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Abstract

In this paper we prove weighted £”-inequalities for variation and oscillation operators
defined by semigroups of operators associated with discrete Jacobi operators. Also,
we establish that certain maximal operators involving sums of differences of discrete
Jacobi semigroups are bounded on weighted £7 -spaces. £”-boundedness properties for
the considered operators provide information about the convergence of the semigroup
of operators defining them.

Mathematics Subject Classification 42B25 - 42B30

1 Introduction

The p-variational inequalities for bounded martingales were first studied by Lépingle
in [24]. These properties can be seen as extensions of Doob’s maximal inequality and
they give quantitative versions of the martingale convergence theorem. Generalizations
of Lépingle’s results can be found in [10, 27, 28].

Bourgain ([10]) was the first in studying variational inequalities in ergodic theory.
He rediscovered Lépingle’s inequality and used it to establish pointwise convergence
of ergodic averages involving polynomial orbits. The seminal paper [10] opened the
study of variational inequalities in harmonic analysis and ergodic theory ([11, 12, 18,
19, 21, 22, 25-27]). Oscillation and variation estimates for semigroups of operators
can be found, for instance, in [9, 16, 22, 30, 36].
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Let p > 0 and {a;};~0 C C. We define the p-variation of {a;},~0, V,({a;}:>0), by

n—1 1/p
Vo({arki=0) = sup Z lar; — ar;,1°
O<ty,<ty,_1<--<t) -
neN J

Let {t;}jen C (0, 00) be a decreasing sequence such that z; — 0, as j — oo. The
oscillation of {a;};~0, O({a;}1>0, {tj}jen), is defined by

1/2
. /

O(farki=0, {tj}jen) = Z sup lae, — ac,,, |

=1 ljp1=€j41<€j=I;

Let & > 0. We define the A-jump of {a;};~0, A({a;};>0, A) by

A({{ar}i=0,A) =sup{n e N: 51 <t <sp <tp <--- <s, <, such that

la;, —ag| > A, i=1,...,n}.

Variations, oscillation and jumps provide us information about convergence properties
for {ar}r>0.

Suppose that {7} },~¢ is a family of operators in L” (X, ) with 1 < p < oo, where
(X, p) is a measure space. We define, for every f € LP (X, n),

Vo{T1}i>0)(f)(x) := Vo ({T: (/) (x) }i>0),
OT >0 {1} jen) (/) (x) := OUT (/) (%) }i>0, {1} jen)

and

A({Ti}i>0. M () (x) = A{T(f)(X)}i>0, 1)

An important issue in this point is the measurability of these new functions. Comments
about this property can be encountered after [11, Theorem 1.2]. Our objective is to
get L?-boundedness properties for the variations, oscillation and jump operators. As
usual, in order to obtain L”-boundedness for the p-variation operator, we need to
consider p > 2. This is the case when we work with martingales, see [22, 29]. The
oscillation operator, which has exponent 2, can be a good substitute of the 2-variation
operator. According to [25, (1.15)], we can see uniform A-jump estimates as endpoint
estimates for p-variations, p > 2. Moreover, it is proved in [25, Theorem 1.9] that
the oscillation operator cannot be interpreted as an endpoint in the sense of inequality
[25, (1.15)] for p-variations, p > 2.

Let {a;}jcz be an increasing sequence in (0, 00) and {b;};cz a bounded real
sequence. According to [7, 20], we define, for every N = (N1, N2) with Ny, N> € Z,
N1 < Ny, the operator Sy by

(bjljez

No
Sty N (AT=0) () = D bj(Tape | = T .

J=Ni
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and the corresponding maximal operator, S, by

{b }jez {b }jez
(T }i=0)(f) = sup (T }e=0) ()] -
{“/} €Z,x = N=(N1.N2) {a Vjez.N =
Ni,N2eZ, Ni<Nj

These operators can help us to complete the picture of the convergence properties of
{Tt}:>0- By [20, Remark 1], we need to assume that the sequence {a;};cz satisfies
some extra condition (lacunarity, for instance) in order to obtain L”-boundedness
properties for the operator S.

Our objective is to establish L”-inequalities for all above operators when {T;},~¢
is the discrete Jacobi heat semigroup.

We now recall some definitions and properties about Jacobi polynomials that we
will use along the paper.

Leta, B > —1. For every n € Ng := N U {0}, we define the n—th Jacobi polyno-
mial P,Ea’ﬁ ) by

(=D"

PP () =

— )1+ 0P, xe(=1,1),

dn
(1—x)" (1 +x)7°
dx"

see [35, p.67, formula (4.3.1)].

We also consider p.*? = w!*P p@P) 1, e Ny, where

, n € Np.

pap _ [@ntatp+ DI+ Dita+p+1)
o 24P P (n+a+ DI (n+ B+ 1)

The sequence {p( ﬁ)}neNo is an orthonormal basis in LZ((—1, 1), Ma,g), Where
dpgp(x) = (1 —x)%(1 +x)? dx.
We define the difference operator J @B) as follows,

TR (ym) =a“P fin = 1) +b@P ) +a*P fn+1), neN,

and
J@B(£)(0) = b(“ ﬂ)f(O) + a(a ﬂ)f(l),
where
b 2 \/(n+1)(n+oe+1)(n+ﬂ+1>("+°‘+ﬁ+”, n e No,
T mtatpi2 @nta+p+D@n+a+p+3)
pleh _ p2—o’ 1, neN,.

Cn+a+pn+a+p+2)
The spectrum of the operator J@B) s [—2, 0] and, for every x € [—1, 1],

J(a,ﬂ)p’(la,ﬂ)(x) =(x — 1)1)(“ B (x), neNp.
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As usual, for every 1 < p < oo, we will denote by £7(Ny) the p-th Lebesgue space
on (Ny, P(Np), 1q), where P(Ny) represents the o -algebra on Ny that consists of all
subsets of Ny and sy is the counting measure on Ng. By £1-°(Ny) we denote the
(1, oo)-Lorentz space on (Ng, P(Np), rq).

The operator J @) is bounded from £7 (Np) into itself, for every 1 < p < oo.
Furthermore, the operator J @/ is selfadjoint on £2(Ng) and —J @A) is a positive
operator in £2(Np). We denote by {Wt(a’ﬁ)};>o = {¢!7“"},_¢ the semigroup of oper-
ators generated by J (A,

We define the («, B)-Fourier transform as follows

FEPfy =3 fpP. f e Mo
n=0

Thus, F@#) is an isometry from ¢2(Np) into L2((—1, 1), ita.p).-
We can write, for every t > 0,

1
WP (F)n) = / 100 F @B (£)(0) p@P) (1) i p(x). 1 € No.

We can see that, for every ¢ > 0,

W[(Ol»ﬂ)(f)(n) — Z f(m)K[(a'ﬂ)(n, m), n € Np,

m=0

where

1
K{*P (. m) = / e p @) () plP (x)djua p(x). n.m e No. (1)
—1

Gasper [6, 14, 15] established the linearisation property for the product of Jacobi
polynomials and his results can be transfered to the polynomials { p,(,a’ﬂ ) }neNg- Then, a
convolution operator can be defined in the { p,(,o“’8 ) }neN, thatis transformed by F @A) in

the pointwise product. For every ¢ > 0, Wt(a’ﬂ ) can be seen as a convolution operator.

Askey ([5]) proved a power weighted transplantation theorem for Jacobi coef-
ficients. Recently, Arenas, Ciaurri and Labarga ([1]) extended Askey’s result by
considering the transplantation operator as a singular integral and weights in the
Muckenhoupt class for (No, P(Np), uq). By taking as inspiration point the study of
Ciaurri, Gillespie, Roncal, Torrea and Varona ([13]) about harmonic analysis operators
associated with the discrete Laplacian, Betancor, Castro, Farifia and Rodriguez-Mesa
([8]) established weighted L”-inequalities for harmonic analysis operators in the dis-
crete ultraspherical setting. They took advantage of the discrete convolution operator
associated with the ultraspherical polynomials in the discrete context ([17]). Jacobi
polynomials reduce to ultraspherical polynomials when o« = . Arenas, Ciaurri and
Labarga ([2-4]) extended the results in [8] to the Jacobi context. They needed to use a
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different procedure from the one employed in [8] for the ultraspherical setting because
they can not use the convolution operator. Also, as in [8, 13], scalar and vector-valued
Calderén-Zygmund theory for singular integrals was a main tool. Maximal opera-
tors and Littlewood-Paley functions defined for the heat semigroup {W,(o”’5 ) }i=0 were
studied in [2] and [4], respectively.

Riesz transforms associated with the discrete Jacobi operator J@#) were consid-
ered in [3].

We now state our results. A real sequence {v,}nen, is said to be a weight when
v, > 0,n € No. If 1 < p < 0o, we say that a weight {v, },en, is in A, (No) when

p—1
1
su —_— E E U < OQ.
O<n£m (m—n+ ])P - < k )

n,meNy

A weight {v, },cN, belongs to the class A1 (Nyp) when

su ka max — < OQ.
0<n<m —n+ 1 n<k<m Vg

n,meNy

For every weight w on Np and 1 < p < oo, we denote by ¢7 (Np, w) the weighted p-
Lebesgue space on (No, P(No), /14) and by £ (N, w) the (1, oo)-weighted Lorentz
space on (No, P(No), tq).

Theorem 1.1 Leta>p > —L p > 2and {t;}jen be a decreasing sequence in (0, 00)
that converges to Q.

(a) The variation operator V, ({ W,(a’ﬂ )},>0) and the oscillation operator
(’)({W,(a’ﬂ)}t>0, {t;}jen) are bounded from £¥ (N, v) into itself, forevery1 < p <
oo and v € A,(Ny), and from £ (No, v) into £1°°(No, v), for every v € A1 (Ny).

(b) The family (MA{W,*PY,=0, 1))/P},=0 is uniformly bounded from £P (N, v)
into itself, for every 1 < p < oo andv € A,(Np), and from ¢'(Ny, v) into
21 (N, v), for every v € A1(Np).

Results in Theorem 1.1 had not been established for the semigroups generated by
the discrete Laplacian and the ultraspherical operators. Now the results in the ultras-
pherical setting can be deduced from Theorem 1.1 when o = . Moreover, it will be
explained in Sect. 2 that our procedure in the proof of Theorem 1.1 allows us to prove
the corresponding results for the semigroup generated by the discrete Laplacian.
Calder6n-Zygmund theory for vector-valued singular integrals ([31, 32]) will be a
main tool in our proof of Theorem 1.1. We can not use the transplantation theorem as in
[4] because, in contrast with the Littlewood-Paley functions, variation and oscillation
operators are not related with Hilbert norms. We need to refine the arguments developed
in [2] by using asymptotics for Jacobi polynomials and Bessel functions.
We denote by Co(N) the space of complex sequences f such that f(n) = 0, whenever

n > ng, for certain ng € N. Forevery f € Co(N), it is clear that lim+ Wt(a’ﬁ)(f)(n) =
t—0
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f(n), n € Ny. Since Cyp(N) is a dense subspace of £7(Ny, v), forevery 1 < p < oo
and v € A,(Np), in virtue of Theorem 1.1 we can immediately deduce the following
convergence property.

Corollary 1.1 Leta > B > —% and v € A,(No). Then, for every f € £P(No, v), it
holds that

lim WP (£)(n) = f(n), n e No.
t—0t

Note that Theorem 1.1 allows us to conclude the existence of the limit lim,_, o+ W,(a’ﬂ )
(f)(n), forevery n € Ny and f € £7(Np, v), with1 < p < ooand v € A,(Np).

Theorem 1.2 Leta, § > —%. Assume that{a;} jey is a p-lacunary sequence in (0, 00)
with p > land {b;} ez is a bounded sequence of real numbers. The maximal operator
{{:J’:}}jz)*({W,(a’ﬂ)},>o) is bounded from £P (N, w) into itself, for every 1 < p < 00

and w € A,(No), and from €' (No, w) into £1:°(No, w), for every w € A1 (No).

Ben Salem ([33]) solved an initial value problem associated with a fractional diffusion
equation involving fractional powers of the Jacobi operator, (J*#)¥ and Caputo
fractional derivatives in time. By using subordination, from Theorems 1.1 and 1.2 we

can deduce the corresponding results when {Wt(a”’3 )} +~0 1s replaced by the semigroup
of operators generated by (J@#)7 y > 0.

This paper is devoted to prove Theorems 1.1 and 1.2. In Sect.2 we will prove
Theorem 1.1 and in Section 3 we will prove Theorem 1.2. Throughout this paper, we
will always denote by C and c positive constants that can change in each occurrence.

2 Proof of Theorem 1.1

2.1 Proof of Theorem 1.1 for Vp({Wia’ﬁ)}bo)

First, we shall prove that V, ({W,(O“’3 ) }i=0) is bounded from €2 (Np) into itself.
We have that J @A) p{*P) (x) = (x — ) p'*P (x), x € (—1, 1) and n € Ny. Hence,
J(""ﬂ)p,ga’ﬂ)(l) =0, n € Ny. We consider the operator J@P) defined by

TP (f)m) = ﬁﬂ“’”(p.(“ﬁ)(l)f)(m, n € No.
(1)

and the weight v@8) = {(p\®P) (1))2},cn,.
Let ¢ > 0. We define the operator Wt(a’ﬁ) on £7 (Np, v(""ﬁ)), 1 <p<ooby

WP () = WP (p@P 1) f)m), n e No.

P 1y
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We can write, for every f € £7(Ny, v@#), 1 < p < o0,

WD =37 FmRED o m) (P ()%, 0 € N,

m=0
where

(@.8)
_ K ,m
Kf“’ﬂ) (. m) = ¢ (n,m)

= , n,m € Np.
P () pleP 1y

Since ¢ > B > —1/2, see [15, Theorem 1], according to [2, Theorem 3.2], we have
that K,(“’ﬁ) (n, m) > 0 and therefore kf“’ﬁ) (n,m) >0,n,m e N.

The family {VT/S(O‘”3 )}s>0 is the semigroup of operators generated by J@B) in
¢P(No, v@P), 1 < p<oo. Since J@B p@P (1) = 0, n e Ny, we deduce that
WP (1)(n) = 1, n € Ny, that is, the semigroup { W,*?},- ¢ is Markovian. Further-
more, by using Jensen inequality we deduce that

WP NP < Y KD o, m)(pleP (1)1 f )P, n e Noand 1 > 0,

m=0

forevery 1 < p < oo. Since IZ,(a’ﬁ)(n, m) = Kt(a’ﬁ)(m, n),n, m € Ny, it follows that
Wt(a”s) is a contraction in £7 (N, v(""ﬂ)), for every 1 < p < oo, and it is selfadjoint
on £2(Ny, v@#)).

We have proved that {Wl(a’ﬁ ) }¢>0 1s adiffusion semigroup in the Stein’s sense ([34]).
According to [23, Corollary 4.5] (see also [19, Theorem 3.3]) we have that the p-
variation operator V, ({W,(a'ﬁ )}t>0) is bounded from £7(Ny, v@#)) into itself, for
every 1 < p < oo. By taking into account that

VAW P o) (f)(n) = VAW P ) (p@P () (f)(n), n €N,

pu P (1)

we deduce that V, ({W,*"},.¢) is bounded from £2(Ny) into itself.
Now we shall use Calder6n-Zygmund theory for vector-valued singular integrals
(see [8, Theorem 2.1]). If g is a complex-valued function defined on (0, co), we define

n_1 1/p
g, = sup D g =gl |,
O<ty,<tp,_1<--<t] i—1
j_
neN

and the linear space E, that consists of all those g : (0, c0) — Csuchthat ||g], < 0.
It is clear that ||g||, = 0 if, and only if, g is constant. By identifying those functions
that differ in a constant, || - ||, isanormin E, and (E,, || - ||,,) is a Banach space.
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We can write

V(WP o) () = WP (Hml,, neNo.

Il - I, is not a Hilbert norm. Then, a transplantation theorem can not be applied, in
contrast with the case of Littlewood-Paley functions considered in [4].
We are going to see that

1K P (0, m)||,, <

, n,meNy, n#m, ()

|n —m|
and

—1 3
—In | , |n—m| > 2|n—I|, m <n,l< —m.
ln —m|? 2 2

3)

IK“P (n,my— kP @, my|, < C

First, we prove (2). According to [2, Lemma 5.1], we have that

K,(a’ﬁ)(n, m) = wff"ﬁ)w

(aﬁ)(n+a+ﬁ+1)(m+a+ﬁ+1) 1 (a,B)
b H, ™" (n, m)
2m—m)y(n+m+a+p+1) m+oa+p+1
1
_ mH,(a’ﬁ)(m,n)), n,meN, n#mandt >0,
where, fork,l e N, k> 1andt > 0,

1
Pk, 1) = / e IO Pl 0 PP () (1 — ) (1 4 0P+ dx.
-1

Since w,(la’ﬂ) ~ /n,n € N,inorder to prove (2) whenn, m € N, n # m, itis sufficient
to see that
(a,B) ¢
tH n,m < , n,meN, n#£m.

Letn,m € N, n # m. We decompose
HP (0, m) = BGD om) + HGP (n.m), 1> 0,

where

1
Ht(oiﬁﬂ)(ns m) :[ e—t(l—x)Prifi'{‘l,ﬂ"l‘])(x)P’glasﬂ)(x)(l _ x)(l"‘rl(l +x)ﬁ+l dx, t>0.
’ 0
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Suppose that g : (0, co) — C is a differentiable function. We can write

1 1/p
g, = sup > 18(t)) — gt
O<ty<ty_1<--<ti i—1
neN /=
n—1 7 P 1/p
< sup Zf g'(t) dt
O<ty<th_1<---<tq —1 |Ytj+1
neN J
n—1 tj e¢]
/ /
< swp Y / ¢ di| < / ') dr. 4
O<ty<t,_1<---<tq i—1 |V L+ 0
]_
neN

We will use (4) several times in the sequel.
According to [35, (7.32.6)], we have that

C
PP ()] < —=(1 =)™ VA1 4 x) P14 x e (=1, 1) andk e N. (5)
Vk
By using (4) and (5), we get

dt

C oo 0 -
< e U —x)+ D dxdt <
vnm/() /—1

On the other hand, since P* P+ (x) = 1, x € (—1, 1), it follows that

| d
1eHSP (m)l, 5/0 ‘—(rHt{‘;’m(n,m))‘dz

(6)

nm

1
HSP (1,m) = /O eI P ()1 — x)*H 1+ ) dx, >0,

Then, (5) leads to

C [eS] 1
B 1 mll, < 7/ [ =+ 0 = o 0P dxar
' mJo Jo

<—.
=T
In [35, Theorem 8.21.12], it was established that
AN AN JTd+a+1) [ 6 \"?
(sm E) (cos 5) P, (cos®) =y, * ) (sin9> Jo(v10)
012001737, $<0<n-e
bl l J— J— 9
{«9‘”20(10‘), 0<6<, LeN,
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where y; = [+ %ﬁ“ Here, ¢ and € are fixed positive numbers. By [24, (5.16.1)] we

have that

%, O0O<z<l,

Ja(Z)SC{Z_l/z 2> 1 (8)
We define
. ” JTU+a+1) [ 0\ o\ o \"?
Fl( ’ﬂ)(O) = Pl( ’ﬂ)(cose) -y “% <51n 5) (cos 5) (w) Jo(710),

ee(o f) and [ € N
'3 :

Assume now that n > 1. By performing the change of variables x = cos 8, we can
write

g

2 .
H[(Df'ﬂ)(n, m) = pa+p+3 / eft(lfcme)Pn(o_[Jlrl’ﬂH)(cosG)P,;""ﬁ)(cose)
' 0

g\ 20t 9\ 26+3
X smi COSE do

L4 2043 28+3
2 0 0
— 2a+ﬁ+3 |:/ e—t(l—cos G)Frfoi-lkl,ﬁ+l)(0)Fr(na,ﬁ)(9) (sin 5) <COS 5) de
0

JTmta+l) (3 LA+l o \'"*
« t(1 cosG)F(a+ ,B+1) 0 J 0
+ Y T+ 1) /(; e n—1 ) sing o (Ym0)

0 a+3 0 B+3
X (sin 5) <COS E) do

o T(n+w T icos o \"?
o—11 1 TQ) t(1=cos0) p(@.p) gy [ J 0
Vn l"(n) 0 € m ( ) (sin@) “ I(Vn )

g\ *? 9\ A2
X smg cosi do

ynf"‘*ly,;"‘r(n +a)l(m+a+1)
2 (m)I'(m + 1)

+

ol

0 [%
e—r(l—cos@)g‘]a_H (Vne)Ja(yme) sin E cos 5 d9j|

H,(‘oi‘g) (n,m), t>0.

M“o\

1

J

Suppose that m > n. By (7) we get that
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1

19 (¢ HS5R (1, m))| < Cn® e / " e (1 + 167027 do
o 0

n

e (1 + 162697 db

el

1 Cno 32

[SE] s

+ C(nm)*mﬁ (1 416203 do, 1> 0.

Then,

1

1
/ 10, H P (n, m)\dt < Cn““m“/ 02+ 4o 4 Cn‘)‘“m*ﬂ/1 093 4
A 1 ) 1

+ C(nm)—3/2ﬁ2 0 do

n

C
< —-
- (nm)3/2

Since y; ~ k, k € N, (7) and (8) lead to

1
19 (nm))| < Cn® e / " e (1 4 1926745 dg
o 0

1

+ Cn¥tly=1/2 /f e~ (1 4 161693 do

m
T

+ Cn_3/2m_1/2/;2 e~ (1 416262 do, 1> 0.

n

It follows that

o0 i :
f 10:(t H' %D (n, m))\dt < cn““m“/ 020+3 gg 4 Cn“+1m_1/2/1 0%+ dp
0 o 0 L

m
ps

+Crf3/2nr1/2/7 do
1

C
= 322

Similarly, we obtain that

> @p) C
| S momiar <
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Thus, we conclude that

S @h) ¢
,21/0 10,1 H, 15 (n, m) dt <~

We are going to see that

o0 C
/0 [0, (tZ{ (n, m))|dt < ﬁ,

where

s

2 0 0
Z%n, m) = / e 11=cos0)g g 1 (120) Jo (Ym0) sin 208 de, t>0.
0

Again, since y; ~ k, k € N, by using (8) we get

n

7 , 6 6
o (ag(n, m) —t ﬁ T et 1=¢00g 1 (ya0) S (ym) sin 2052 d9>

1
n 0 (%
B (t/() e_t(]_cosg)éla_,_l(yne)Ja(ym@)sinEcosi d9>

1 1
<c (na+1ma/m 012043 yg ekl —1/2 /1" o021 ga+5/2 de), fs0.
0 I

Then,
* % —t(1—cos ) .0 0
/ o | tZF(n,m) — tﬁ e €S0 Ty 1 (Yn0) Iy (YmB) sin 3 cos 3 do )| dt
0 w
1 1
<C (not+lma /’” g2+ 4p +na+lm71/2/" gt+1/2 d9>
< A '
na+lmo{ na+lm—l/2 1 1 C
= C( m2e+2 + no+3/2 ) =C (Z + /—nm> = I
According to [24, (5.11.6)], we have that
2 am 7
Jo@ = [ =cos (2= 25 = D) g2, 220, ©)
Tz 2 4
where |gq(2)| < Cz73/2, z> 1.
We define,

T

2 0 0
0%(n,m) = /1 e 11=¢0s0)g g 1 (100) Jo (Ymb) sin 5055 do, t>0.
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We can write

1 3 1 (a+ D T am T
0¥ (n,m) = T /:', e~1(1=c0s0) g (Vn9 I S Z) cos (Vm9 5 Z)

X sin 6 df

1 7 —t(1—cos ) x4+ w .
i M/l ¢ cos (b = ———— = 7 | 8a(ym®) VO sin 0 do

1 3 P o T .
+ m/;L e 1a Cosg)ga_,_l(y,ﬁ) cos (yme - — = Z) VOsin0 do

2

1 2 1 .
5 fl e H1=c0sD g 1 (vn0) e (Ym0 sin 6 dO

J’_

4
= Z 0 i(n,m), 1>0.
j=1

By using (9), we get

4 e s oI

"‘ dt <C L " e dpdr
Zz A 10:Qy j(n,m)ldt = C\ ~77 375 + 37317 o
I: n

C © 3 0do
+—(nm)3/2‘/(; /rll e 6—3dt

<C<ﬁ+ ! >< ¢
- m32 " Joum ) T Snm’

Our next objective is to see that

o o C
/(; |3;(tQt,1(n,m))|dt =< «/ﬁ

A straightforward manipulation leads to

2 cos (yné — w — %) cos (yme — % — %) = 2sin (y»,0 — 1) cos (ymb —n)
= sin((yn + ym)0 — 2n) +sin ((yn — ym)0)
= cos(2n)(sin((n + m)@)(cos(pf) — 1) + sin((n + m)O) + sin(ph) cos((n + m)6))
— sin(2n)(cos((n + m)0)(cos(ph) — 1) + cos((n + m)8)— sin(ph) sin((n + m)0))
+sin((n — m)0), (10)

where n = 4t + Zandp =+ + 1.
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We consider

% —t(1—cos @) _: .
Ri(n,m) =t e sin((n — m)0) sin6 d6, > 0.

n

We shall prove that
o
/ |0 R (n, m)|dt < C. (11
0

By partial integration we obtain that

g

Ri(n,m) = —t ﬁ7 e_’(l_cose);ie <M) sinf dé
1 n—m

= t(Sum(t, w/2) = Spm(t, 1/n) = Re(n,m)), >0,
where

—t(1—cos ) cos((n —m)b) gi
m-—n

Spm(t.0) =e ne, 6c (o, %) and t > 0,
and

T

3 —m)8
R, (1, m) = ﬁz ot1=eos) S = mO) ooy L coso) db. 1> 0.
1 m —n

We have that

C o0
/ (14 Netdr <
—

/ |0¢ (1 Sp,m (¢, /2)]|dt <
0

m m-—n

and

00 c (™ IV —r(1—cos ! 1
/ 19, [£Sp.m (£, 1/m)]|dt < / <1+t<1—cos —))e (1 COS”)sin —dt
0 m-—nJo n n

0 e
5L/ eidr <o
n(m —n) Jo m—n

We also get

00 c 0© % c 7 de
/ 10, (1R, (. m))|dt < / /2 e (162 41 4 126%) d6 di < /2 av
0 —nJjo JI m—nJ1

m 62
n

=C .
m-—n

We conclude that

§C7

m—n

o0
/ [0/ R;(n, m)|dt < C
0
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provided that m > 2n.
By proceeding in a similar way we can see that
00 3
/ ‘a, [z/l e~ 17¢080) i 6 (cos2n)[sin((n + m)B) (cos(pf) — 1) + sin((n + m)6)
0 m
+ sin(p6) cos((n + m)0)] — sin(2n)[cos((n + m)O)(cos(ph) — 1)

+ cos((n + m)6)— sin(pf) sin((n + m)@)]) d@] ‘dt <C.

Note that the last inequality holds for every n, m € N.
Suppose that 1 < m —n < n. We decompose R;(n, m) as follows

1
Ri(n,m) = zﬁm " 10080 Gin(n — m)0) sin 6 dO

3
+i e 117080 gin((n — m)6) sin 6 do

= R!(n,m) + R*(n,m), t>0.

We get

o0 [} ﬁ 2
/ 18R} (n, m)|dt < c/ ﬁ e~ (1 4 16%)(m — n)6? dodt
0 0 w

1
<C(m—n) ﬁf 6 < C.
On the other hand, by proceeding as in the proof of (11), we can see that
o
/ 10, R?(n, m)|dt < C.
0
We conclude that
[e¢)
/ |0;R;(n,m)|dt < C.
0
By combining all above estimates we prove that
C
||th(a’ﬂ)(n,m)||p < ﬁ, n,meN, m > n.

Also, the same arguments allow us to obtain that

1=, myll, < n.meN, n>m.

C
Jnm’
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Thus, we have proved that

1K“P m))p < n,meN, m#n.

C
In—m|’

Let now m € N. According to [2, Lemma 5.1], we have that

t
Kt(a”B)(O, m) = w(()a’ﬂ)wf,‘l’"ﬂ)%Hl(a’ﬁ)(m), t >0,

where

1
Hf“’ﬁ>(m):/ et =0 peH LAY () — et (1 4 x)fH dx, 1> 0.
—1

By using (5), we get
(@.p) C (' _a-n @yl Byl

[0 [tH, " (m)]| < —= e (A=)t +DA—=x)27a(1+x)274 dx, t>0.
Jm )

Then, since w,ﬁa’ﬂ) ~ /k, k € N, we obtain
(@B) °° @) c

1K 0, ml, < / e my)iar < -
0

Similarly, we get

a

1K P (m, 0)]|, < —.

3

Therefore, the proof of (2) is finished.
By proceeding as in [2, pp. 13—14], we can see that in order to prove (3), it is
sufficient to establish that

c
KSR 4+ 1, m) = K, mlly < ——,
In —m|

(12)
foreveryn,m e Nyon #m,m/2 <n <3m/2.

Suppose thatn,m € No,n #m,m/2 <n <3m/2. Then,n #0 #m and m =2
when n = 1. Assume also that (n, m) # (1, 2).

By using (4) and the arguments in [2, pp. 18-19] we can deduce that (12) holds
once we will prove that

o0
/ 19 DD (n, m)|dt < (13)
0

C
- Jnm |n —m|?’
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where
1
D (n,m) = / ¢~10=0 petLd) () PP (x) (1 — )+ (1 4+ )P dx, > 0.
—1

According to [2, Lemma 5.1 (a)], we get

m+a+B+2)m+a+B+1)

D(a’ﬂ)(n m) =
! ’ 2mn+a+B+2)—mm+a+B+1)

" ;I(a+2,ﬂ+1,a,ﬂ,a+2,ﬁ+1)(n —1,m)
m+a+p+1" ’
3 ;I(a+1,ﬁ,a+1,ﬁ+l,a+2,ﬂ+1)(n m—1)
n+a+p+2" ’
1
b e “)’ 0

where, as in [2],

1
[P D gy = / eI PP () PP () (1 — )¢ (1 + 00 dx,
-1
k,l e Nandr > 0.
We have that

nm+a+pB+2)—mm+a+B+)=m—mm+m+a+p+1)+n.
Then,

n—mm+m+aoa+p+1)+n n>m
m—-—n)n+m+a+p+1)—n, n<m

- m—mymn+m+a+p+1)+n n>m
“ | m—n)y(m+aoa+p+1), n<m

In(n+a+ﬂ+2)—m(m+0l+,3+1)|={

It follows that, for k = n, m,

k+a+p+2 - C
nn+a+B+2) —mm+a+p+1D| = [n—m|

Then,

DEP (1, m) = rimtlt(a+2,ﬂ+l,a,ﬁ,ot+2,/3+l)(n Cm)
_ 2 tlt(a+l,ﬁ,a+1,/3+l,a+2,/3+1)(n’ m—1)+ rimIt(ot+1,ﬁ,a+l,ﬁ+1,a+l,ﬁ+l)(n’ m—1,

n,m (14)

where t > 0 and |ri] | < o i =1,2.3.

We have the following properties
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(a) Suppose that n = m + k, k € N. It follows that

m+a+B+3)n—-1)—-—mm+a+p+1)=(kta+B+3)m+k—1)
+m+a+B+3)m+k—1D)—mm+a+pB+1)

> km,
and

nmn+a+p+2)—(m—-1)m+a+p+2)=Ck+m)k+m+aoa+p+2)
—(m—-1m+a+pB+2)>km,

(b) Suppose thatm = n + k, k € N. We get

m+a+p+3n—1)—mm+a+B+)=m+a+B+3)(n—1)
—m+km+k+a+p+1)
=n—(e+pB+3)—k@n+k+a+B+1)

< _kna
and

nm+a+p+2)—(m—-—1)m+a+B+2)=nn+ao+B+2)
—(n+k—Dn+k+a+p+2)
=-—nk—(k—-1)(n+k+a+p+2) < —kn.

By using again [2, Lemma 5.1 (a)], since n ~ m, (a) y (b) lead to

18, D (n, m)| < .
n— ml

b CARPFLARLB L BID () LBt B2k () g

(tz[lIt(a+3.ﬂ+2,a,,e,a+4,ﬂ+2) n—2,m)|

i t[|1t(a+3,[3+2,a$ﬂ,a+3,ﬂ+2)(n —2.m)| + |I[(ot+2,/3+l,a+l,ﬂ+l,a+3,f5+2)(n —1,m—1)]
n |It(o(+l,ﬂ,ct+2,/3+2,ot+3,ﬁ+2)(n’ m—2)| + |][(ot+2,l3+l,ot+l,/3+l.ot+4,/3+l)(n —1,m=1)]
+ |It(ot+2,ﬁ+l,a+l,ﬂ+l,a+3,ﬂ+1)(n —1,m—D[]

+ |It(ot+2,/3+1,ot+l,/3+l,ot+2,/3+2)(n —1,m—1)]
+ |1[(a+2,ﬁ+1,a+1,ﬂ+l,a+3-ﬂ+1)(n —1,m—1)]

n |It(a+1,ﬂ,a+2,ﬁ+2,a+2,ﬁ+2)(n7 m—2) + lIt(a+2,ﬁ+1,a+1,ﬁ+1,a+2,ﬂ+1)(n —Lm— 1)‘).
By using (7) and (8) and by proceeding as in the first part of the proof we can see that

= p@h) ¢
oD, , dt < —.
/0 0Dyt < e — P
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On the other hand, as in (14), we obtain

D[(ot,ﬂ)(l’ 2) = rllﬁztlt(aJrZ,ﬂJrl,a,ﬂ,a+2,ﬂ+l)(0’ 2)

_ r12,2tIt(ctJrl,ﬂ,a+l,ﬁ+l,a+2,ﬁ+l)(1’ 1)+ r?,zIz(aﬂ’ﬁ’aﬂ’ﬁﬂ’D(H’ﬂﬂ)(lv 1,

t >0,

where |r]j ,| < C,j=1,2,3.Then, by using [2, Lemma 5.1 (a) y (b)] and proceeding
as above, we conclude that

o0
/ 9, DP (1, 2)1dr < C.
0

Thus (3) is proved.
According to [8, Theorem 2.1], we conclude that the operator V,, ({ W,(a’ﬁ ) }¢+=0) can
be extended from ¢7 (Ng, w) N £2(Np) to £7 (N, w) as a bounded operator

(i) from £7(Np, w) into itself, forevery 1 < p < coand w € A, (Np),
(ii) from ¢! (Np, w) into £-°°(N, w), for every w € A1 (Np).

2.2 Proof of Theorem (1.1) for jump operators

According to [21, p. 6712], we have that

WAAWEP )0 DNV < 251, (WP (f), A > 0.

Therefore, properties for A-jump operators stated in Theorem (1.1) are consequences
of the corresponding ones for the variation operators. O

Now we will make a comment about the endpoint jump inequalities, that is, when
p=2.

Remark 2.1 Recall that {Vf/,(ol"3 )}z>0 (see Sect.2.1) is a diffusion semigroup on
£P (Np, (p,(la’ﬁ)(l))zud), where g is the counting measure in Ny. By using [27,
Theorem 1.5], we deduce that the family {k(A({W,(a”S)},>O, N2, 0 is uniformly
bounded from €7 (No, (p.*P(1))2114) into itself, for every 1 < p < oco. Then, the
family {A(A({Wt(a’ﬂ) Va0, A2 )20 is uniformly bounded from £2(Np) into itself.
Since {Wt(“’ﬂ ) }+=0 is not Markovian, we can not apply [27, Theorem 1.5] to the family
AAW AP0, M)1/2)120. Tn order to see that {A(A({W P },20, 2))1/2}20 is
uniformly bounded from ¢”(Np) into itself, | < p < oo and p # 2, we need to
introduce new ideas. This problem will be considered in a forthcoming paper.

2.3 Proof of Theorem (1.1) for oscillation operators

By keeping the notation from subsection 2.1, for every n € Ny, we have that



92 Page 20 of 32 J.J. Betancor, M. De Le6n-Contreras

~ (a 1 o o
OUW, P20, 11} je) () () = W(O({W’( Y0, 1) ;e 0P () ),
Pn

According to [23, p. 20] (see also [19, Theorem 3.3]), the oscillation operator
O({Wt(a’ﬂ)},>0, {tj} jen) is bounded from £2(Np, v@P)) into itself. Then, the operator

OUW,“P}1~0, {1} jenv) is bounded from £2(No) into itself.
Suppose that g is a complex-valued function defined in (0, oo0). We defime

1/2
00 /

lglloge =Y. sup  lg(e) — glej+n)I?

=1 ljt1=€j41<€j=I;

By identifying each pair of functions g; and g such that g; — g» is a constant,
I lo;} e 1s @ norm in th space Fo;);.y) Of all complex functions g defined on
(0, o0) such that ||g||(9({tj}jeN) < 00.

Thus, (F@({,_/}jeN), I| - ||(9({,j}j€N)) is a Banach space.

If g is a complex function which is differentiable in (0, 0o), we have that

€j
f g'(s)ds
€j+1

1/2
oo 2 /

lglloq;) e = Z sup

Tjy1=€j4+1<€j=I;

j=1
1/2
(X s ([T leo)as
. ti <€; <€;i<t; .
j=1 =S = €j+1
o0
< [ lg)as
0
From the established estimates in subsection 2.1, we deduce that
(@.B) ¢
1K, m)logyym) < ———— nom € No, n # m,
: |n —m|
and
”K(asﬂ)(n m)_K(aﬂ)(l m)” <C ‘}’l—” |n—m\>2| _ll ﬂ<n l<37m
t ) t s O({tj)_/EN) = |n_m|23 n ) 5 = L= ) .

By using [8, Theorem 1.1], we conclude that the oscillation operator (’)({VT/}(O[’/3 )},>0,
{tj} jen) can be extended from £7 (Ng, w) N¢%(Np) to £7 (Np, w) as a bounded operator

(i) from £7(No, w) into itself, forevery 1 < p < coand w € A,(Np),
(i) from £'(Np, w) into £1:°°(Ny, w), for every w € A1 (Np).
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3 Proof of Theorem 1.2

bjlje )
3.1 The operators S{a’,’ Z N({W§a Pes0)

In this section we shall prove the following result.

Theorem 3.1 Let o, B > —1/2. Assume that {a;}jcz is a p-lacunary sequence in
(0 o0) with p > 1 and {b;} ez is a bounded sequence of real numbers. For every

= (N1, Ny) € 72, Ny < N, the operator S{a’}}’EZ N({W,<a”3)}t>o) is bounded from
EP(N(), w) into itself, for every 1 < p < oo and w € A,(Ny), and from 21Ny, w)

into £1°(Ny, w), for every w € A1(Ng). Furthermore, for every 1 < p < oo and
w e Ap(NO),

glbiliez (.B)
s {w, o0,
N=(N1u/I\)/2)eZZ H faj) ez >0 o g,y e 0.0
Ni<N>

and, for every w € A1 (Np),

{bj}jez (@p)
su Sty AW hs0)
N g e N0 gy .
Ni<N;

Proof Let N = (N1, N,) € 72 with N; < Na. By proceeding as in the proof of [30,
Theorem 2.1, p. 627] and by using the («, B)-Fourier transform we can see that

s

where C > 0 does not depend on N.
We have that, for every f € £>(Np),

(bjljez
laj}jez.N

(w P }t>o)(f)H <Clflaqygy f€®o),
€2(Ng)

{b }jez
{aj}/EZ

NAWEP o (Hm) = Y Fm) QY (n.m), n e No,

mEN()

where

N
QP nomy =" bj(KP (n.m) — K& P, my), n,m e No.

aj+1
J=N1

According to (4), we obtain

oo
QP ol < bjlemcey [ 10K e, o € No.
0
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In the proof of (2) we established that

/ 19, K %P (n, m)|dt < e € No, n # m.
0

In
Then

1P (n, m)| < n,meNy, n#m, (15)

C
In —m|’
where C > 0 does not depend on N.
Also, by proceeding as in the proof of (3), we can see that
In —1]

109 (n, m) — Q%P (1, m)| < Cor I ml =2 =1l % <ni<2

being C independent of N.
The proof can be finished by using [8, Theorem 2.1]. O

For every N = (N1, N2) € 72 with N| < N,, we define

b} S0
St/ N o VP () = S N0 (F iy ) (), 1€ No,
and

{bj}; {b }
St e g1op O =00 () = 83,08 w2 0) ()
{b ¥ ,
- S{af}}if,zv,zoc({wt“ DYoo) ().
jes i bjljez (@B)
Corollary 3.1 Properties in Theorem 3.1 hold for S{aj}'}]j'gez,N,loc({Wt Yi=0) and

(biljez @5)
{a_;};EZ,N,glob({Wt }>0)-

Proof Let N € Z. According to (15), we have that

(b)) ez @) = < 1f )
ISty e .gtob AW =00 (D)) < € ;X_:OU(M)H > = — | nelo

m=n+1

where C > 0 does not depend on N. The first term in the right hand side does not
appear when n = 0. By using £”-boundedness properties of discrete Hardy operators
we can deduce that the corresponding properties for S {{ a’ }’ j N.gl o Wt(a’ﬁ ) }¢=0). The
proof can be finished by using Theorem 3.1. O

3.2 Some auxiliary results

/EZ

a; } o *({W,(a’ﬁ)},>o),we need the following

In order to prove a Cotlar inequality for S
results.
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Proposition 3.1 Ler o, § > —1/2. Then,

C
sup [, K P (n,m)| <« ——, nymeNg, n#m.
In—ml

t>0

Proof We will use [2, Lemma 5.1] several times. Let n,m € N, n,m > 3, n # m.
According to [2, Lemma 5.1 (a)], we get
€

4o+ p+Dmta+p+1) ( 1
2 —m)Y(n+m+a+B+1) m+a+p+1

XIZ(OH'I,ﬁ+1~“’ﬂ'“+l’ﬁ+l)(n —1,m)

[P @Bl

L j@Batlprlatlpen 1)>
n+a+p+17" ' '
(ii)
m+a+B+2)m+a+pB+1)
2(n—m)n+m+a+p+1)—(@+B+2)

« %I(a+2,ﬂ+2,a,ﬂ,a+2,ﬂ+2)(n —2,m)
m+oa+pB+1"7 '
t (a+1,84+1,a+1,84+1,042,8+2)
RETTY X b=
1 LA+1,a+1,+1,a+1,8+2
e L A AR (B RUE
1 (a+1,8+1,a+1,8+1,a+2,+1)
Ty o)

I[(a—b—l,ﬂ+l,a,ﬂ,a+1,ﬂ+l)(n —Lm)=

(iii)

Bl Bl atl B+l () (mnta+p+Dm+a+p+2)
! ’ 2A{n=—m)n+m+a+p+D+(@+p+2)

t 1LB+1,a+1,B+1,a42,642
<m+a+ﬂ+21t(a+ BLatlprlat2ptd oy
1 1LA+1,a+1,p+1,a+1,p+2
_m+ot+,3+211(a+ prlarl Prlet P g — 1 m — 1)
1 LA+1,a+1,4+1,a42,6+1
Ay LA AR R R
B ! (@ Bo+2, 842,042, +2) (n.m—2)
n+ta+p+1" ' '
We apply again [2, Lemma 5.1 (a)] to each of the four terms in the right hand side in
(i1) and (iii). We obtain that
o,B.0.p.a,8) 3 (aj1,bj1,Aj1,Bj1,nj1,¥j1)
[PPSR gy = 133 ¢y my g, O I @y gy
Jjeh
(aj2,bj2,Aj2,Bj2,nj2,¥j2)
+Z2ZCj2(”»m)I;] T U2, kj2)
jeh
(aj3,bj3,A;3.Bj3,13,7j3)
I G A (F N SR R

JE
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Here, /i =J3={neN: 1<n<8tand J, ={n e N: 1 <n <20}, being

lcji(n,m)| < e ‘3,]6.],,1—1 2,3.

Ujikji) e {((LLk) : LkeNoy,n—=3 <l <n m-=3=<k=<m}jel,
i=1,2,3.

nji=a+3,yj1=B+3,j€Jr

ni3=a+2,y3=+2,j€s.

(mj2,vj2) €f{la+2,+3), (@+3,8+2)},j € o
aj,'—I-Aji=20l+3,bji+Bji=2,13+3,j€.],',i=1,2,3.

According to (5), we obtain
(@p.a.p.e.p) 9 N T
[0:1; (n,m)| < PRE t e (1 —x)(14+x)dx
—mj -1

1 1 1
+t/ e =91 + x) dx —i—t/ e =9 (1 — %) dx +/ e~ 11—0) dx)
-1 -1 -1

C 2t 2t 1 2t 1 2t
< —3</ e "u du—i—/ e_”du—i-—/ e "u du—i——/ e ! du)
|n —m| 0 0 t Jo t Jo

c
<———. 1>0.
In —m|

When n,m € No,n < 3 or m < 3, we can proceed in a similar way by using [2,
Lemma 5.1 (a), (b) and (¢)]. O

We say that a positive sequence is (A, A%)-lacunary with A > 1 when A < ajl—jl < A2,
j €Z.

Proposition 3.2 Suppose that {a;}jcz is a (A, A2)-lacunary sequence and {vj}jez is
a bounded complex sequence. Then,

C
(i) Zv,(ld‘xﬁ)(n,m)—Kgfjvm(n,m)) <—, kMeZ k<M nme

aj+1

5

No,

-1 C

(i) | vj(Kc({j_‘f)(n,m)— K@ f”(n m))| < ~&k=+D ohenk, M, 1 € Z,
j=—M ﬁ

k>1>—-M,C>0andn,m € Ny, |n —m| > C,/a.

Proof (i) Let j € Z. By using the mean value theorem, we obtain

aj+1

KB m) = KPP ,m) = (@jr = apd P (n,m)] =,
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for a certain c¢; € (a;, aj11). According to (1), since w,((a’ﬂ) ~ Jk+ 1,k € Ny, we
get

1
(a,8) —t(1—x) 1 -
0, K , <C dx
|0; K; (n,m)| < /1 T P

1
<C <e’ +/ e’zﬁdz)
0

c
<Cl '+t <—, nnmeNyandt > 0.

372
Then,
laj+1 —ajl
KB 0,m) — K (n,m)| < C%
J
A —1
<C , n,méeNy
aj

It follows that, for every k, M € Z,k < M, n,m € Ny,

M Mo c M a
Y v KEP @)~ KD momy)| <€y —— < =3 [%
=k

(ii) Let j € Z. By using Proposition 3.1 and again the mean value theorem, we obtain

@.B) — K@ laj+1 —ajl aj
KB (n,m) (nm) = SR <ot

n,m € Np.

Then,

-1

Yo v KR m) — KD (n,my)| < € Z m|3 <C Z 3/2

——

provided that k, M,l € Z, k > | > —M,n,m € Ny, [n —m| > C./a,
with C > 0. O

By M we denote the centered Hardy-Littlewood maximal function, given by

1
M) =sup——————— 3" |f(m)|, neNp.

r>0 Md(BN()(n r)) me By (n,7)
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Here, By (n,r) ={m e No: [m—n| <r},n € Npandr > 0.Forevery 1 < g < o0
we consider M., defined by

1
My (f) = (M(1f19)"".
We now prove a Cotlar type inequality for the local maximal operator

{bj}je ,
S{a;}je;*,M,loc({Wt(a ﬁ)}t>0)(f) (i’l)
{bj}jez

= sup [Sih
N:(Nl,Nz) { _/}/EZ;
N1,N2€Z, —M<N;<N><M

N AW 20) (f Xy 23 ()

for every M € N.

Proposition 3.3 Suppose that {a;}jcz is a (A, A2)-lacunary sequence (vj}jez is a
bounded complex sequence and 1 < q < oo. Then, there exists C > 0 such that, for
every M € N,

{bjtje {bjlje .
S ot toc (WP 00 () = C(M% e W) ()

)

Proof In order to prove this property we can proceed adapting to our context the
proof of [36, Theorem 3.11]. The properties that we need have been established in
Proposition 3.2, (15), (16) and Theorem 3.1. We now sketch the proof.

Let M € N. For every N = (N1, N2) with —M < N; < N> < M, we can write

{bjlje ,
St N AW 0)(F Xy 3 ()

{bj}je B)
= St o Y0 (g ) )

{bj}jez (a,B)
- S{aj-};;,(N2+1,M)({Wfa }t>0)(fX%§m§%)(n)’ n € Np.

We are going to see that there exists C > 0 such that

{b} Z (. B)
1St o AW DY) (Foty )0

{b e .
= C (M Catan 1o WP N=0) D) + My (D)
foreveryl € Z, —M < I < M and n € N. Here, C does not depend on n € Ny,
MeNandl e Z,—M <] < M.
Assume thatn € Npand/ € Z, —M <[ < M. We decompose f as follows

I = Fxsyyoyap + J XByy o, yape =2 f1 + fa.
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We have that
glbiliez
ISt ier o WY =0) (g e ) )]
b)) :
< 1Sttt o W)= ity o3 )]

{bj}je ,
1S o VN0 2y e =2 AU M) + BU, M, ).

According to Proposition 3.2 (i), we obtain

AU M. ) < % S 1AM < CMUF) ).

keB;

On the other hand, we can write

C {bj}jez (. B) X
B(,M,n) < \/CH Z (IS{aJJ'};Ez,(—M,M)({WI }z>0)(f)(§5m§%)(k)|
k—nl<3 Jaii
{bj}jez (a.p)
+ |S{u;}jj-zz,(fM,M)({Wf }t>0)(f1X§SmS¥)(k)|
{bj}jer (. B)
+ |S{a;}jzz,(1,M)({Wt h>0)(f2x%§m§%)(k)
{bj}jez (a.)
= Sia) ezt Ve =00 (f2x < 30) ()]
{bj}jez (. )
+ |S{a_,/'}j-:Z,(7M,lfl)({Wf }t>0)(f2)(%5m5%)(k)|>
4
=Y Bi(l,M,n),
i=1
with the obvious understanding for the four sums when/ = —M.

We now estimate B; ([, M,n),i =1,2,3,4.

(i) Itis clear that

(bj}jez
{aj}jez,

Bi(l.M.n) < CMS,.) i 1o VSN0 () ().

(i) Since the family {S{{a’}fez (WP }f>o)] N (NyNyyez2 OF operators is uni-
Ni<N>

{bj}je .
formly bounded from L4 (Np) intoitself, {S{a]}]ei N loc({Wt(a ﬂ)}’>0)}N=(N1‘N2)eZZ
N1<N2

is also uniformly bounded from L7(Np) into itself. Then, by using Holder
inequality and by taking into account that is a (1, A?)-lacunary sequence, we
obtain that

By(l, M, n) = CMy(f)(n).
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(iii) By using (15) and (16), we can prove, by proceeding as in the proof of [8, (18)]
that

B3(l, M, n) < CM(f)(n).
(iv) By Proposition 3.2 (ii), we deduce that
By(l, M, n) = CM(f)(n).
By combining (i)-(iv), it follows that

B M.m) = C (ML oy iy 1o WP m0) (D) + My ().

Thus, we conclude that
{bjlje ,
ISt @y ioe (Y00 (D 0]
b. ic ,
<€ (MG oy sy 1o WP ho) ()0 + My (H))
O

3.3 Proof of Theorem 1.2

According to [36, Lemma 2.3], without loss of generality we can assume that {a;} jen
is a (A, A%)-lacunary sequence.
Let M € N. For every n € Ng, we can write

{bj}je , {bjlje ,
St e QW0 () < SN 1 (WP ) 0) () ()
{bj}jez

(a.B)
+ S{a./}jeZa*,M,gloh({Wta }r>0) () (),
where
St o W (N = sup 1S AW D)0 (g )0
{aj}jez. %M loc V"t >0 - N:(NENZ) {aj}jez, N\V Mt >0\ Xz 3 ’
N1,N>€Z,
—M<Ni<N»<M
and
{bj}; , {bj}; ,
St et W) (N = sup ST (W)
N=(N1,N2) o
N1,N2€Z,
—M<N{<Nr<M

(FO = g3 )
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According to (15), there exists C > 0 such that

SEIE VPt <c Y e
jez,* M, |n —m|
mé[n/2,3n/2]

= S 1 f )
<cC ;Z|f(m)|+ > == neNo.

m=0 m=n+1

Here, when n = 0, the first term in the last sum does not appear. Here, C does not
depend on M. By using £”-boundedness properties of discrete Hardy operators, we

bi}; ) .
{{a;}};:Z,*,M,glob({Wt(a’ﬂ)}t>0) is bounded from £7 (Nj) into

itself, for every 1 < p < oo. Furthermore, we have that

deduce that the operator S

b} ,
pen ”S{ujj'}jj':Z,*,M,glob({Wt(a DYz 0)llertig) erarig) < 00,

forevery 1 < p < oo.
Let1 < p < oo. We choose 1 < g < p. M, defines a bounded operator from
£P(Np) into itself.
. {bj}; , .
According to Theorem 3.1, the operator S{a;};zi,(—M,M)({Wt(a ﬂ)}t>0) is bounded
from ¢£7 (Ny) into itself. Moreover, we have that

(b :
MeN 1Sty s aran AW Y0 ller aig) er i) < 00
P 1Pt

As above, by using (15) and the £”-boundedness properties of discrete Hardy oper-
bj}; .
ators, we can deduce that the operator S{{a;}}/j-j,(fM,M),gng({Wt(a’ﬁ)}z>0) is bounded
from ¢7 (Np) into itself and

b} :
sup ”S{a;};:ZZ’(_M’M),gZOb({Wt(aﬂ)}t>0)||€P(No)—>/ZP(NO) < Q.
MeN ’

Then, §%/)i<z ((W“P},_0) is bounded from £7(Ny) into itself and

{aj}jez,(—M ,M),loc

{bj}; )
;Ili% ||S{a;};:Z,(_M,M),ZOC({W;(a 5)}t>0)”£/’(NO)HU’(N0) < 00.

According to Proposition 3.3, S{{sj}}jii,/w,* loc({Wr(a’ﬂ)}»o) is bounded from €7 (N)
into itself and

{bj}; ,
sup ||S{aj’_}1{§§,M’*JDC({W,(“ DYoo) ller o= er @) < 00

MeN
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We conclude that S, {b; }’ GZ M *({W,(a’ﬂ )}r>0) is bounded from ¢ (Np) into itself and
{bjlje
sup ||S{a jEZM *({W( }t>0)||£P(No)—>£P(N0) < oo.
MeN

By taking M — 400, it follows that the operator S{{Z }}j’::;*({Wt(O“6 ) }¢+=0) is bounded
from ¢P (Np) into itself.

We now apply vector-valued Calderén-Zygmund theory for singular integrals (see
[31] and [32]).

We can write

{bjljez
{aj}jez*

{bj}jez
a]}/eZ N

St AW (1) = | Sfar 1 WP ()|

0°(Zx7Z)
For every N = (N1, N3), where N{, N> € Z and N| < N; and f € Cy(Z) (the space

of sequences indexed by of sequences indexed by Z with a finite number of non-zero
terms), we have that

{b }jez
{aj JEL> N

AW (D) = > QP um) fam). n e No,

mEN()

where

N
Q?g’ﬁ)(n,m) = Z b; (K(“ B (n, m) — K;(J’,"ﬂ)(n,m)), n,m € Ny.

aj+1
J=N1

Accordingto (15) and (16), by using [8, Theorem 2.1] we can prove that the operator
{bjljez
{aj}jen.*

and w € A, (Np), and from ¢! (Np, w) into £1°°9(Ny, w), for everyw € A1(Ng). O

AW P}, o) is bounded from £7 (No, w) into itself, for every I < p < oo
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