adh−1(·)) ◦ vS = Adh−1 ◦ vS . (5.30)

By using (u, vg, vS) ∈ Dα
(v,g,S), i.e.

vg = (Te�g ◦ S)u and vS = −α(Su, ·) ◦ S (5.31)
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for some u ∈ m, we show that (u, v′
g, v

′
S) ∈ Dα

(v,gh,Adh−1◦S) holds. To this end, we
calculate

v′
g = Tgrhvg

= Tgrh
(

(Te�g ◦ S)u
)

= Te(rh ◦ �g)Su

= Te(�g ◦ rh)Su
= Te(�gh ◦ �h−1 ◦ rh)Su
= Te�gh ◦ Te(�h−1 ◦ rh)Su
= (Te�gh ◦ Adh−1 ◦ S)u.

(5.32)

Moreover, using the definition of v′
S in (5.30) and vS in (5.31), we have by the Ad(H)-

invariance of α : m × m → m

v′
S = Adh−1 ◦ vS

= Adh−1 ◦ ( − α(Su, ·)) ◦ S

= −α(Adh−1(Su), ·) ◦ Adh−1 ◦ S.

(5.33)

By (5.32) and (5.33), we obtain

(u, v′
g, v

′
S) = (u, (Te�gh ◦ Adh−1 ◦ S)u,−α(Adh−1(Su), ·) ◦ Adh−1 ◦ S) (5.34)

showing (u, v′
g, v

′
S) ∈ Dα

(v,gh,Adh−1◦S) as desired. Equation (5.34) implies

T(v,g,S)π(u, vg, vS) = (u, [vg, vS])
= (u, [Tgrhvg,Adh−1 ◦ vS])
= T(v,gh,Adh−1◦S)π(u, v′

g, v
′
S)

due to Corollary 5.6. Thus the linearmap (5.29) is surjective. HenceClaim 2. is proven.
Next let q : I → Q be a curve and let q : I → Q be a horizontal lift with respect to

the principal connection P from Proposition 5.4. In particular π(q(t)) = q(t) holds.
Assume that q̇(t) ∈ Dα

q(t) holds. This assumption yields

q̇(t) = d
dt (π ◦ q)(t) = (Tq(t)π)q̇(t) ∈ (Tq(t)π)

(

Dα
q(t)

) = Dα
q(t)

by the definition of Dα since q(t) is horizontal with respect to Dα . Conversely, assume
that q̇(t) ∈ Dα

q(t) holds. Then q̇(t) ∈ Tq(t)Q is the unique horizontal tangent vector

which fulfills (Tq(t)π)q̇(t) = q̇(t) or equivalently

q̇(t) = (

Tq(t)π
∣

∣

Hor(Q)q(t)

)−1
q̇(t).

Since (5.29) is a linear isomorphism, we obtain
(

Tq(t)π
∣

∣

Dα
q(t)

)−1
(Dα

q(t)) = Dα
q(t).

This yields Claim 3. because of q̇(t) ∈ Dα
q(t) and Dα ⊆ Hor(Q).
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It remains to proof Claim 4.. To this end, using the identification (5.15), we consider
the diagram

Q × m T Q

Q × m T Q

π × idm


α


α

Tπ

(5.35)

which clearly commutes. Thus 
α is smooth since Tπ ◦
α is smooth and π × idm is
a surjective submersion. In addition, 
α is fiber-wise linear, i.e. 
α is a vector bundle
morphism covering idQ : Q → Q. Moreover, Claim 2. implies that the rank of 
 is
constant. Hence the image of
α is a subbundle of T Q according to [14, Thm. 10.34].
In addition, we obtain Dα = im(
α) due to

Dα = (Tπ)(Dα) = (Tπ ◦
α)(Q×m) = (
α ◦ (π × idm))(Q×m) = 
α(Q×m)

(5.36)
since (5.35) commutes. This yields the desired result. ��
Theorem 5.9 Let G/H be a reductive homogeneous space with reductive decomposi-
tion g = h⊕m and letG(m) ⊆ GL(m) be a closed subgroup such thatAdh

∣

∣

m
∈ G(m)

holds for all h ∈ H. Moreover, let α : m × m → m be an Ad(H)-invariant bilinear
map defining the invariant covariant derivative ∇α such that for each X ∈ m the
linear map

α(X , ·) : m → m, Y �→ α(X ,Y ) (5.37)

belongs to g(m), i.e. to the Lie algebra of G(m). Let Dα denote the distribution on
Q = m × G × G(m) from Lemma 5.7 associated to α and let Dα = Tπ(Dα) be the
distribution defined in Lemma 5.8. Then the following assertions are fulfilled:

1. Let q : I → Q and let

(v, γ ) : I → m × G/H , t �→ (π ◦ q)(t) = (v(t), γ (t)). (5.38)

Let q : I � t �→ (v(t), g(t), S(t)) ∈ Q be a horizontal lift of q with respect to the
principal connection P from Proposition 5.4. Then q is horizontal with respect to
Dα iff the ODE

Ṡ(t) = −α
(

S(t)v̇(t), ·) ◦ S(t),

ġ(t) = (

Te�g(t) ◦ S(t)
)

v̇(t)
(5.39)

is fulfilled. Moreover, the development curve is given by γ = pr ◦ g : I → G/H.
2. Let q : I → Q be a curve and let (v, γ ) = (π ◦ q) : I → m × G/H. Then q is

horizontal with respect to Dα , i.e. q̇(t) ∈ Dα
q(t), iff q defines a (G(m)-reduced)

intrinsic rolling of m over G/H with respect to ∇α with rolling curve v and
development curve γ .
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Proof We first show Claim 1.. Let q : I → Q be some curve and let

q : I → Q, t �→ (v(t), g(t), S(t)) (5.40)

be a horizontal lift of q with respect to the principal connectionP fromProposition 5.4.
Clearly, the development curve γ : I → G/H defined by q : I → Q is given by
γ = pr◦g. Moreover, by Lemma 5.8, Claim 3., q is horizontal with respect to Dα iff q
is horizontal with respect to Dα . Hence it is sufficient to show that q from (5.40) fulfills
the ODE (5.39) iff q is horizontal with respect to Dα . First we assume q̇(t) ∈ Dα

q(t)

for all t ∈ I . Writing q̇(t) = (v̇(t), ġ(t), Ṡ(t)) and using the definition of Dα , one
obtains

q̇(t) ∈ Dα
q(t) = {

(u,
(

Te�g(t) ◦ S(t)
)

u,−α(S(t)u, ·) ◦ S(t)) | u ∈ Tv(t)m ∼= m
}

.

(5.41)
Thus ġ(t) and Ṡ(t) are uniquely determined by

ġ(t) = (

Te�g(t) ◦ S(t)
)

v̇(t) and Ṡ(t) = −α
(

S(t)v̇(t), ·) ◦ S(t)

due to (5.41).Hence the curveq : I → Qwhich is horizontalwith respect to Dα fulfills
theODE (5.39). Conversely, assume that q : I → Q given by q(t) = (v(t), g(t), S(t))
fulfills (5.39). Then q(t) is clearly horizontal with respect to Dα by the definition of
Dα . Thus Claim 1. is proven.

Next we show Claim 2.. To this end, let q : I → Q be horizontal with respect to
Dα . Then a horizontal lift q : I � t �→ q(t) = (v(t), g(t), S(t)) ∈ Q of q fulfills the
ODE (5.39) by Claim 1.. Moreover, q : I → Q can be represented by

q(t) = (π ◦ q)(t) = (v(t), [g(t), S(t)]), t ∈ I .

Hence the linear isomorphism associated with q(t) is given by

Tv(t)m ∼= m � Z �→ q(t)Z = (

Tg(t)pr ◦ Te�g(t) ◦ S(t)
)

Z ∈ Tpr(g(t))(G/H) (5.42)

according to Lemma 5.2, Claim 2.. Using(5.39) and (5.42) we obtain

γ̇ (t) = d
dt (pr ◦ g)(t) = Tg(t)prġ(t) = (

Tg(t)pr
)

(

(Te�g(t) ◦ S(t))v̇(t)
)

= q(t)v̇(t)

showing the no-slip condition. Next we prove the no-twist condition. Let

Z : I → Tm, t �→ (v(t), Z2(t)) ∈ Tm

be a vector field along v : I → mwhich we identify with the map I � t �→ Z2(t) ∈ m
defined by its second component. Then Z is parallel along v iff Ż2(t) = 0 holds, i.e.
Z2(t) = Z0 for all t ∈ I and some Z0 ∈ m. We need to show that the vector field

̂Z : I → T (G/H), t �→ q(t)Z(t) = q(t)Z0 = (

Tg(t)pr ◦ Te�g(t) ◦ S(t)
)

Z0
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is parallel along γ : I → G/H with respect to ∇α . By Proposition 5.4, Claim 4., the
curve g : I → G is a horizontal lift of the curve γ : I � t �→ pr(g(t)) ∈ G/H . In
addition, we have

S(t)v̇(t) = (

Te�g(t)
)−1

ġ(t)

by (5.39). Moreover, the horizontal lift of ̂Z along g : I → G is given by

Z : I → Hor(G), t �→ Z̄(t) = (

Tg(t)pr
∣

∣

Hor(G)

)−1
̂Z(t) = (

Te�g(t) ◦ S(t)
)

Z0

and the curve z : I � t �→ z(t) = (

Te�g(t)
)−1

Z(t) ∈ m fulfills

z(t) = (

Te�g(t)
)−1(

Te�g(t) ◦ S(t)
)

Z0 = S(t)Z0.

Thus we obtain by exploiting (5.39)

ż(t) = d
dt (S(t)Z0) = Ṡ(t)Z0 = −(

α
(

S(t)v̇(t), ·) ◦ S(t)
)

Z0 = −α
(

S(t)v̇(t), z(t)
)

.

Hence ̂Z is parallel along γ by Proposition 2.19.
Conversely, assume that ̂Z(t) = q(t)Z(t) is parallel along γ : I → G/H , where

Z : I � t �→ (v(t), Z2(t)) ∈ Tm is some vector field along along v : I → m which
we identify with the map I � t �→ Z2(t) ∈ m. Let {A1, . . . , AN } ⊆ m be some
basis of m. We define a parallel frame along γ : I → G/H by Ai (t) = q(t)Ai for
i ∈ {1, . . . , N } and t ∈ I . Then ̂Z : I → T (G/H) is parallel along γ iff its coefficient
functions zi : I → R defined by ̂Z(t) = zi (t)Ai (t) are constant, i.e. zi (t) = zi0
for all t ∈ I with some zi0 ∈ R, see e.g. [22, Chap. 4, p. 109]. By the linearity of
q(t) : Tv(t)m ∼= m → Tγ (t)(G/H), we obtain

̂Z(t) = zi0Ai (t) = zi0
(

q(t)Ai
) = q(t)

(

zi0Ai
) = q(t)Z0 = q(t)Z2(t)

showing Z2(t) = zi0Ai = Z0 for t ∈ I , where Z0 = zi0Ai ∈ m is constant. Hence
Z : I � t �→ (v(t), Z2(t)) = (v(t), Z0) ∈ m × m ∼= Tm is a parallel vector field
along the curve v : I → m. Thus the curve q : I → Q which is horizontal with respect
to Dα is a rolling.

It remains to prove the converse. Let q : I → Q be a curve defining a rolling. We
show that q is horizontal with respect to Dα .

Let q : I → Q be a horizontal lift of q with respect to the principal connection
from Proposition 5.4. By Lemma 5.8, Claim 3. q is horizontal with respect to Dα

iff q is horizontal with respect to Dα . Writing q(t) = (v(t), g(t), S(t)), the linear
isomorphism Tv(t)m ∼= m → Tpr(g(t))(G/H) defined by q(t) = π(q(t)) is given by

q(t)Z = (

Tg(t)pr ◦ Te�g(t) ◦ S(t)
)

Z , Z ∈ Tv(t)m ∼= m

according to Lemma 5.2, Claim 2.. Hence the no slip condition yields

γ̇ (t) = (

Tg(t)pr ◦ Te�g(t) ◦ S(t)
)

v̇(t). (5.43)
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By Proposition 5.4, Claim 3. the curve g : I → G is horizontal with respect to Hor(G)

from Proposition 2.10. In addition, γ = pr ◦ g holds, i.e. g : I → G is a horizontal
lift of γ : I → G/H . Thus g : I → G fulfills the ODE ġ(t) = (

Te�g(t) ◦ S(t)
)

v̇(t)
by (5.43). Moreover, since g : I → G is a horizontal lift of γ : I → G/H , the no
twist condition yields

S(t)Z0 = −α
(

S(t)v̇(t), S(t)Z0
)

(5.44)

for all Z0 ∈ m by Proposition 2.19. Clearly, (5.44) is equivalent to the ODE

Ṡ(t) = −α
(

S(t)v̇(t), ·) ◦ S(t)

for S : I → G(m). Therefore q : I → Q is horizontal with respect to Dα by
Claim 1. ��

In particular, Theorem 5.9 applies to (pseudo-)Riemannian reductive homogeneous
spaces. We comment on this particular situation in the next remark.

Remark 5.10 Let G/H be a reductive homogeneous space equipped with an invariant
pseudo-Riemannian metric and let 〈·, ·〉 : m × m → R denote the corresponding
Ad(H)-invariant scalar product. Moreover, let ∇α be a metric invariant covariant
derivative on G/H . Then Proposition 2.20 yields α(X , ·) ∈ so(m) for all X ∈ m.
Thus Theorem 5.9 can be applied to G(m) = O(m), i.e. the configuration space can
be reduced to Q = m × (G ×H O(m)) since Adh

∣

∣

m
∈ O(m) holds for all h ∈ H .

Remark 5.10 can be specialized further to naturally reductive homogeneous space
equipped with the Levi-Civita covariant derivative.

Remark 5.11 LetG/H be anaturally reductive homogeneous space.ThenTheorem5.9
can be applied to G/H equipped with ∇LC, where the configuration space can be
reduced to Q = m × (G ×H O(m)) and α : m × m → m is given by α(X ,Y ) =
1
2prm ◦ adX (Y ) for X ,Y ∈ m since ∇LC = ∇can1 holds by Remark 2.22.

5.3 Kinematic equations and control theoretic perspective

Throughout this section we denote by G/H a reductive homogeneous space and we
assume that G(m) ⊆ GL(m) is a closed subgroup such that Adh

∣

∣

m
∈ G(m) holds.

Moreover, we assume that the Ad(H)-invariant bilinear map α : m × m → m fulfills
α(X , ·) ∈ g(m) for all X ∈ m. If not indicated otherwise, we consider the “reduced”
configuration space Q = m × (G ×H G(m)).

We start with relating rollings of m over G/H to a control system.

Remark 5.12 Let G/H be a reductive homogeneous space equipped with an invariant
covariant derivative∇α defined by the Ad(H)-invariant bilinear map α : m×m → m.
Recall the definition of the morphism of vector bundles 
α in Lemma 5.8, Claim 4.,
i.e.


α : Q × m → T Q,

((v, [g, S]), u) �→ 
α((v, [g, S]), u) = (u, [(Te�g ◦ S)u,−α(Su, ·) ◦ S]). (5.45)
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Then 
α defines a control system in the sense of [23, p. 21] with state space Q and
control set m. Obviously, for each u ∈ m, the map 
α(·, u) : Q → T Q is a section
of Dα , where Dα ⊆ T Q is the distribution characterizing the rolling of m over G/H
with respect to ∇α .

Moreover, if G/H is equipped with an invariant pseudo-Riemannian metric and an
invariant metric covariant derivative∇α , we can endow Q with an additional structure
which is similar to a sub-Riemannian structure.We refer to [24,Def. 3.2] for a definition
of sub-Riemannian structures.

Remark 5.13 LetG/H be a reductive homogeneous space equippedwith aG-invariant
pseudo-Riemannian metric corresponding to the scalar product 〈·, ·〉 : m × m → R.
Moreover, let α : m×m → m be an Ad(H)-invariant bilinear map defining themetric
invariant covariant derivative ∇α . As in Remark 5.10, we set Q = m× (G×H O(m)).
Moreover, motivated by [8, Eq. (3)], we equip the trivial vector bundle Q × m → Q
with the fiber metric h ∈ �∞(

S2(Q ×m)∗
)

defined by hq(X ,Y ) = 〈X ,Y 〉 for q ∈ Q
and X ,Y ∈ m. Then the pair (
α, Q × m) is formally similar to a sub-Riemannian
structure on Q except for the following facts:

1. The fiber metric on Q × m → m is allowed to be indefinite.
2. In general, the manifold Q is not connected.
3. The distribution Dα = im(
) might be not bracket generating.

However, by imposing further restrictions on G/H , Q and 〈·, ·〉 it might be possible
to obtain a sub-Riemannian structure on Q. In particular, if we assume that G/H
is a Riemannian reductive homogeneous space, the fiber metric h on Q is positive
definite. Moreover, if we assume that G is connected and Adh

∣

∣

m
: m → m is an

orientation preserving isometry, i.e. Adh
∣

∣

m
∈ SO(m) for all h ∈ H , the configuration

space can be reduced to Q = m × (G ×H SO(m)), which is obviously connected.
Under these assumptions, the pair (
α, Q×m) defines a structure on Q which fulfills
the requirements of a sub-Riemannian structure on Q in the sense of [24, Def. 3.2]
except for the fact that Dα might be not bracket generating. Investigating conditions
on G/H and α such that Dα is bracket generating is out of the scope of this text.
Nevertheless, in this context, we refer to [8], where the controllability of rollings of
oriented Riemannian manifolds are considered. Moreover, we mention [25], where
optimal control problems associated to rollings of certain manifolds are considered.

Using terminologies of control theory, we call a curve u : I → m a control curve.
Such a curve can be used to determine a rolling of m over G/H , where the rolling
curve v : I → m satisfies the ODE v̇(t) = u(t). Inspired by the terminology used in
[2], we introduce a notion of a kinematic equation for rollings of m over G/H with
respect to ∇α . To this end, we first state the following proposition.

Proposition 5.14 Let u : I → m be a control curve and let α : m × m → m be an
Ad(H)-invariant bilinear map satisfying α(X , ·) ∈ g(m). Moreover, let q : I � t �→
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q(t) = (v(t), g(t), S(t)) ∈ m × G × G(m) = Q be a curve satisfying the ODE

v̇(t) = u(t),

Ṡ(t) = −α
(

S(t)u(t), ·) ◦ S(t),

ġ(t) = (

Te�g(t) ◦ S(t)
)

u(t).

(5.46)

Then q : I � t �→ (π ◦ q)(t) ∈ Q is a rolling of m over G/H with respect to ∇α .

Proof The curve q : I � t �→ (π ◦ q)(t) = (v(t), [g(t), S(t)]) ∈ Q is horizontal with
respect to Dα ⊆ T Q by Theorem 5.9, Claim 1. because of u(t) = v̇(t) for all t ∈ I .
Hence q : I → Q is a rolling of m over G/H by Theorem 5.9, Claim 2.. ��
Definition 5.15 The ODE (5.46) in Proposition 5.14 is called the kinematic equation
for (G(m)-reduced) rollings ofm over G/H with respect to∇α . An initial value prob-
lem associated with the ODE (5.46) with some initial condition (v(t0), g(t0), S(t0)) ∈
m × G × G(m) for some t0 ∈ I is called kinematic equation, as well.

In the sequel, we are mainly interested in the initial value problem associated
with (5.46) defined by the initial condition (v(0), g(0), S(0)) = (0, e, idm) ∈ Q =
m × G × G(m).

Remark 5.16 By specializing ∇α in Definition 5.15, one obtains:

1. The kinematic equation with respect to ∇can1 reads

v̇(t) = u(t),

Ṡ(t) = − 1
2prm ◦ adS(t)u(t) ◦ S(t),

ġ(t) = (

Te�g(t) ◦ S(t)
)

u(t).

(5.47)

2. For ∇can2 one obtains the kinematic equation

v̇(t) = u(t),

Ṡ(t) = 0,

ġ(t) = (

Te�g(t) ◦ S(0)
)

u(t)

(5.48)

since Ṡ(t) = 0 implies S(t) = S(t0) for all t ∈ I and some t0 ∈ I . We point out
that setting S(t) = idm for all t ∈ I yields an expression which is similar to the
ODE describing rollings of a symmetric space over a flat space obtained [11, Sec.
4.2].

Next, we state the kinematic equation for a naturally reductive homogeneous space.

Corollary 5.17 Let G/H be a naturally reductive homogeneous space and let
〈·, ·〉 : m × m → R be the Ad(H)-invariant scalar product corresponding to the
pseudo-Riemannian metric. Then the kinematic equation for (O(m)-reduced) rollings
ofm over G/H with respect to ∇LC is given by (5.47) from Remark 5.16, Claim 1.. In
particular, the curve S : I → O(m) takes values in the pseudo-Euclidean group of m
with respect to 〈·, ·〉 provided that the initial condition lies in O(m).
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Proof Since G/H has an invariant pseudo-Riemannian metric corresponding to the
Ad(H)-invariant scalar product 〈·, ·〉 onm, one obtains Adh

∣

∣

m
∈ O(m) for all h ∈ H .

Moreover, Remark 5.16, Claim 1. yields the desired result since ∇LC is metric and
∇LC = ∇can1 holds for naturally reductive homogeneous spaces by Remark 2.22. ��
Remark 5.18 In general, it is not clear to us whether the maximal solution of the initial
value problem

Ṡ(t) = −α
(

S(t)u(t), ·) ◦ S(t), S(0) = idm (5.49)

associated with the kinematic equation in Proposition 5.14 is defined on the whole
interval I . In principal, it could only be defined on a proper subinterval I1 � I .

However, if we assume thatG/H is equipped with an invariant Riemannian metric,
i.e. an invariant positive definite metric,∇α is metric and the control curve u : R → m
is bounded,we can prove that the time-independent vector field onR×O(m) associated
to (5.49), see e.g. [16, Sec. 3.30], given by

X(t, S) = (

1,−α
(

Su(t), ·) ◦ S
)

, (t, S) ∈ R × O(m) (5.50)

is complete. To this end, we show that this vector field is bounded in a complete Rie-
mannian metric on R × O(m). Then the completeness of X ∈ �∞(

T (R × O(m))
)

follows by [16, Prop. 23.9]. We view O(m) as subset of End(m) and denote by
〈·, ·〉 : m × m → m the Ad(H)-invariant inner product corresponding to the Rieman-
nian metric on G/H . The norm on m induced by 〈·, ·〉 is denoted by ‖ · ‖. We denote
an extension of these maps to g by the same symbols. We now endow End(m) with
the Frobenius scalar product given by 〈S, T 〉F = tr(S�T ), where S� is the adjoint of
S with respect to 〈·, ·〉. Then 〈·, ·〉F induces a bi-invariant and hence a complete Rie-
mannian metric on O(m). Moreover, the norm ‖ · ‖F defined by the Frobenius scalar
product is equivalent to the operator norm ‖·‖2. In particular, there is aC > 0 such that
‖S‖F ≤ C‖S‖2 holds for all S ∈ End(m). We now endowR×O(m)with the Rieman-
nian metric defined for (s, S) ∈ R × O(m) and (v, V ), (w,W ) ∈ T(s,S)(R × O(m))

by
〈

(v, V ), (w,W )
〉

(s,S)
= vw + tr

(

V�W
)

, (5.51)

which is clearly complete. Moreover, α : m × m → m is bounded since m is finite
dimensional.Hence there exists aC ′ ≥ 0with ‖α(X ,Y )‖ ≤ C ′‖X‖‖Y‖ for X ,Y ∈ m.
Thus, for fixed X ∈ m, the operator norm of the linear map α(X , ·) : m → m is
bounded by

‖α(X , ·)‖2 ≤ C ′‖X‖. (5.52)

By this notation, we obtain

‖X(t, S)‖2 = 1 + ∥

∥α
(

Su(t), ·) ◦ S
∥

∥

2
F

≤ 1 + C2
∥

∥α
(

Su(t), ·) ◦ S
∥

∥

2
2

≤ 1 + C2
∥

∥α
(

Su(t), ·)∥∥22‖S‖22
≤ 1 + (CC ′)2‖S‖22‖u(t)‖2
≤ 1 + (CC ′)2‖u‖2∞ < ∞,

(5.53)
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where we exploited ‖S‖2 = 1 for all S ∈ O(m) and ‖u‖∞ denotes the supremum
norm of u : I → m. Equation (5.53) shows that X ∈ �∞(

T (R × O(m))
)

is bounded
in a complete Riemannian metric on R×O(m) as desired. Thus the maximal solution
of the initial value problem

Ṡ(t) = −α(S(t)u(t), ·) ◦ S(t), S(0) = S0 ∈ O(m) (5.54)

is defined on R.

5.4 Rolling along special curves

Next we consider a rolling of m over G/H along a curve such that the development
curve γ : I → G/H is the projection of a not necessarily horizontal one-parameter
subgroup of G, i.e.

γ (t) = pr(exp(tξ)), t ∈ I (5.55)

for some ξ ∈ g. In this subsection, we focus on the invariant covariant derivatives
∇can1 and ∇can2 on G/H . This discussion is motivated by the rolling and unwrapping
technique for solving interpolation problems, see e.g. [2, 5], for which an explicit
expression for a rolling along a curve connecting two points is desirable. A natural
choice for such a curve would be a projection of a horizontal one-parameter subgroup
in G, i.e. a geodesic with respect to ∇can1 or ∇can2. However, even if such a curve
connecting two given points exists, as far as we know, in general, no closed-formula
for such curves are known. In this context, we refer to [26], where the problem of
connecting two points X , X1 ∈ Stn,k ⊆ R

n×k on the Stiefel manifold Stn,k by a curve
of the form t �→ etξ1Xetξ2 with some suitable (ξ1, ξ2) ∈ so(n) × so(k) is addressed.

As a preparation for deriving the desired rollings, we state the following lemma.

Lemma 5.19 Let G/H be a reductive homogeneous space with reductive decompo-
sition g = h ⊕ m, let ξ ∈ g and let γ : I � t �→ pr(exp(tξ)) ∈ G/H. Then the
curve

g : I → G, t �→ g(t) = exp(tξ) exp(−tξh) (5.56)

is the horizontal lift of γ through g(0) = e with respect to the principal connection
from Proposition 2.10. Moreover, g is the solution of the initial value problem

ġ(t) = Te�g(t)
(

Adexp(tξh)(ξm)
)

, g(0) = e. (5.57)

Proof Obviously, γ (t) = pr(exp(tξ)) = pr(g(t)) holds for all t ∈ I due to
exp(−tξh) ∈ H for all t ∈ I . Moreover, g(0) = e is fulfilled. It remains to prove that
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g : I → G is horizontal. To this end, we compute by exploiting (2.8) and (2.7)

ġ(t) = d
dt

(

exp(tξ) exp(−tξh)
)

= Texp(tξ)rexp(−tξh)
d
dt exp(tξ) + Texp(−tξh)�exp(tξ)

d
dt exp(−tξh)

= (

Texp(tξ)rexp(−tξh)
◦ Te�exp(tξ)

)

ξ + (

Texp(−tξh)�exp(tξ) ◦ Terexp(−tξh)

)

(−ξh)

= Te
(

rexp(−tξh) ◦ �exp(tξ)

)

ξ − Te
(

�exp(tξ) ◦ rexp(−tξh)

)

ξh

= Te
(

�exp(tξ) ◦ rexp(−tξh)

)

(ξ − ξh)

= Te
(

�exp(tξ) ◦ rexp(−tξh)

)

ξm.

Consequently, we obtain by the chain rule

(Te�g(t))
−1 ġ(t) = (

Te�exp(tξ) exp(−tξh)

)−1
ġ(t)

= (

Texp(−tξh)�exp(tξ) ◦ Te�exp(−tξh)

)−1
ġ(t)

= (

Te�exp(−tξh)

)−1 ◦ (

Texp(−tξh)�exp(tξ)

)−1
ġ(t)

= (

Te�exp(−tξh)

)−1(
Texp(tξ) exp(−tξh)�exp(−tξ)

)(

Te
(

�exp(tξ) ◦ rexp(−tξh)

)

ξm
)

= (

Te�exp(−tξh)

)−1
Te

(

�exp(−tξ) ◦ �exp(tξ) ◦ rexp(−tξh)

)

ξm

= (

Te�exp(−tξh)

)−1
Te

(

rexp(−tξh)

)

ξm

= (

Texp(−tξh)�exp(tξh) ◦ Terexp(−tξh)

)

ξm

= Te
(

�exp(tξh) ◦ rexp(−tξh)

)

ξm

= Adexp(tξh)(ξm).

Since G/H is reductive, this implies

(Te�g(t))
−1ġ(t) = Adexp(tξh)(ξm) ∈ m (5.58)

due to exp(tξh) ∈ H . Thus g is horizontal. Moreover, the curve g : I → G is a
solution of the initial value problem (5.57) by (5.58). ��
Remark 5.20 Let G be equipped with a bi-invariant metric which induces a positive
definite fiber metric on Hor(G), i.e. a sub-Riemannian structure on G, and let H ⊆ G
be a closed subgroup such that its Lie algebra h ⊆ g is non-degenerated with respect
to the scalar product corresponding to the metric. Then the curve given by g(t) =
exp(tξ) exp(−tξh) from Lemma 5.19 is a sub-Riemannian geodesic on G according
to [27, Sec. 11.3.7].

5.4.1 Rolling along special curves with respect to∇can1

We now derive an expression for a rolling of m over G/H with respect to ∇can1 such
that the development curve is given by γ : I � t �→ pr(exp(tξ)) ∈ G/H for some
ξ ∈ g. To this end, we determine a curve

q : I → Q = m × G × GL(m), t �→ (v(t), g(t), S(t)) (5.59)
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which is horizontal with respect to the principal connection P from Proposition 5.4,
Claim 3. such that q = π ◦ q : I → Q is the desired rolling. In particular,

pr(g(t)) = γ (t) = pr(exp(tξ)) (5.60)

has to be fulfilled and q has to be tangent to the distribution Dα by Theorem 5.9,
Claim 2.. Thus q : I → Q has to be tangent to Dα by Lemma 5.8, Claim 3.. Fur-
thermore, by Proposition 5.4, Claim 4., the curve g : I → G fulfilling γ = pr ◦ g is
tangent to Hor(G) ⊆ TG from Proposition 2.10, i.e. g is a horizontal lift of γ . Hence
Lemma 5.19 yields

g(t) = exp(tξ) exp(−tξh) (5.61)

for all t ∈ I which fulfills the initial value problem

ġ(t) = Te�g(t)Adexp(tξh)(ξm), g(0) = e. (5.62)

Next we recall the kinematic equation from Remark 5.16, Claim 1. for convenience

v̇(t) = u(t),

Ṡ(t) = − 1
2prm ◦ adS(t)u(t) ◦ S(t),

ġ(t) = (

Te�g(t) ◦ S(t)
)

u(t).

(5.63)

By comparing (5.63) with (5.62), we obtain

S(t)u(t) = Adexp(tξh)(ξm). (5.64)

Thus the ODE for S : I → GL(m) in (5.63) becomes

Ṡ(t) = − 1
2prm ◦ adS(t)u(t) ◦ S(t) = − 1

2prm ◦ adAdexp(tξh)(ξm) ◦ S(t). (5.65)

In order to obtain the desired rolling, we need to solve the initial value problem
associated with (5.65) explicitly. This is the next lemma.

Lemma 5.21 The solution of the initial value problem

Ṡ(t) = − 1
2prm ◦ adAdexp(tξh)(ξm) ◦ S(t), S(0) = S0 ∈ GL(m) (5.66)

is given by

S : I → GL(m), t �→ Adexp(tξh) ◦ exp
(

− tprm ◦ ad
ξh+ 1

2 ξm

)

◦ S0 (5.67)

Proof We make the following Ansatz. We set S(t) = Adexp(tξh) ◦ ˜S(t) for all t ∈ I ,
where ˜S : I → GL(m) is given by

˜S(t) = exp
( − t(adξh + 1

2 (prm ◦ adξm))
) ◦ S0
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for t ∈ I and some S0 ∈ GL(m). Obviously,

˙̃S(t) = −(

adξh + 1
2 (prm ◦ adξm)

) ◦ ˜S(t)

holds for all t ∈ I . Using the well-known identity Adexp(tξh) = etadξh , we compute

d
dtAdexp(tξh) = d

dt e
tadξh = etadξh ◦ adξh = Adexp(tξh) ◦ adξh .

Thus we obtain

Ṡ(t) = d
dt

(

Adexp(tξh) ◦ ˜S(t)
)

= ( d
dtAdexp(tξh)

) ◦ ˜S(t) + Adexp(tξh) ◦ ˙̃S(t)

= Adexp(tξh) ◦ adξh ◦ ˜S(t) − Adexp(tξh) ◦ (

adξh + 1
2 (prm ◦ adξm)

) ◦ ˜S(t)

= − 1
2Adexp(tξh) ◦ prm ◦ adξm ◦ ˜S(t)

= − 1
2prm ◦ adAdexp(tξh)(ξm) ◦ Adexp(tξh) ◦ ˜S(t)

= − 1
2prm ◦ adAdexp(tξh)(ξm) ◦ S(t),

where we exploited that prm and Adh commutes and that Adh is a morphism of Lie
algebras for all h ∈ H . Moreover, S(0) = ˜S(0) = S0 is clearly fulfilled. Hence

S : I → GL(m), t �→ Adexp(tξh) ◦ exp
( − t(adξh + 1

2 (prm ◦ adξm))
) ◦ S0

is the unique solution of the initial value problem fulfilling S(0) = S0. The desired
result follows by

adξh + 1
2prm ◦ adξm

∣

∣

∣

m
= prm ◦ ad

ξh+ 1
2 ξm

∣

∣

∣

m
,

where [h,m] ⊆ m is exploited. ��
We now choose S(0) = idm in the expression for S(t) from Lemma 5.21 and obtain

S(t) = Adexp(tξh) ◦ exp
(

− tprm ◦ ad
ξh+ 1

2 ξm

)

, t ∈ I . (5.68)

Clearly, the inverse of S(t) is given by

S(t)−1 = exp
(

tprm ◦ ad
ξh+ 1

2 ξm

) ◦ Adexp(−tξh). (5.69)

By (5.64), i.e. S(t)u(t) = Adexp(tξh)(ξm), we have

u(t) = S(t)−1(Adexp(tξh)(ξm)
) = exp

(

tprm ◦ ad
ξh+ 1

2 ξm

)

(ξm). (5.70)
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According to (5.63), the rolling curve v : I → m is defined by v̇(t) = u(t). Choosing
v(0) = 0 as initial condition yields

v(t) =
∫ t

0
exp

(

sprm ◦ ad
ξh+ 1

2 ξm

)

(ξm)ds, t ∈ I . (5.71)

Thus the desired rolling is determined. The discussion above is summarized in the
next proposition.

Proposition 5.22 Let G/H be a reductive homogeneous space with reductive decom-
position g = h ⊕ m and let ξ ∈ g be arbitrary. Moreover, let q : I � t �→ q(t) =
(v(t), g(t), S(t)) ∈ m × G × GL(m) = Q be defined by

v(t) =
∫ t

0
exp

(

sprm ◦ ad
ξh+ 1

2 ξm

)

(ξm)ds

g(t) = exp(tξ) exp(−tξh)

S(t) = Adexp(tξh) ◦ exp
(

− tprm ◦ ad
ξh+ 1

2 ξm

)

(5.72)

for t ∈ I . Then q : I � t �→ (π ◦ q)(t) = (v(t), [g(t), S(t)]) ∈ Q defines a rolling of
m over G/H with rolling curve v : I → m and development curve

γ : I → G/H , t �→ pr(g(t)) = pr(exp(tξ)). (5.73)

Furthermore, this intrinsic rolling viewed as a triple as in Remark 3.3 is given by
(v(t), γ (t), A(t)), where A(t) reads

A(t) : Tv(t)m ∼= m → Tγ (t)(G/H), Z �→ (

Tg(t)pr ◦ Te�g(t) ◦ S(t)
)

Z . (5.74)

Proof This is a consequent of the above discussion. ��
Remark 5.23 Assume that G(m) ⊆ GL(m) is a closed subgroup such that Adh

∣

∣

m
∈

G(m) holds for all h ∈ H and that prm ◦ adX
∣

∣

m
∈ g(m) holds for all X ∈ m. Then

the curve S : I → GL(m) from Proposition 5.22 is actually contained in G(m), i.e.
S(t) ∈ G(m) for all t ∈ I . In particular, if G/H is a naturally reductive homogeneous
space, one has S(t) ∈ O(m) for all t ∈ I .

Corollary 5.24 Let ξm ∈ m and define the curves

v : I → m, t �→ v(t) = tξm

S : I → GL(m), t �→ S(t) = exp(− 1
2 tprm ◦ adξm)

g : I → G, t �→ g(t) = exp(tξm)

(5.75)

Then q : I � t �→ q(t) = (v(t), [g(t), S(t)]) ∈ Q is an intrinsic rolling with respect
to ∇can1 whose development curve is a geodesic with respect to ∇can1.

Proof This is an immediate consequence of Proposition 5.22 due to ξh = 0. ��



Rolling reductive homogeneous spaces Page 51 of 64 34

5.4.2 Rolling along special curves with respect to∇can2

We now consider a rolling of a reductive homogeneous space with respect to the
covariant derivative ∇can2 such that the development curve is given by γ : I � t �→
pr(exp(tξ)) for some ξ ∈ g. This is the next proposition.

Proposition 5.25 Let ξ ∈ g be arbitrary and define q : I � t �→ (v(t), g(t), S(t)) ∈
m × G × GL(m) = Q by

v(t) =
∫ t

0
Adexp(sξh)(ξm)ds

S(t) = idm
g(t) = exp(tξ) exp(−tξh).

(5.76)

Then q = π ◦ q : I → Q is an intrinsic rolling of m over G/H with respect to ∇can2

whose development curve is given by γ : I � t �→ pr(exp(tξ)) ∈ G/H. This intrinsic
rolling viewed as a triple as in Remark 3.3 is given by (v(t), γ (t), A(t)), where A(t)
reads

A(t) : Tv(t)m ∼= m → Tγ (t)(G/H), Z �→ (

Tg(t)pr ◦ Te�g(t)
)

Z . (5.77)

Proof The curve g : I � t �→ exp(tξ) exp(−tξh) ∈ G is the horizontal lift of γ

through g(0) = e by Lemma 5.19. We now show that q : I → Q defined by (5.76)
fulfills the kinematic equation from Remark 5.16, Claim 2.. Indeed, we have

u(t) = v̇(t) = Adexp(tξh)(ξm)

and g(t) = exp(tξ) exp(−tξh) is the solution of the initial value problem

ġ(t) = Te�g(t)Adexp(tξh)(ξm) = Te�g(t)u(t) = (

Te�g(t) ◦ idm
)

u(t), g(0) = e

by Lemma 5.19 as desired. Therefore q = π ◦q : I → Q is indeed a rolling ofm over
G/H with respect to∇can2 whose developement curve is given by γ (t) = pr(exp(tξ)).

��

6 Applications and examples

In this section, we consider some examples. Before we study Lie groups and Stiefel
manifolds in detail, we briefly comment on symmetric homogeneous spaces. By recall-
ing ∇can1 = ∇can2 for symmetric homogeneous space and ∇LC = ∇can1 = ∇can2 for
pseudo-Riemannian symmetric homogeneous spaces fromRemark 2.23, the kinematic
equation from Remark 5.16, Claim 2. yields the next lemma.

Lemma 6.1 Let (G, H , σ ) be a symmetric pair and let G/H be the corresponding
symmetric homogeneous space with canonical reductive decomposition g = h ⊕ m.
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Moreover, let u : I → m be a curve. Define the curve q : I � t �→ (v(t), g(t), idm) ∈
Q = m × G × GL(m) by the initial value problem

v̇(t) = u(t), v(0) = 0

ġ(t) = Te�g(t)u(t), g(0) = e.
(6.1)

Then q = π ◦q : I � t �→ (v(t), [g(t), idm]) ∈ Q = m× (G ×H GL(m)) is a rolling
of m over G/H with respect ∇can1 = ∇can2.

If G/H is a pseudo-Riemannian symmetric space, we can consider an O(m)-reduced
rolling, i.e. we can take Q = m × (G × O(m)) in Lemma 6.1 and q : I → Q is a
rolling ofm over G/H with respect to the covariant derivative∇LC = ∇can1 = ∇can2.
In this case, Lemma 6.1 is very similar the result obtained in [11, Sec. 4.2].

6.1 Rolling Lie groups

In this subsection, we discuss intrinsic rollings of Lie groups. First we discuss rollings
of g over G, where we view G as the reductive homogeneous space G/{e} equipped
with the covariant derivative ∇can1. Afterwards, we discuss rollings of a connected
Lie group G viewed as the symmetric homogeneous space (G × G)/�G equipped
with ∇can1 = ∇can2. It turns out that both points of view are closely related.

6.1.1 Rollings of Lie groups as reductive homogeneous spaces

We first consider the rolling of a Lie-group G viewed as a reductive homogeneous
space G/{e} equipped with the covariant derivative ∇can1. Obviously, the reductive
decomposition is given by h = {0} andm = g. Clearly, this implies prm = idm = idg.
Moreover, the configuration space becomes

Q = g × (G ×{e} GL(g)) = g × G × GL(g). (6.2)

We now determine a rolling q : I � t �→ (v(t), g(t), S(t)) ∈ Q = g× G ×GL(g) of
g over G with respect to ∇can1 = ∇α , where

α : g × g → R, (X ,Y ) �→ α(X ,Y ) = 1
2 [X ,Y ]. (6.3)

To this end, we solve the following initial value problem associated with the kinematic
equation from Remark 5.16, Claim 1.

v̇(t) = u(t), v(0) = 0,

Ṡ(t) = − 1
2 adS(t)u(t) ◦ S(t), S(0) = idg,

ġ(t) = (

Te�g(t) ◦ S(t)
)

u(t), g(0) = g0,

(6.4)

where u : I → g denotes a prescribed control curve. Motivated by [2, Sec. 3.2], where
rollings of SO(n) over one if its affine tangent spaces are determined by using an
extrinsic point of view, we make the following Ansatz.
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We define the curves k : I → G and W : I → G by the initial value problems

k̇(t) = 1
2Te�k(t)u(t), k(0) = g0 and Ẇ (t) = − 1

2Te�W (t)u(t), W (0) = e.
(6.5)

Moreover, we set
S : I → GL(g), t �→ S(t) = AdW (t) (6.6)

as well as
g : I → G, t �→ g(t) = k(t)W (t)−1. (6.7)

Clearly, S(0) = Ade = idg and g(0) = g0e−1 = g0 holds. Next we show that
S : I → GL(g) defined by (6.6) is a solution of (6.4). To this end, we calculate

Ẇ (t) = − 1
2Te�W (t)u(t) = d

ds

(

�W (t)
(

exp(− 1
2 su(t))

))∣

∣

s=0, (6.8)

where we used the chain-rule and exploited the definition ofW in (6.5). In other words,
the smooth curve

γ : R → G, s �→ �W (t)
(

exp(− 1
2 su(t))

) = W (t) exp(− 1
2 su(t)) (6.9)

fulfills γ (0) = W (t) and d
ds γ (s)

∣

∣

s=0 = Ẇ (t) according to 6.8. Thus we calculate for
Z ∈ g by using the definition of S : I → GL(g) from (6.6) and the chain rule

Ṡ(t)Z = d
dt

(

AdW (t)(Z)
)

= TW (t)Ad(·)(Z)Ẇ (t)

= d
dsAdγ (s)(Z)

∣

∣

s=0

= d
dsAdW (t) exp(− 1

2 su(t))
(Z)

∣

∣

s=0

= d
dsAdW (t)

(

Ad
exp(− 1

2 su(t))
(Z)

)

∣

∣

s=0

= AdW (t)

(

d
dsAdexp(− 1

2 su(t))
(Z)

∣

∣

s=0

)

= − 1
2

(

AdW (t) ◦ adu(t)
)

(Z)

= − 1
2 adAdW (t)(u(t)) ◦ AdW (t)(Z)

= − 1
2 adS(t)u(t) ◦ S(t)Z

(6.10)

as desired, where we exploited that Adg : g → g is a morphism of Lie algebras for all
g ∈ G and γ : R → G is defined by (6.9).

It remains to show that g : I → G defined in (6.7) fulfills (6.4). To this end, using
the chain-rule several times, we obtain by g(t) = k(t)W (t) and (2.8) as well as (2.9)
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and the definition of k : I → G and W : I → G in (6.5)

ġ(t) = d
dt

(

k(t)W (t)−1)

= Tk(t)rW (t)−1 k̇(t) + TW (t)−1�k(t)
d
dt inv(W (t))

= Tk(t)rW (t)−1 k̇(t) + TW (t)−1�k(t)
( − Te�W (t)−1 ◦ TW (t)rW (t)−1

)

Ẇ (t)

= 1
2

(

Tk(t)rW (t)−1 ◦ Te�k(t)
)

u(t)

+ 1
2

(

TW (t)−1�k(t) ◦ Te�W (t)−1 ◦ TW (t)rW (t)−1 ◦ Te�W (t)
)

u(t)

= 1
2

(

Te(rW (t)−1 ◦ �k(t))
)

u(t)

+ 1
2

(

TW (t)−1�k(t) ◦ Te(�W (t)−1 ◦ rW (t)−1 ◦ �W (t))
)

u(t)

= 1
2Te(rW (t)−1 ◦ �k(t))u(t) + 1

2

(

TW (t)−1�k(t) ◦ TerW (t)−1
)

u(t)

= 1
2Te

(

rW (t)−1 ◦ �g(t)W (t)
)

u(t) + 1
2

(

TW (t)−1�g(t)W (t) ◦ TerW (t)−1
)

u(t)

= 1
2Te

(

rW (t)−1 ◦ �g(t) ◦ �W (t)
)

u(t) + 1
2Te

(

�g(t) ◦ �W (t) ◦ rW (t)−1
)

u(t)

= 1
2Te

(

�g(t) ◦ �W (t) ◦ rW (t)−1
)

u(t) + 1
2Te

(

�g(t) ◦ �W (t) ◦ rW (t)−1
)

u(t)

= (

Te�g(t) ◦ TeConjW (t)

)

u(t)

= Te�g(t) ◦ AdW (t)(u(t))

= (

Te�g(t) ◦ S(t)
)

u(t)

(6.11)

as desired. Hence
q : I � t �→ (v(t), g(t), S(t)) ∈ Q (6.12)

is an intrinsic rolling of g over G/H with respect to ∇can1, where S and g are defined
in (6.6) and (6.7), respectively. Moreover, v : I → g is determined by v̇(t) = u(t) and
the initial value v(0) = 0.We summarize the above discussion in the next proposition.

Proposition 6.2 Let G be a Lie group viewed as reductive homogeneous space G/{e}
equipped with ∇can1. Let u : I → g be some control curve and define k : I → G as
well as W : I → G by the initial value problems

k̇(t) = 1
2Te�k(t)u(t), k(0) = g0 and Ẇ (t) = − 1

2Te�W (t)u(t), W (0) = e.
(6.13)

Then

q : I � t �→ (v(t), g(t), S(t)) = (

v(t), k(t)W (t)−1,AdW (t)
) ∈ g× G ×GL(g) = Q

(6.14)
is an intrinsic rolling of g over G, where the development curve v : I → g is defined
by

v(t) =
∫ t

0
u(s)ds (6.15)

and the rolling curve is given by g : I � t �→ k(t)W (t)−1 ∈ G. This rolling can be
viewed as a triple (v(t), g(t), A(t)) as in Remark 3.3, where the linear isomorphism



Rolling reductive homogeneous spaces Page 55 of 64 34

A(t) : Tv(t)g ∼= g → Tg(t)G is given by

A(t)Z = (

Te�g(t) ◦ AdW (t)
)

Z = (

Te�k(t)W (t)−1 ◦ AdW (t)
)

Z (6.16)

for all Z ∈ g.

Remark 6.3 Let u : I → g be a control curve. Then the intrinsic rolling q : I →
m × G × GL(g) of g over G with respect to ∇can1 is defined on the whole interval I
by the form of the initial value problem in (6.13).

Corollary 6.4 Let G be a Lie group equipped with a bi-invariant pseudo-Riemannian
metric. Then rollings of g over G with respect to ∇LC with a prescribed control curve
u : I → g are given by Proposition 6.2.

Proof Let G be equipped with a pseudo-Riemannian bi-invariant metric. Then the
corresponding scalar product 〈·, ·〉 : g × g → R is Ad(G)-invariant, see e.g. [13,
Chap. 11, Prop. 9], i.e. G/{e} is a naturally reductive homogeneous space. Thus we
have ∇LC = ∇can1 by Remark 2.22. This yields the desired result. ��
Remark 6.5 For the special case G = SO(n) ⊆ R

n×n , equipped with the bi-invariant
metric induced by the Frobenius scalar product on R

n×n , expressions for extrinsic
rollings considered as curves in the Euclidean group are derived in [2, Thm. 3.2].
Rollings of pseudo-orthogonal groups have been studied in [4]. The tangential part
of these rollings is very similar to the result of Proposition 6.2. Indeed, the linear
isomorphism defined by the rolling from Proposition 6.2 in (6.16) simplifies for a
matrix Lie group to

A(t)Z = (

Te�k(t)W (t)−1 ◦ AdW (t)
)

Z = k(t)ZW (t)−1 (6.17)

for all Z ∈ g.

6.1.2 Rollings of Lie groups as symmetric homogeneous spaces

We now identify G with the symmetric homogeneous spaces (G ×G)/�G and study
the rolling of m over (G × G)/�G with respect to ∇can1 = ∇can2. To this end, we
state the next lemma as preparation which is an adaption of [15, Sec. 23.9.5], see also
[19, Chap. IV, 6], where it is stated for the Riemannian case.

Lemma 6.6 Let G be a connected Lie group and define

σ : G × G → G × G, (g1, g2) �→ (g2, g1). (6.18)

Then σ is an involutive automorphism of G×G and�G = {(g, g) | g ∈ G} ⊆ G×G
is the set of fixed points of σ . Moreover, (G × G)/�G is a symmetric homogeneous
space and the corresponding canonical reductive decomposition g × g = h ⊕ m is
given by

h = {(X , X) | X ∈ g} and m = {(X ,−X) | X ∈ g}. (6.19)



34 Page 56 of 64 M. Schlarb

In addition, the map

φ : (G × G)/�G → G, (g1, g2) · �G �→ g1g
−1
2 (6.20)

is a diffeomorphism and the map

φ : G × G → G, (g1, g2) �→ g1g
−1
2 (6.21)

is a surjective submersion which fulfills φ ◦ pr = φ.

Next we determine the tangent map of φ evaluated at elements in Hor(G × G) ⊆
TG × TG. We point out that the identity

(

T(e,e)φ
)

(X , X) = 2X for all X ∈ g is
well-known, see e.g. [15, Sec. 23.9.5] or [19, Chap. IV, 6].

Lemma 6.7 LetG bea connectedLie groupand let X ∈ g. Then (Te�g1X ,−Te�g2X) ∈
Hor(G × G)(g1,g2) holds. Moreover, the tangent map of φ : G × G � (g1, g2) �→
g1g

−1
2 ∈ G fulfills

(

T(g1,g2)φ
)

(Te�g1X ,−Te�g2X) = (

Te�g1g−1
2

◦ Adg2
)

(2X). (6.22)

In particular T(e,e)φ(X ,−X) = 2X holds and

(

T(e,e)φ
∣

∣

m

)−1
(X) = ( 1

2 X ,− 1
2 X

)

(6.23)

is satisfied for all X ∈ g.

Proof Obviously, (Te�g1X ,−Te�g2X) ∈ Hor(G × G)(g1,g2) is satisfied by Hor(G ×
G)(g1,g2) = T(e,e)�(g1,g2)m and the definition of m ⊆ g × g in Lemma 6.6. Next we
prove (6.22). To this end, we consider the curve

γ : R → G × G, t �→ (

g1 exp(t X), g2 exp(−t X))
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which fulfills γ (0) = (g1, g2) and γ̇ (0) = (Te�g1X ,−Te�g2X). Next we calculate

(

T(g1,g2)φ
)

(T �g1X ,−Te�g2X) = d
dt φ(γ (t))

∣

∣

t=0

= d
dt φ

(

g1 exp(t X), g2(exp(−t X))
)∣

∣

t=0

= d
dt g1 exp(t X)

(

g2(exp(−t X))
)−1∣

∣

t=0

= d
dt g1 exp(t X) exp(t X)g−1

2

∣

∣

t=0

= d
dt g1 exp(2t X)g−1

2

∣

∣

t=0

= d
dt g1g

−1
2 g2 exp(2t X)g−1

2

∣

∣

t=0

= d
dt g1g

−1
2 Conjg2

(

exp(2t X)
)∣

∣

t=0

= d
dt g1g

−1
2 exp

(

Adg2(2t X)
)∣

∣

t=0

= Te�g1g−1
2

d
dt exp

(

tAdg2(2X)
)∣

∣

t=0

= Te�g1g−1
2
Adg2(2X)

proving (6.22) as desired. Evaluating (6.22) at (g1, g2) = (e, e) ∈ G × G yields

T(e,e)φ(X ,−X) = (Te�e ◦ Ade)(2X) = 2X

for all X ∈ g. Now (6.23) is verified by a straightforward calculation. ��
Next we consider intrinsic rollings of m over (G × G)/�G with respect to ∇can2

and relate them to the intrinsic rollings of g over G with respect to ∇can1. This is the
next proposition.

Proposition 6.8 Let G be a connected Lie group and let u : I → g be a control curve.
Consider the initial value problem

v̇(t) = u(t), v(0) = 0,

ġ1(t) = 1
2Te�g1(t)u(t), g1(0) = g0,

ġ2(t) = − 1
2Te�g1(t)u(t), g2(0) = e.

(6.24)

Then the following assertions are fulfilled:

1. The curve q̃ : I → m × ((G × G) ×�G GL(m)) defined for t ∈ I by

q̃(t) = (

( 12v(t),− 1
2v(t)), [(g1(t), g2(t)), idm]) (6.25)

is a rolling of m over (G × G)/�G with respect to ∇can2 with rolling curve
ṽ : I � t �→ ṽ = ( 12v(t),− 1

2v(t)) ∈ m and development curve γ̃ : I � t �→
γ̃ (t) = pr(g1(t), g2(t)) ∈ (G × G)/�G.

2. The curve

q : I � t �→ (

v(t), g1(t)g2(t)
−1,Adg2(t)

) ∈ g × G × GL(g) (6.26)
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is a rolling of g over G with respect to ∇can1 with rolling curve v : I → g and
development curve g : I � t �→ g(t) = g1(t)g2(t)−1 ∈ G.

3. Let φ : (G ×G)/�G → G be the diffeomorphism from Lemma 6.6. Then one has
for all Z ∈ g ∼= Tv(t)g and t ∈ I

q(t)Z = Tφ ◦ q̃(t) ◦ (

T(e,e)(φ ◦ pr)
∣

∣

m

)−1
Z , (6.27)

where q(t) as well as q̃(t) are identified with the linear isomorphisms given by

q(t) : Tv(t)g ∼= g → Tg(t)G, Z �→ (

Te�g(t) ◦ Adg2(t)
)

Z , (6.28)

where g(t) = g1(t)g2(t)−1, and

q̃(t) : T̃v(t)m ∼= m → Tpr(g1(t),g2(t))(G × G)/�G,

(Z ,−Z) �→ (

T(g1(t),g2(t))pr ◦ (Te�g1(t), Te�g2(t))
)

(Z ,−Z),
(6.29)

respectively.

Proof Claim1. follows byRemark 5.16,Claim2..Moreover, Claim2. is a consequence
of Proposition 6.2.

It remains to show Claim 3.. Let Z ∈ g. Then one has

(T(e,e)(φ ◦ pr)
∣

∣

m
)−1Z = (T(e,e)φ

∣

∣

m
)−1Z = ( 1

2 Z ,− 1
2 Z

)

according to Lemma 6.7. Moreover φ = φ ◦ pr holds by Lemma 6.6 implying Tφ =
Tφ ◦ T pr. Therefore we obtain by Lemma 6.7

Tφ ◦ q̃(t) ◦ (T(e,e)(φ ◦ pr)
∣

∣

m
)−1Z = Tφ ◦ q̃(t)

( 1
2 Z , − 1

2 Z
)

= Tφ ◦ (

T(g1(t),g2(t))pr ◦ (Te�g1(t), Te�g2(t))
)( 1

2 Z , − 1
2 Z

)

= T(g1(t),g2(t))(φ ◦ pr)
( 1
2Te�g1(t)Z , − 1

2Te�g2(t)Z
)

= (

T(g1(t),g2(t))φ
)( 1

2Te�g1(t)Z , − 1
2Te�g2(t)Z

)

= (

Te�(g1(t)g2(t)−1) ◦ Adg2(t)
)

Z

= q(t)Z

for all Z ∈ g as desired. ��

6.2 Rolling Stiefel manifolds

Rollings of Stiefel manifolds have been already considered in the literature in [3] and
[11], however not from an intrinsic point of view. In this section we apply the general
theory developed in Sect. 5 to the Stiefel manifold Stn,k endowed with the Levi-Civita
covariant derivative defined by a so-called α-metric. These metrics have been recently
introduced in [28].
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Remark 6.9 We point out that in contrast to the previous sections, where α denotes
a bilinear map m × m → m defining an invariant covariant derivative, in this sec-
tion α denotes an element in R \ {0}. There is no danger of confusion because in
this section, we consider rollings of Stiefel manifolds exclusively with respect to the
Levi-Civita covariant derivative ∇LC defined by an α-metric. Since the Stiefel mani-
fold Stn,k equipped with an α-metric is a naturally reductive homogeneous space, see
Lemma 6.11 below, the Levi-Civita covariant derivative∇LC corresponds to the invari-
ant covariant derivative defined by the bilinearmapm×m � (X ,Y ) �→ 1

2 [X ,Y ]m ∈ m
according to Remark 2.22.

6.2.1 Stiefel manifolds equipped with˛-metrics

We start with recalling some results from [28], in particular [28, Sec. 2-3]. The Stiefel
manifold Stn,k can be considered as the embedded submanifold of R

n×k given by

Stn,k = {X ∈ R
n×k | X�X = Ik}, 1 ≤ k ≤ n. (6.30)

In the sequel, we write O(n) = {R ∈ R
n×n | R�R = In} for the orthogonal group.

We now identify Stn,k with a normal naturally reductive space G/H , where G =
O(n) × O(k) is equipped with a suitable bi-invariant pseudo-Riemannian metric. To
this end, we consider the action of the Lie group G = O(n) ×O(k) on R

n×k from the
left via

� : (O(n) × O(k)) × R
n×k → R

n×k, ((R, θ), X) �→ �
(

(R, θ), X
) = RXθ�.

(6.31)
For fixed (R, θ) ∈ O(n) × O(k), the induced diffeomorphism

�(R,θ) : R
n×k → R

n×k, X �→ RXθ� (6.32)

is clearly linear. Restricting the second argument of � to Stn,k yields the action

(O(n) × O(k)) × Stn,k → Stn,k, ((R, θ), X) �→ �
(

(R, θ), X
) = RXθ�, (6.33)

which is known to be transitive. This action is denoted by �, as well.
Let X ∈ Stn,k be fixed and denote by H = Stab(X) the stabilizer subgroup of X

under the action �. We identify Stn,k ∼= (O(n) × O(k))/H via the (O(n) × O(k))-
equivariant diffeomorphism

ιX : G/H → Stn,k, (R, θ) · H �→ �
(

(R, θ), X
) = RXθ�, (6.34)

where (R, θ) · H ∈ (O(n) × O(k))/H denotes the coset defined by (R, θ) ∈ O(n) ×
O(k). Moreover, the map

prX : O(n) × O(k) → Stn,k, (R, θ) �→ RXθ� (6.35)
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is a surjective submersion. Note that ιX : G/H → Stn,k ⊆ R
n×k becomes a (O(n) ×

O(k))-equivariant embedding and

prX = ιX ◦ pr (6.36)

holds, where pr : O(n)×O(k) → (

O(n)×O(k)
)

/H denotes the canonical projection.
The Lie algebra of H is given by

h = ker
(

T(In ,Ik )prX
) ⊆ g = so(n) × so(k). (6.37)

By [28, Eq. (14)], the stabilizer subgroup H ⊆ O(n) × O(k) is isomorphic to the Lie
group O(n − k) × O(k).

Next we recall the definition of the so-called α-metrics from [28]. To this end, a
bi-invariant metric on so(n)× so(k) is introduced following [28, Def. 3.1]. Define for
0 �= α ∈ R

〈·, ·〉α : (so(n) × so(k)) × (so(n) × so(k)) → R,
(

(�1,�2), (η1, η2)
) �→ −tr(�1�2) − 1

α
tr(η1η2).

(6.38)

By [28, Prop. 2], the subspace h ⊆ so(n)× so(k) defined in (6.37) is non-degenerated
iff α �= −1 holds. In this case, we write m = h⊥ and

m ⊕ h = g = so(n) × so(k) (6.39)

is fulfilled. Next we reformulate [28, Def. 3.3].

Definition 6.10 Let α ∈ R \ {0,−1} and let O(n) × O(k) be equipped with the bi-
invariant metric defined by the scalar product 〈·, ·〉α from (6.38). The metric on Stn,k

defined by requiring that the map prX : O(n)×O(k) → Stn,k from (6.35) is a pseudo-
Riemannian submersion is called α-metric.

The Stiefel manifold equipped with an α-metric is a naturally reductive homogeneous
space.

Lemma 6.11 Let α ∈ R \ {−1, 0}. Then (O(n) × O(k))/H ∼= Stn,k equipped with an
α-metric from Definition 6.10 is a naturally reductive homogeneous space.

Proof Obviously, the scalar product 〈·, ·〉α on so(n) × so(k) from Definition 6.10
is Ad(O(n) × O(k))-invariant for α ∈ R\{0}. In addition, the subspace h =
ker(T(In ,Ik )prX ) ⊆ so(n) × so(k) is non-degenerated for α ∈ R\{0,−1} by [28,
Prop. 2]. Thus Lemma 2.13 yields the desired result. ��

In the sequel, an explicit expression for the orthogonal projection prm : so(n) ×
so(k) → m with respect to the scalar product 〈·, ·〉α is needed. Therefore we state the
next lemma which is taken from [28, Lem. 3.2].
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Lemma 6.12 Let α ∈ R\{−1, 0} and let X ∈ Stn,k . The orthogonal projection

prm : so(n) × so(k) � (�, η) �→ (�⊥X , η⊥X ) ∈ m ⊆ so(n) × so(k) (6.40)

is given by

�⊥X = XX�� + �XX� − 2α+1
α+1 XX��XX� − 1

α+1 XηX�,

η⊥X = α
α+1

(

η − X��X
)

.
(6.41)

Proof This is just a reformulation of [28, Lem. 3.2]. ��
Furthermore, the following lemma is a trivial reformulation of [28, Prop. 3].

Lemma 6.13 Let α ∈ R \ {−1, 0} and let X ∈ Stn,k . The map

(

T(In ,Ik )(ιX ◦ pr)
∣

∣

m

)−1 : TXStn,k � V �→ (�(V )⊥X , η(V )⊥X ) ∈ m ⊆ so(n) × so(k)
(6.42)

is given by
�(V )⊥X = V X� − XV� + 2α+1

α+1 XV�XX�,

η(V )⊥X = − α
α+1 X

�V
(6.43)

for all V ∈ TXStn,k .

Proof This is a consequent of [28, Prop. 3]. ��

6.2.2 Intrinsic rolling

We now determine intrinsic rollings of the Stiefel manifold equipped with an α-metric
over one of its tangent spaces.

By Lemma 5.2, the configuration space for rolling TXStn,k ∼= m over Stn,k intrin-
sically is given by the fiber bundle

π : Q = m × (

(O(n) × O(k)) ×H O(m)
) → m × (O(n) × O(k))/H , (6.44)

where H = Stab(X) ⊆ O(n)×O(k) = G. By identifying TXStn,k ∼= m via the linear
isometry T(In ,Ik )m → TXStn,k from Lemma 6.13 and Stn,k ∼= (O(n) × O(k))/H via
the (O(n) × O(k))-equivariant isometry ιX : (O(n) × O(k))/H → Stn,k , we obtain
the following proposition describing intrinsic rollings of TXStn,k over Stn,k .

Proposition 6.14 Let Stn,k be equipped with an α-metric for α ∈ R \ {−1, 0} and let

V : I → TXStn,k, t �→ V (t) (6.45)

be a given rolling curve. Denote by v : I → m the corresponding curve inm given by

v(t) = (

TIn,k (ιX ◦ pr
∣

∣

m
)
)−1

V (t)

= (

V (t)X� − XV (t)� + 2α+1
α+1 XV (t)�XX�,− α

α+1 X
�V (t)

)
(6.46)
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for t ∈ I . Then the kinematic equation for the intrinsic rolling of Stn,k over m ∼=
TXStn,k with respect to ∇LC defined by the α-metric along v : I → m is given by

v̇(t) = u(t),

Ṡ(t) = − 1
2prm ◦ adS(t)u(t) ◦ S(t),

ġ(t) = (

Te�g(t) ◦ S(t)
)

u(t),

(6.47)

where prm : so(n) × so(k) → m is explicitly given by Lemma 6.12. Let q : I � t �→
(v(t), g(t), S(t)) ∈ Q = m × (O(n) × O(k)) × O(m) be a curve satisfying (6.47).
Then

q : I → Q, t �→ q(t) = (π ◦ q)(t) = (v(t), [g(t), S(t)]) (6.48)

is an intrinsic rolling of TXStn,k ∼= m over Stn,k with respect to the given α-metric
along the rolling curve v. The development curve I � t �→ pr(g(t)) = (R(t), θ(t)) ∈
O(n)×O(k) is mapped by the embedding ιX : (O(n)×O(k))/H → R

n×k to the curve

γ : I → Stn,k, t �→ γ (t) = (ιX ◦ pr)(g(t)) = prX (g(t)) = R(t)Xθ(t)�. (6.49)

Proof Since Stn,k equipped with an α-metric is a naturally reductive homogeneous
space by Lemma 6.11, this is a direct consequence of Corollary 5.17 combined with
Lemma 6.12 and Lemma 6.13. ��

Next we consider the intrinsic rolling of the Stiefel manifolds along curves of a
special form by using Sect. 5.4.1. This yields the next remark.

Remark 6.15 Let ξ = (ξ1, ξ2) ∈ so(n) × so(k). Then

q : I → m × (G ×H O(m)), t �→ (v(t), [g(t), S(t)]), (6.50)

where
g(t) = exp(tξ) exp(−tξh),

S(t) = Adexp(tξh) ◦ exp
(

− tprm ◦ ad
ξh+ 1

2 ξm

)

,

v(t) =
∫ t

0
exp

(

s
(

prm ◦ ad
ξh+ 1

2 ξm

))

(ξm)ds

(6.51)

is an intrinsic rolling of m along the rolling curve v : I → m with development curve
γ (t) = pr(g(t)) = pr(exp(tξ)). Identifying Stn,k ∼= (O(n) × O(k))/H with the
embedded submanifold Stn,k ⊆ R

n×k via ιX : (O(n) × O(k))/H → Stn,k ⊆ R
n×k ,

the development curve is given by

γ (t) = etξ1Xe−tξ2 (6.52)

and the rolling curve reads

V (t) = TX (ιX ◦ pr)v(t) = v1(t)X − Xv2(t), (6.53)
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where we write v(t) = (v1(t), v2(t)) ∈ m with v1(t) ∈ so(n) and v2(t) ∈ so(k) for
all t ∈ I .

7 Conclusion

In this text, we investigated intrinsic rollings of reductive homogeneous spaces
equipped with invariant covariant derivatives. As preparation, we considered frame
bundles of vector bundles associated to principal fiber bundles in detail. Afterwards,
using an abstract definition of intrinsic rolling as starting point, we investigated rollings
ofm over the reductive homogeneous spaces G/H with respect to an invariant covari-
ant derivative ∇α . For a given control curve, we obtained the so-called kinematic
equationwhich is a time-variant explicit ODEon aLie group,whose solutions describe
rollings of m over G/H . Moreover, for the case, where the development curve is
the projection of a one-parameter subgroup, we provided explicit solutions of the
kinematic equation describing intrinsic rollings of m over G/H with respect to the
canonical covariant derivative of first kind and second kind, respectively. As examples,
we discussed intrinsic rollings of Lie groups and Stiefel manifolds.
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