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Abstract
We prove sharp Cwikel–Lieb–Rozenblum type inequalities for the Coulomb Hamil-
tonian in dimension higher than five. We furthermore show that the classical constant
obtained from Weyl asymptotics doesn’t hold in dimensions four and five.
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1 Introduction

We consider the following Schrödinger operator in L2(Rd),

− � − κ|x |−1 + � with κ > 0,� > 0, d ≥ 2, (1)

known as Coulomb Hamiltonian. This is a well defined operator and the negative
spectrum consists precisely of the eigenvalues

{
� − κ2

(2k + d − 1)2
: k ∈ N0

}
with multiplicity μk = (d − 2 + k)!(d − 1 + 2k)

(d − 1)!k! .

(See for example [1]). Concerning the examination of the spectral properties of the
Schrödinger operator family, Cwikel [2], Lieb [3] and Rozenblum [4] found an
estimation for the number of negative eigenvalues below zero, usually denoted by
N (0,−� − V ), when the dimension is greater or equal to 3.
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Theorem 1 (CLR inequality) Let d ≥ 3. Then there is a constant L0,d < ∞ such that
for all V ∈ L1

loc(R
d) with V+ ∈ Ld/2(Rd),

N (0,−� − V ) ≤ L0,d

∫
Rd

V (x)d/2
+ dx

Later, Lieb and Thirring [5] generalized the Cwikel–Lieb–Rozenblum inequality to
obtain an estimation for the Riesz means of the negative spectrum.

Theorem 2 (Lieb–Thirring inequality) Let γ ≥ 1/2 if d = 1, γ > 0 if d = 2 and
γ ≥ 0 if d ≥ 3. Then, there exist a constant Lγ,d < ∞ such that, for any V with
V+ ∈ Lγ+d/2(Rd) and V− ∈ L1

loc(R
d),

T r(−� − V )
γ
− ≤ Lγ,d

∫
Rd

V (x)γ+d/2
+ dx .

Although the existence of the constant Lγ,d is known, the sharpest value in some
of this inequalities is still an open problem. In order to find the sharpest value, one
approach is to study the Lieb–Thirring inequalities in specific cases that can give some
information about the constant.

Nevertheless, if we consider the classical Coulomb Hamiltonian,

−� − κ|x |−1 with κ > 0, d ≥ 2,

this operator doesn’t satisfy the hypothesis of Theorem 1. Therefore, it is necessary
to add the parameter � > 0, which acts as a shift, and enables the operator defined in
1 to be an element of Ld/2(Rd). Moreover, the integral defined in the right-hand side
of Theorem 2 can be explicitely computed and equals

Lcl
γ,d

∫
Rd

(κ|x |−1 − �)
γ+d/2
+ dx = 21−dκd�γ−d/2�(γ + 1)�

( d
2 − γ

)
�(d + 1)�

( d
2

) .

Several months ago, Laptev, Frank and Weidl obtained the following result regarding
the 3 dimensional case of the Coulomb Hamiltonian in [1].

Theorem 3 Let d = 3 and 1 ≤ γ < 3/2. Then for all κ > 0 and � > 0,

T r(−� − κ|x |−1 + �)
γ
− ≤ Lcl

γ,3

∫
R3

(κ|x |−1 − �)
γ+3/2
+ dx .

Where

Lcl
γ,d = �(γ + 1)

(4π)d/2�(γ + 1 + d/2)

is the classical constant obtained through Weyl asymptotics [6].
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Theorem 4 (Weyl asymptotics) Let γ ≥ 0 and let V be a continuous function on R
d

with compact support. Then

lim
α→∞ α−γ−d/2Tr(0,−� − αV )

γ
− = Lcl

γ,d

∫
Rd

V (x)γ+d/2
+ dx .

Comparing the Lieb–Thirring inequality to the Weyl asymptotics, it is clear that

Lcl
γ,d ≤ Lγ,d . (2)

A slightly different approach is to investigate the best constant concerning only the
first eigenvalue, that is

|E1|γ ≤ L(1)
γ,d

∫
Rd

V (x)γ+d/2
+ dx . (3)

In this context, the constant L(1)
γ,d is sometimes referred to as the "one-particle constant".

Consequently,

L(1)
γ,d ≤ Lγ,d . (4)

In 1961, Keller [7] raised the variational problem for L(1)
γ,d . Independently, Lieb and

Thirring [5] arrived at the same optimization problem and showed that it is intimately
related to the problem of finding the sharp constant in Sobolev and Gagliardo-
Nirenberg inequalities. Combining 2 and 4, it follows

Lγ,d ≥ max{Lcl
γ,d , L

(1)
γ,d} (5)

Lieb andThirring conjectured in [5] that equality holds in 5. In otherwords, the optimal
constant Lγ,d is equal to the maximum of Lcl

γ,d and L(1)
γ,d . For a further discussion of

this conjecture, we refer to [8].
The proof of Theorem 3 resides on the fact that the inequality holds when γ = 1,

and then they extend the result using the following auxiliary lemma, known as the
Aizenman–Lieb principle, presented in [9].

Lemma 1 (Aizenman–Lieb principle) For any d ≥ 1, the quotient Lγ,d/Lcl
γ,d is non

increasing in γ .

In this paper we will present in which cases the classical constant Lcl
γ,d is a valid con-

stant for theCLR inequalities of theCoulombHamiltonianwhenworking in dimension
d ≥ 4.

Moreover, we will extend those results by means of the Aizenman–Lieb principle
when possible, obtaining the Lieb–Thirring inequalities. Additionally, we give an
starting point γ0 for which the Lieb–Thirring inequalities hold (with the classical
constant) in those cases where the CLR inequalities don’t.
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2 CLR inequalities

Wepresent now themain two results of this article. The first one shows that the classical
constant is valid in the case where the dimension is greater or equal than six.

Theorem 5 Let d ≥ 6. Then for all κ > 0 and � > 0,

N (0,−� − κ|x |−1 + �) ≤ Lcl
0,d

∫
Rd

(κ|x |−1 − �)
γ+d/2
+ dx .

The next one shows that in dimensions 4 and 5, the classical constant is no longer
valid.

Theorem 6 Let d = 4 or d = 5. Then, there exists some values of κ > 0 and � > 0
for which the CLR inequality of the correspondent Coulomb Hamiltonian don’t hold
with the classical constant.

Both theorems are a consequence of the following lemma.

Lemma 2 Let d ≥ 4. Then, there exists k0 > 0 such that for all κ > 0 and � > 0
satisfying κ√

�
≥ k0,

N (0,−� − κ|x |−1 + �) ≤ Lcl
0,d

∫
Rd

(κ|x |−1 − �)
γ+d/2
+ dx .

Proof of Lemma 2 In order to compute N (0,−� − κ|x |−1 + �), the first goal is to
determine when the quantity

κ2

(2k + d − 1)2
− � (6)

is positive. Making the computations, we obtain that (6) is positive for those k ∈ N

such that

k ≤
κ√
�

− (d − 1)

2
. (7)

In the following, we will denote M := �
κ√
�

−(d−1)

2 	 the greatest integer less than or

equal to
κ√
�

−(d−1)

2 . Hence,

N (0,−� − κ|x |−1 + �) =
∞∑
k=0

μk

(
κ2

(2k + d − 1)2
− �

)0

+

=
M∑
k=0

(d − 2 + k)!(d − 1 + 2k)

(d − 1)!k! . (8)



Cwikel–Lieb–Rozenblum inequalities... Page 5 of 9 13

Similar to the case of the Laplace–Beltrami operator, since our potential only depends
on |x |, we can reduce the study on Rd to problems on the real line using the spherical
harmonics. If ν(l) denotes the dimension of the space of spherical harmonics of degree
l, then the multiplicity μk associated to 6 can be written as:

μk =
k∑

l=0

ν(l) = (d − 2 + k)!(d − 1 + 2k)

(d − 1)!k!

The sum in 8 can be explicitly computed and equals

M∑
k=0

(d − 2 + k)!(d − 1 + 2k)

(d − 1)!k! = (d + 2M)�(d + M)

�(d + 1)�(M + 1)
.

Simplifying the expression we get,

N (0,−� − κ|x |−1 + �) ≤ 1

2
(d − 1)

(
κ√
�

+ 1

)2 1

�(d + 1)
.

On the other hand,

Lcl
0,d

∫
Rd

(κ|x |−1 − �)
0+d/2
+ dx = 21−dκd�−d/2 1

�(d + 1)
.

Comparing both expressions, it is easy to see that CLR inequality hold if and only if

(d − 1)

⎛
⎝1 + 1(

κ√
�

)
⎞
⎠

2

≤
(

κ

2
√

�

)d−2

. (9)

We now recall two well known facts. Firstly, for any non zero x ∈ R, 1 + x < ex .
Secondly, by the definition of exponentiation,

(
κ

2
√

�

)d−2

= e
(d−2)ln

(
κ

2
√

�

)
.

Combining both of them with the strictly increasing condition of the exponential
function we get,

d − 1 = 1 + (d − 2) < ed−2 ≤ e
(d−2)ln

(
κ

2
√

�

)
if

κ√
�

≥ 2e.

To finish our argument, we conclude considering the following limits:

lim
α→∞

(
1 + 1

α

)2

= 1 and lim
α→∞ ln

(α

2

)
= ∞.
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Therefore, if the coefficient κ√
�
is big enough, the last inequality holds. We denote by

k0 the number such that if κ√
�

≥ k0 then the inequality holds for all d ≥ 4. Although
we can not give an explicit computation of that value for the moment, numerical
analysis show us that the inequality is valid when considering a really low value k0.
Namely,

4.27451 < k0 < 4.27452.

However, we can proof analytically that the inequality 9 holds when κ√
�

≥ 4.5.
Although it is not the optimal value for k0, will be sufficient to justify the argument
in the following proofs. If κ√

�
≥ 4.5, then

⎛
⎝1 + 1(

κ√
�

)
⎞
⎠

2

≤
(
1 + 1

(4.5)

)2

and

(
4.5

2

)d−2

≤
(

κ

2
√

�

)d−2

for any d ≥ 4.

Hence, inequality 9 will hold if the function h(d) = (d−1)(1+ 1
(4.5) )

2−( 4.52 )d−2 ≤ 0
when d ≥ 4. We note that h(4) < 0 and computing the derivative we see that h(d) is
strictly decreasing in [4.5,∞), completing the proof. 
�
Proof of Theorem 5 We move now to study the case where κ√

�
< k0. We first observe

that there exist some cases for which the CLR inequalities hold trivially. In particular,
in those cases where we do not have eigenvalues.

κ√
�

− (d − 1)

2
< 0 ⇐⇒

⎧⎪⎨
⎪⎩
d = 4 or d = 5 : κ√

�
< d − 1.

d ≥ 6 :
κ√
�

−(d−1)

2 <
k0−(d−1)

2 < 0.

Therefore, if d ≥ 6 the CLR inequalities hold trivially when κ√
�

< k0. This completes

the proof of Theorem 5. 
�
Proof of Theorem 6 For the two remaining cases, d = 4 and d = 5, we have already
proved that if

κ√
�

∈ (0, d − 1) ∪ [k0,∞),

then the CLR inequalities for the classical constant are valid. If wemove to the remain-
ing case, due to the value of k0, the condition 7 holds if and only if k = 0. Therefore,
we consider the CLR inequalities associated with one eigenvalue, − κ2

(d−1)2
.

1 ≤ 21−dκd�−d/2 1

�(d + 1)
= 21−d 1

�(d + 1)

(
κ√
�

)d
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In those cases, the CLR inequalities hold if the quotient κ√
�

satisfies the following
condition:

2(1−1/d)�(d + 1)1/d ≤ κ√
�

Nevertheless, the interval [d−1, 2(1−1/d)�(d+1)1/d) is non empty in both these cases.
In particular, if we take � = 1 and κ = d − 1, we get an example of the Coulomb
Hamiltonian for which the CLR inequalities with the classical constant don’t hold in
dimension 4 and dimension 5. Concluding the proof of Theorem 6. 
�

3 Lieb–Thirring inequalities

Aswe advanced in the introduction, we extend Theorem 5 bymeans of the Aizenman–
Lieb principle (Lemma 1), obtaining

Corollary 1 Let d ≥ 6 and 0 ≤ γ < d/2. Then for all κ > 0 and � > 0,

T r(−� − κ|x |−1 + �)
γ
− ≤ Lcl

γ,d

∫
Rd

(κ|x |−1 − �)
γ+d/2
+ dx .

In the cases where d = 4 or d = 5, we obtain the following corolary.

Corollary 2 Let d = 4 or d = 5. Then, there exist 0 < γ0,d < d
2 as in (14) such that

for all γ0,d ≤ γ < d/2, κ > 0 and � > 0,

T r(−� − κ|x |−1 + �)
γ
− ≤ Lcl

γ,d

∫
Rd

(κ|x |−1 − �)
γ+d/2
+ dx .

Proof of Corolary 2 From Lemma 2, the study of trivial cases in the proof of Theorem
5 and the study of the CLR inequalities associated with one eigenvalue in the proof of
Theorem 6, we know that if

κ√
�

∈ (0, d − 1) ∪ [2(1−1/d)�(d + 1)1/d ,∞),

then we can use the Aizenman–Lieb principle to extend the validity of the classical
constant. To solve the remaining case, κ√

�
∈ [d−1, 2(1−1/d)�(d+1)1/d), we consider

the following variational problem associated to one eigenvalue,

|E1|γ ≤ Lcl
γ,d

∫
Rd

V (x)γ+d/2
+ dx .

In our case, it reads as

(
κ

d − 1

)2γ

≤ 21−dκd�γ−d/2�(γ + 1)�
( d
2 − γ

)
�(d + 1)�

( d
2

) .
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When d = 4, can be rewritten as

(
κ√
�

)2(γ−2)

≤ 32γ−1

26
�(γ + 1)�(2 − γ ). (10)

And when d = 5, we obtain

(
κ√
�

)2γ−5

≤ 24γ−5

5 · 32 · √
π

�(γ + 1)�

(
5

2
− γ

)
. (11)

In order to solve 10 and 11 with respect to the parameter γ , we note that for any
0 < γ < d

2 the left hand side of both expressions is always less or equal to it’s value
at the point d −1. If we substitute the value and simplify, we can rewrite 10 and 11 as

26

33
≤ �(γ + 1)�(2 − γ ). (12)

5 · 32 · √
π

25
≤ �(γ + 1)�

(
5

2
− γ

)
. (13)

Using the properties of the Gamma function, in particular using the fact that the right
hand side of both equations tends to infinitywhen γ tends to d

2 ,we knowboth equations
have solution. We will denote it by γ0,d . Solving numerically,

1, 5 < γ0,4 < 1, 51 and 1, 86 < γ0,5 < 1, 87. (14)

Therefore, we can extend the result by the Aizenman–Lieb principle. 
�
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