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Abstract
In this paper, we investigate the following fractional Sobolev critical Nonlinear
Schrödinger coupled systems:

⎧
⎨

⎩

(−�)su = μ1u + |u|2∗
s−2u + η1|u|p−2u + γα|u|α−2u|v|β in R

N ,

(−�)sv = μ2v + |v|2∗
s−2v + η2|v|q−2v + γβ|u|α|v|β−2v in R

N ,

‖u‖2
L2 = m2

1 and ‖v‖2
L2 = m2

2,

where (−�)s is the fractional Laplacian, N > 2s, s ∈ (0, 1),μ1, μ2 ∈ R are unknown
constants, which will appear as Lagrange multipliers, 2∗

s is the fractional Sobolev
critical index, η1, η2, γ,m1,m2 > 0, α > 1, β > 1, p, q, α + β ∈ (2 + 4s/N , 2∗

s ].
Firstly, if p, q, α + β < 2∗

s , we obtain the existence of positive normalized solution
when γ is big enough. Secondly, if p = q = α + β = 2∗

s , we show that nonexistence
of positive normalized solution. The main ideas and methods of this paper are scaling
transformation, classification discussion and concentration-compactness principle.
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1 Introduction andmain result

The motivation for the problem studied in this article arises from finding stationary
waves solutions of the following physical model:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−�)sφ1 = −i
∂φ1

∂t
+ |φ1|2∗

s−2φ1 + η1|φ1|p−2φ1 + γα|φ1|α−2φ1|φ2|β,

(−�)sφ2 = −i
∂φ2

∂t
+ |φ2|2∗

s−2φ2 + η2|φ2|q−2φ2 + γβ|φ1|α|φ2|β−2φ2,

φ j (x, t) → 0 as |x | → ∞, j = 1, 2,

(1.1)

where i represents the imaginary unit and φ j = φ j (x, t) : R
N × R

+ → C is the
wave function of the j th ( j = 1, 2) component, the mass of them represents the
number of particles of each component in the mean-field models for binary mixtures
of Bose-Einstein condensation, see [1–3] and references therein, η j and γ denote
the intraspecies and interspecies scattering lengths. The sign case for γ determines
whether the interaction between the states is attractive or repulsive, i.e. the interaction
is attractive if γ is positive, the interaction is repulsive if γ is negative.

An important solution, known as travelling or standing wave, is characterized
by ansatz

φ1(x, t) = eiμ1t u(x), φ2(x, t) = eiμ2tv(x) (1.2)

for two unknown functions u, v : R
N → R, where μ1, μ2 ∈ R. Because these

solutions are very similar to each other and retain their mass over time, it makes sense
to seek prescribed L2-norm solutions (normalized solutions). Therefore, combining
(1.1) and (1.2), we arrive at the following fractional single or double Sobolev critical
Schrödinger system:

⎧
⎪⎨

⎪⎩

(−�)su = μ1u + |u|2∗
s−2u + η1|u|p−2u + γα|u|α−2u|v|β in R

N ,

(−�)sv = μ2v + |v|2∗
s−2v + η2|v|q−2v + γβ|u|α|v|β−2v in R

N ,

‖u‖2
L2 = m2

1 and ‖v‖2
L2 = m2

2,

(1.3)

where N > 2s, s ∈ (0, 1), μ1, μ2 ∈ R are unknown constants, which will appear as
Lagrangemultipliers, 2∗

s is the fractional Sobolev critical index,η1, η2, γ,m1,m2 > 0,
α > 1, β > 1, p, q, α + β ∈ (2+ 4s/N , 2∗

s ], and (−�)s is the fractional Laplacican
defined by

(−�)su(x) = C(N , s) lim
ε→0+

∫

RN \Bε(x)

u(x) − u(y)

|x − y|N+2s dxdy,
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where

C(N , s) =
(∫

RN

1 − cos(ω1)

ω
dω

)−1

.

For more information about this type of operator we refer to [4].
With regard to the double Sobolev critical Schrödinger coupled systems, many

experts and scholars have conducted extensive and in-depth research on this whether
it is integer order or fractional order with fixed μ1 and μ2. When s → 1, Zou et al. [5]
considered the existence and symmetry of positive ground states for a double critical
coupled systems. Moreover, they studied the limit behavior of positive ground states
for another kind of double critical Schrödinger systemwhen the interaction is repulsive
in [6]. In the case of 0 < s < 1, Zou and Yin [7] proved the asymptotic behaviour and
existence of the positive least energy solutions for k-coupled double critical systems
driven by a fractional Laplace operator by means of the idea of induction. Yang [8]
dealt with a class of fractional Laplacian doubly critical coupled systems, they gave
sufficient conditions for the existence of weak solutions by establishing an embedding
theorem. He et al. [9] investigated the existence of least energy solution with the help
of the Nehari manifold.

However, as far as we know, few papers treat parameters μ1 and μ2 as Lagrange
multipliers to study the normalized solution of double Sobolev critical problems.

In particular, when s → 1, problem (1.3) becomes the form:

⎧
⎪⎪⎨

⎪⎪⎩

−�u = μ1u + |u|2∗
s−2u + η1|u|p−2u + γα|u|α−2u|v|β in R

N ,

−�v = μ2v + |v|2∗
s−2v + η2|v|q−2v + γβ|u|α|v|β−2v in R

N ,

‖u‖2
L2 = m2

1 and ‖v‖2
L2 = m2

2.

(1.4)

Liu and Fang [10] studied the existence and nonexistence of positive normalized
solution for equation (1.4) in the case of p, q, α + β < 2∗

s and p = q = α + β = 2∗
s

respectively.
Furthermore, if let N = 4, p = q, α = β = 2, the above problem reduces to the

classical elliptic system:

⎧
⎪⎪⎨

⎪⎪⎩

−�u = μ1u + u3 + η1|u|p−2u + 2γ uv2 in R
4,

−�v = μ2v + v3 + η2|v|p−2v + 2γβu2v in R
4,

‖u‖2
L2 = m2

1 and ‖v‖2
L2 = m2

2,

(1.5)

which was investigated by Zou et al. [11], they obtained the existence, nonexistence
and asymptotic behavior of normalized ground state solutions for system (1.5) in
different cases.

Of course, a great deal of work has focused on the normalized solution of integer-
order nonlinear Schrödinger systems [12–18] or fractional-order single Schrödinger
equations [19–26]. In particular, we highlight that Jeanjean and Lu [21] obtained the
existence and multiplicity of normalized solutions and the asymptotic behavior of the
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ground state solution for a class ofmass supercritical problems. Themethod developed
in the present paper is inspired by the techniques introduced in [21]. We also point
out that Soave [27] established existence and stability properties of ground state solu-
tions for a Schrödinger equation with Sobolev critical exponent under three different
assumptions, respectively mass subcritical, mass critical and mass supercritical.

So far, we have found only one paper [28] dealing with normalized solution of
fractional Schrödinger coupled systems but only the subcritical case is considered.
Hence it is natural to inquire what difficulties will appear if we consider single critical
nonlinearity or even double critical nonlinearities.

Motivated by the work above, we will consider the existence for single critical
fractional Schrödinger coupled systems and the nonexistence of normalized solutions
for double critical fractional Schrödinger coupled systems. The main features of this
paper is the existence of nonlocal operator and Sobolev critical nonlinearities, which
makes dealingwith compactness conditionsmore complicated. Ourmainmethods and
tools for solving these problems are scaling transformation, classification discussion
and concentration-compactness principle.

A classical method for studying the normalized solution of system (1.3) is to look
for critical points of the following C1 functional

I (u, v) := 1

2

(
[u]2Hs + [v]2Hs

)
− 1

2∗
s

(
‖u‖2∗

s
2∗
s
+ ‖v‖2∗

s
2∗
s

)
− η1

p
‖u‖p

p

−η2

q
‖v‖qq − γ

∫

RN
|u|α|v|β

constrained to the set

Sm1 × Sm2 =
{
(u, v) ∈ Hs(RN ) × Hs(RN ) : ‖u‖22 = m2

1, ‖v‖22 = m2
2

}
,

where Hs(RN ) is the fractional Sobolev space defined by

Hs(RN ) =
{

u ∈ L2(RN )
∣
∣ [u]2Hs =

∫

R2N

u(x) − u(y)

|x − y| N2 +s
dxdy < ∞

}

,

whose norm is

‖u‖ = (‖u‖2L2 + [u]2Hs )
1
2 .

For convenience, we use ‖u‖p to represent the norm of Lebesgue space L p(RN )

for p ∈ [1,∞). We write

θ = α + β, L2-critical exponent p = 2 + 4s/N ,

Hs
rad(R

N ) = {u ∈ Hs(RN ) : u(x) = u(|x |)}, Sm =
{
u ∈ Hs(RN ) : ‖u‖22 = m2

}
,

Sm1,r = Sm1 ∩ Hs
rad(R

N ), Sm2,r = Sm2 ∩ Hs
rad(R

N ),

Wm,r = Sm1,r × Sm2,r , Wr = Hs
rad(R

N ) × Hs
rad(R

N ).
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We now present our main results:

Theorem 1.1 Assume that N > 2s, α > 1, β > 1, p, q, θ ∈ (p, 2∗
s ), and

η1, η2, γ,m1,m2 > 0. Then there exists γ ∗ = γ ∗(m1,m2) > 0 such that for any
γ ≥ γ ∗, problem (1.3) admits a radial normalized solution (̃u, ṽ). Moreover, (̃u, ṽ)

is a positive solution whose associated Lagrange multipliers μ1 and μ2 are negative.

Remark 1.1 The proof of Theorem 1.1 faces some difficulties and challenges. Firstly,
strong convergence of sequences in L2(RN ) space is difficult to obtain because the
embeddings Hs(RN ) ↪→ L2(RN ) and Hs

rad(R
N ) = {u ∈ Hs(RN ) : u(x) =

u(|x |)} ↪→ L2(RN ) are not compact. Secondly, the lack of compactness caused by
Sobolev critical index makes verifying the Palais-Smale condition more complicated.
Thirdly, the idea of classification discussion is going to be used since we don’t infer
which of the three indices p, q, θ is big and which is small.

Remark 1.2 This result extends the partial result in [29] in some aspects. Compared
with the local case of our result, this kind of system is studied byMederski and Schino
[29] under more generalized assumptions on the nonlinear terms.

Theorem 1.2 Assume that N > 2s, α > 1, β > 1, p = q = θ = 2∗
s , and

η1, η2, γ,m1,m2 > 0. Then problem (1.3) has no positive normalized solution.

Remark 1.3 Theorems 1.1 and 1.2 seem to be the first results of the normalized solution
for fractional Sobolev critical Schrödinger coupling systems.

The paper is organized as follows. Section 2 introduces relative results of scalar
equations and some preliminaries, which play an important role in the proof of Palais-
Smale condition. Section 3 proves Theorem 1.1 by using the methods of scaling
transformation, classification discussion and concentration-compactness principle.
Section 4 gives the proof of Theorem 1.2 with the help of Pohozaev identity.

2 Relevant results for scalar equations and preliminaries

In order to study the fractional critical Schrodinger coupling system, we first need
to review related results of following scalar equations, i.e. γ = 0 in (1.3):

{
(−�)su = μ1u + |u|2∗

s−2u + η1|u|p−2u in R
N ,

u ∈ Hs(RN ), ‖u‖22 = m2
1,

(2.1)

which has been investigated in [25] by constraining on the Pohozaev manifold

Pm1,η1 = {u ∈ Sm1 : [u]2Hs − ‖u‖2∗
s

2∗
s
− η1ξp‖u‖p

p = 0},

where

ξp = Np − 2N

2ps
, for any p ∈ (2, 2∗

s ]. (2.2)
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A standard way to get normalized solutions of (2.1) is to look for critical points for
C1 functional

Iη1(u)|Sm1
= 1

2
[u]2Hs − 1

2∗
s
‖u‖2∗

s
2∗
s
− η1

p
‖u‖p

p,

As we all know, Pm1,η1 contains every critical point of Iη1(u)|Sm1
, due to the

Pohozaev identity (see [30, Proposition 4.1]).
It follows from [31] that there exists a best fractional critical Sobolev constant

S > 0 such that

S‖u‖22∗
s

≤ [u]2Hs , for all u ∈ Sm1 , (2.3)

which is famous fractional Sobolev inequality.
In order to prove our result in Sect. 3, we need to obtain the following monotonicity

result of scalar equations, which is necessary in the proof of Lemma 3.7.

Lemma 2.1 Assume that N > 2s, m1, η1 > 0 and p ∈ (p, 2∗
s ). Then, m1 
→ Eη1

m1 =
inf

Pm1,η1

Iη1(u) ∈ (0, sS N
2s

N ) is non-increasing in (0,+∞). where S is given in (2.3).

Proof According to [25, Theorem 1.3], we obtain that Eη1
m1 ∈ (0, sS N

2s

N ), Similar to the
proof of [19, Lemma 9] or [10, Lemma 2.1], we only need to make a small change to
get non-increasing property of the function Eη1

m1 with respect to m1, so we omit it. ��
Lemma 2.2 [22, Lemma 1.1] There exists an optimal constant C(N , p, s) such that
for p ∈ (2, 2∗

s ),

‖u‖p
p ≤ C p(N , p, s)[u]pξpHs ‖u‖p(1−ξp)

2 , ∀u ∈ Hs(RN ), (2.4)

where ξp is defined by (2.2).

The above fractional Gagliardo-Nirenberg inequality plays an key role in the next
series of proofs.

Lemma 2.3 Let N > 2s, α > 1, β > 1, η1, η2, γ > 0, p, q, θ ∈ (2, 2∗
s ), and

(u, v) ∈ Wr is a nonnegative solution of system (1.3). Then, it follows from u � 0 that
μ1 < 0; it follows from v � 0 that μ2 < 0.

Proof On account of u � 0 and fulfills

(−�)su = μ1u + |u|2∗
s−2u + η1|u|p−2u + γα|u|α−2u|v|β in R

N ,

thus we infer that (−�)su ≥ 0 if μ1 ≥ 0. It follows from [32, Proposition 2.17] that
u ≡ 0. This contradicts to the condition u � 0, which means that μ1 < 0. Similarly,
we also can get μ2 < 0 from v � 0. ��
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Lemma 2.4 Let N > 2s, α > 1, β > 1, θ ∈ [2, 2∗
s ], (un, vn)⇀(u, v) in Wr . Then, up

to a subsequence

lim
n→∞

∫

RN
|un|α|vn|β − |un − u|α|vn − v|β − |u|α|v|β = 0.

Remark 2.1 Since the proof of Brézis-Lieb Lemma 2.4 is standard and classical, we
would like to omit it, please refer to the literature [5, Lemma 2.3] for interested readers.

3 Proof of theorem 1.1

Wewill do a scaling transformationmake the functional I (ρ�u, ρ�v) satisfy themoun-
tain pass geometry. For (u, v) ∈ W and ρ ∈ R, we let

(ρ�u, ρ�v) =
(
e

Nρ
2 u(eρx), e

Nρ
2 v(eρx)

)
for a.e. x ∈ R

N ,

which comes from the inspiration of Jeanjean [33]. The results show that the original
functional I (u, v) and the transformed functional Ĩ = I (ρ�u, ρ�v) have the same
mountain pass geometry and mountain pass level.

Lemma 3.1 Suppose that (u, v) ∈ Sm1 × Sm2 is arbitrary but fixed. Then we have the
following conclusions:

(1) [ρ�u]2Hs + [ρ�v]2Hs → 0 and I (ρ�u, ρ�v) → 0 as ρ → −∞;

(2) [ρ�u]2Hs + [ρ�v]2Hs → +∞ and I (ρ�u, ρ�v) → −∞ as ρ → +∞.

Proof Through simple calculations, we have

[ρ�u]2Hs + [ρ�v]2Hs = e2ρs
∫ ∫

R2N

|u(x) − u(y)|2
|x − y|N+2s dxdy

+e2ρs
∫ ∫

R2N

|v(x) − v(y)|2
|x − y|N+2s dxdy

= e2ρs[u]2Hs + e2ρs[v]2Hs , (3.1)

‖ρ�u‖ζ
ζ = e

(ζ−2)Nρ
2 ‖u‖ζ

ζ ,

‖ρ�v‖ζ
ζ = e

(ζ−2)Nρ
2 ‖v‖ζ

ζ , (3.2)

γ

∫

RN
|ρ�u|α|ρ�v|β = γ e

(θ−2)Nρ
2

∫

RN
|u|α|v|β. (3.3)
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From (3.1)–(3.3), ζ ≥ 2, and θ > 2, we get

[ρ�u]2Hs → 0, [ρ�v]2Hs → 0, as ρ → −∞,

‖ρ�u‖ζ
ζ → 0, ‖ρ�v‖ζ

ζ → 0 as ρ → −∞,

γ

∫

RN
|ρ�u|α|ρ�v|β → 0 as ρ → −∞.

Thus, we have

I (ρ�u, ρ�v) =1

2

(
[ρ�u]2Hs + [ρ�v]2Hs

)
− 1

2∗
s

(
‖ρ�u‖2∗

s
2∗
s
+ ‖ρ�v‖2∗

s
2∗
s

)

− η1

p
‖ρ�u‖p

p − η2

q
‖ρ�v‖qq−γ

∫

RN
|ρ�u|α|ρ�v|β →0 as ρ →−∞,

which implies that (1) holds.
Again by (3.1), we obtain that [ρ�u]2Hs + [ρ�v]2Hs → +∞ as ρ → +∞.

Furthermore,

I (ρ�u, ρ�v) =1

2

(
[ρ�u]2Hs + [ρ�v]2Hs

)
− 1

2∗
s

(
‖ρ�u‖2∗

s
2∗
s

+ ‖ρ�v‖2∗
s

2∗
s

)

− η1

p
‖ρ�u‖pp − η2

q
‖ρ�v‖qq − γ

∫

RN
|ρ�u|α |ρ�v|β → −∞ as ρ → +∞

since p, q, θ ∈ (2 + 4s
N , 2∗

s ), which also means that (2) holds. ��

Lemma 3.2 There exists A(m1,m2) > 0 small enough such that

0 < sup
u∈X

I (u, v) < inf
u∈Y I (u, v),

with

X :=
{
(u, v) ∈ Sm1 × Sm2 : [u]2Hs + [v]2Hs ≤ A(m1,m2)

}
,

Y :=
{
(u, v) ∈ Sm1 × Sm2 : [u]2Hs + [v]2Hs = 2A(m1,m2)

}
.

Proof According to Lemma 2.2 and the Hölder inequality, for any (u, v) ∈ Sm1 × Sm2

we get that
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η1

p
‖u‖p

p ≤ C p(N , p, s,m1, η1)[u]pξpHs ≤ C p(N , p, s,m1, η1)
([u]2Hs + [v]2Hs

) pξp
2 ,

(3.4)
η2

q
‖u‖qq ≤ Cq(N , q, s,m2, η2)[u]qξq

Hs ≤ Cq(N , q, s,m2, η2)
([u]2Hs + [v]2Hs

) qξq
2 ,

(3.5)

γ

∫

RN
|u|α|v|β ≤ γ ‖u‖α

θ ‖v‖β
θ ≤ γC(N , α, β, s,m1,m2)

([u]2Hs + [v]2Hs

) θξθ
2 .

(3.6)

On the one hand, if let b = [u]2Hs + [v]2Hs and A > 0 be arbitrary but fixed, then for
any (u, v) ∈ X such that b ≤ A, it follows from (3.4)–(3.6) and (2.3) that

I (u, v) ≥ 1

2
b − 1

2∗
sS

2∗s
2

b
2∗s
2 − C p(N , p, s,m1, η1)b

pξp
2

− Cq(N , q, s,m2, η2)b
qξq
2 − γC(N , α, β, s,m1,m2)b

θξθ
2

≥ 1

8
b > 0

for A small enough, the scaling of inequality above takes advantage of this fact that
pξp, qξq , θξθ > 2. On the other hand, for any (u1, v1) ∈ Y and (u2, v2) ∈ X such
that b1 = [u1]2Hs + [v1]2Hs = 2A and b2 = [u2]2Hs + [v2]2Hs ≤ A, we obtain

I (u1, v1) − I (u2, v2) ≥ 1

2
(b1 − b2) − 1

2∗
sS

2∗s
2

b
2∗s
2
1 − C p(N , p, s,m1, η1)b

pξp
2

1

− Cq (N , q, s,m2, η2)b
qξq
2

1 − γC(N , α, β, s,m1,m2)b
θξθ
2

1

≥ 1

2
A − 1

2∗
sS

2∗s
2

(2A)
2∗s
2 − C p(N , p, s,m1, η1)(2A)

pξp
2

− Cq (N , q, s,m2, η2)(2A)
qξq
2 − γC(N , α, β, s,m1,m2)(2A)

θξθ
2

≥ 1

8
b

for A sufficiently small. So, we can pick A small enough for the inequality in Lemma
3.2 to be true. ��

Now we have obtained that the geometry of mountain pass, then we give the min-
imax picture: Because Zhang [25] had proved the u := um1,η1 is a ground state of
(2.1) involving parameters p, η1,m1 and also v := um2,η2 is a ground state of (2.1)
involving parameters p, η2,m2. Therefore, we fix (u, v) ∈ Wm,r , according to Lemma
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3.1 and Lemma 3.2, there exist two numbers ρ1 � −1 < 0 < 1 � ρ2 such that

e2ρ1s[u]2Hs + e2ρ1s[v]2Hs <
A(m1,m2)

2
, I (ρ1�u, ρ1�v) > 0,

e2ρ2s[u]2Hs + e2ρ2s[v]2Hs > 2A(m1,m2), I (ρ2�u, ρ2�v) ≤ 0.

We define the path

� = {χ ∈ C([0, 1],Wm,r ) : χ(0) = (ρ1�u, ρ1�v), χ(1) = (ρ2�u, ρ2�v)},

then � is not empty. In fact, let χ0(t) := ([(1− t)ρ1 + tρ2]�u, [(1− t)ρ1 + tρ2]�v),

obviously, χ0(t) ∈ Wm,r and χ0(t) ∈ �.
Letting

cγ (m1,m2) := inf
χ∈�

max
t∈(0,1] I (χ(t)),

clearly, cγ (m1,m2) > 0, then we have the following asymptotic behavior of critical
values:

Lemma 3.3 lim
γ→+∞ cγ (m1,m2) = 0.

Proof Fix (u0, v0) ∈ Wm,r and it follows from the path χ0(t) := ([(1 − t)ρ1 +
tρ2]�u0, [(1 − t)ρ1 + tρ2]�v0) that

cγ (m1,m2) ≤ max
t∈[0,1] I (χ0(t))

≤ max
l≥0

{
1

2
l2

(
[u0]2Hs + [v0]2Hs

)
− γ l

Nθ−2N
2s

∫

RN
|u0|α|v0|β

}

.

Let C1 = [u0]2Hs + [v0]2Hs and C2 = ∫

RN |u0|α|v0|β , we discuss the maximum value
of the following function

g(l) = 1

2
C1l

2 − γC2l
Nθ−2N

2s , for any l ≥ 0.

Letting

g
′
(l) = C1l −

(
Nθ − 2N

2s

)

γC2l
Nθ−2N−2s

2s = 0,

we can obtain the maximum point of g(l), that is

lmax =
(

2sC1

(Nθ − 2N )γC2

) 2s
Nθ−2N−4s

.
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Thus,

max
l≥0

{
1

2
l2

(
[u0]2Hs + [v0]2Hs

)
− γ l

Nθ−2N
2s

∫

RN
|u0|α|v0|β

}

= 1

2

(
2sC1

(Nθ − 2N )γC2

) 4s
Nθ−2N−4s

C1 − γ

(
2sC1

(Nθ − 2N )γC2

) Nθ−2N
Nθ−2N−4s

C2

≤ 1

2

(
2sC1

(Nθ − 2N )γC2

) 4s
Nθ−2N−4s

C1.

As a result, there exists C > 0 that don’t depend on γ > 0 such that

cγ (m1,m2) ≤ C

(
1

γ

) 4s
Nθ−2N−4s → 0 as γ → ∞

thanks to θ > 2 + 4s/N . We complete the proof of Lemma 3.3 now. ��
To further prove our main results, we need to define Pohozaev manifold

Pm1,m2,μ1,μ2 of vector equations (1.3) in the same way as scalar equations (2.1).

Pm1,m2,μ1,μ2 = {
(u, v) ∈ Sm1 × Sm2 : P(u, v) = 0

}
,

where

P(u, v) := [u]2Hs + [v]2Hs − ‖u‖2∗
s

2∗
s
− ‖v‖2∗

s
2∗
s
− η1ξp‖u‖p

p

−η2ξq‖v‖qq − γ θξθ

∫

RN
|u|α|v|β.

Notice that I (|u|, |v|) = I (u, v) and P(|u|, |v|) = P(u, v) for any (u, v) ∈ Wm,r .
Similar to the argument in [33, Proposition 2.2] with minor changes, replace (0, χn) ∈
� with (0, |χn|) ∈ � if necessary, where

� := {
χ ∈ ([0, 1],Wm,r ) : χ(0) = (0, (ρ1�u, ρ1�v)), χ(1) = (0, (ρ2�u, ρ2�v))

}
.

Then {(un, vn)} ⊂ Wm,r is a Palais-Smale sequence for I (u, v) at level cγ (m1,m2),
i.e.

I (un, vn)) → cγ (m1,m2) as n → ∞ and I
′
(un, vn) → 0 as n → ∞.

Moreover,

u−
n → 0, v−

n → 0 a.e. in R
N as n → ∞.

Lemma 3.4 Suppose that {(un, vn)} ⊂ Wm,r is a Palais-Smale sequence for I (u, v).

Then lim
n→∞ P(un, vn) = 0.
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Proof Let

(ρn�un, ρn�vn) = (xn, yn).

By direct calculations, we claim that

d

dρn
I ((−ρn)�xn, (−ρn)�yn) = −sP((−ρn)�xn, (−ρn)�yn) = −sP(un, vn).

Since I
′
(un, vn) → 0 as n → ∞, again from [22, Proposition 5.4(2)], we get that

lim
n→∞ P(un, vn) = 0. ��

Lemma 3.5 If {(un, vn)} ⊂ Wm,r is a Palais-Smale sequence for I (u, v), then
{(un, vn)} is bounded in Wm,r .

Proof Observing that ξp p, ξqq, ξθ θ > 2 due to the fact that p, q, θ > 2 + 4s/N . It
follows from Lemma 3.4 that

I (un, vn) = η1

2p
(ξp p − 2)‖un‖p

p + η2

2q
(ξqq − 2)‖vn‖qq + γ

2
(ξθ θ − 2)

∫

RN
|u|α|v|β

+ s

N
‖un‖2

∗
s

2∗
s
+ s

N
‖vn‖2

∗
s

2∗
s
+ o(1).

Since I (un, vn) is bounded, thus we conclude that sequences {‖un‖p
p}, {‖vn‖qq},

{∫

RN |un|α|vn|β
}
, {‖un‖2

∗
s

2∗
s
}, and {‖vn‖2

∗
s

2∗
s
} are all bounded. Again by Lemma 3.4, we

infer that {[un]2Hs } and {[vn]2Hs } are also bounded, as claimed. ��
In view of Lemma 3.5, there exists a nonnegative (̃u, ṽ) ∈ Wr such that, up to a

subsequence,

(un, vn)⇀(̃u, ṽ) in Wr ;
(un, vn)⇀(̃u, ṽ) in L2∗

s (RN ) × L2∗
s (RN );

(un, vn) →(̃u, ṽ) in L p(RN ) × Lq(RN );
(un, vn) →(̃u, ṽ) in Lθ (RN ) × Lθ (RN );
(un, vn) →(̃u, ṽ) a.e. in R

N

(3.7)

as n → ∞. Since {(un, vn)} ⊂ Sm1 × Sm2 is a Palais-Smale sequence for I (u, v), on
basis of the Lagrange multipliers rule, there exists a sequence {(μn

1, μ
n
2)} ⊂ R × R

such that

I
′
(un, vn) + μn

1(un, 0) + μn
2(0, vn) → 0 in Wr as n → ∞. (3.8)

Next, we take (un, 0) and (0, vn) as test functions in (3.7), it follows from the proof of
[25, Proposition 2.2] that {(μn

1, μ
n
2)} is bounded in R. Therefore up to a subsequence

(μn
1, μ

n
2) → (μ1, μ1) ∈ R × R.
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Lemma 3.6 There exists γ ∗ = γ ∗(m1,m2) > 0 big enough, such that for any γ ≥ γ ∗,
(un, vn) → (̃u, ṽ) in L2∗

s (RN ) × L2∗
s (RN ) and ũ, ṽ �= 0.

Proof We first claim that un → ũ in L2∗
s (RN ). In fact, according to the concentration-

compactness principle in [34], we know that there exist two nonnegative measures
ω, ν and a (at most countable) index set J such that |(−�)

s
2 un|2⇀ω in M(RN ),

|un|2∗
s ⇀ν inM(RN ) and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω ≥ |(−�)
s
2 ũ|2 + ∑

j∈J
ω jδx j , ω j ≥ 0,

ν = |̃u|2∗
s + ∑

j∈J
ν jδx j , ν j ≥ 0,

ν j ≤ S −2∗s
2 ω

2∗s
2
j , ∀ j ∈ J ,

(3.9)

where x j is the different point in R
N , δx j denotes the Dirac measure at x j , S is best

Sobolev constant in (2.3). Furthermore, it is possible to lose mass at infinity. i.e.,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lim sup
n→∞

∫

RN |(−�)
s
2 un|2dx = ∫

RN dω + ω∞,

lim sup
n→∞

∫

RN |un|2∗
s dx = ∫

RN dν + ν∞,

ν∞ ≤ S −2∗s
2 ω

2∗s
2∞ ,

(3.10)

where

ω∞ = lim
R→∞ lim sup

n→∞

∫

|x |>R
|(−�)

s
2 un|2dx,

ν∞ = lim
R→∞ lim sup

n→∞

∫

|x |>R
|un|2∗

s dx .

Case 1 Take ψε(x) ∈ C∞
0 (RN ) be a cut-off function such that

⎧
⎨

⎩

ψε(x) ≡ 1 in Bε(x j ),
ψε(x) ≡ 0 in Bc

2ε(x j ),
0 ≤ ψε(x) ≤ 1,

(3.11)

where Bε(x j ) represents the small ball with radius ε and center x j . By Lemma 3.5,
we note that {ψε(x)un} is bounded in Hs(RN ). Next, again take {(ψε(x)un, 0)} as a
test function in (3.8) and letting ε → 0, we obtain that

lim
ε→0

lim
n→∞〈I ′

(un, vn) − μn
1(un, 0) − μn

2(0, vn), (ψε(x)un, 0)〉 = 0. (3.12)



140 Page 14 of 20 J. Zuo, V. D. Rădulescu

From (3.7), the Hölder inequality and the absolute continuity of the Lebesgue integral,
we have

lim
ε→0

lim
n→∞

∫

RN
μn
1u

2
nψεdx = 0,

lim
ε→0

lim
n→∞

∫

RN
|un|pψεdx = lim

ε→0

∫

RN
|̃u pψεdx = 0,

lim
ε→0

lim
n→∞

∫

RN
|un|α|vn|βψεdx = lim

ε→0

∫

RN
|̃u|α |̃v|βψεdx = 0.

(3.13)

According to (3.12) and (3.13), we deduce that

lim
ε→0

lim
n→∞

∫

RN
|(−�)

s
2 un|2ψεdx = lim

ε→0
lim
n→∞

∫

RN
|un|2∗

s ψεdx,

which means that

lim
ε→0

∫

RN
ψεdω = lim

ε→0

∫

RN
ψεdν. (3.14)

Therefore it follows from (3.9) and (3.14) that ν j ≥ ω j , thereby

either ω j = 0 or ω j ≥ S N
2s for j ∈ J , (3.15)

which means that J is a finite set.
Case 2 Take ϕ ∈ C∞

0 (RN ) be another cut-off function with

⎧
⎨

⎩

0 ≤ ϕ ≤ 1,
ϕ ≡ 0 in B 1

2
(0),

ϕ ≡ 1 in R
N \ B1(0).

(3.16)

For any R, let ϕR(x) = ϕ( x
R ), by Lemma 3.5, we also have that {ϕR(x)un} is bounded

in Hs(RN ). Similarly, take {(ϕR(x)un, 0)} as a test function in (3.8) and letting R →
∞, we also obtain that

lim
R→∞ lim

n→∞〈I ′
(un, vn) − μn

1(un, 0) − μn
2(0, vn), (ϕR(x)un, 0)〉 = 0. (3.17)

Similarly to the proof of [35, Lemma 3.3], we can also get

lim
R→∞ lim

n→∞

∫

RN
μn
1u

2
nϕRdx = 0,

lim
R→∞ lim

n→∞

∫

RN
|un|pϕRdx = lim

R→∞

∫

RN
|̃u|pϕRdx = 0,

lim
R→∞ lim

n→∞

∫

RN
|un|α|vn|βϕRdx = lim

R→∞

∫

RN
|̃u|α |̃v|βϕRdx = 0.

(3.18)
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By (3.17) and (3.18), we also have

lim
R→∞ lim

n→∞

∫

RN
|(−�)

s
2 un|2ϕRdx = lim

R→∞ lim
n→∞

∫

RN
|un|2∗

s ϕRdx,

that is

ω∞ = ν∞. (3.19)

Again by (3.10), we have

either ω∞ = 0 or ω∞ ≥ S N
2s . (3.20)

For the rest of the proof, we will only prove Case 1, because Case 2 and Case 1
are almost exactly the same.

If for any j ∈ J , ω j = 0, then we have that ν j = 0 since (3.9), thereby |un|2∗
s →

|̃u|2∗
s . By the Brézis-Lieb lemma [36], we conclude that un → ũ in L2∗

s (RN , as
claimed.

If instead ω j ≥ S N
2s for some j ∈ J . In view of I (un, vn) → cγ (m1,m2), Lemma

3.4 and (3.11), we adopt the method of categorical discussion:

(1) If θ = min{p, q, θ}. It follows fromLemma 3.3 that there exists a positive constant

γ 1 big enough, such that cγ (m1,m2) <
(
1
2 − 1

θξθ
S N

2s

)
for any γ ≥ γ

′
. By (3.9),

we have
(
1

2
− 1

θξθ

)

S N
2s > cγ (m1,m2) = lim

n→∞

(

I (un, vn) − 1

θξθ

P(un, vn)

)

≥
(
1

2
− 1

θξθ

)

lim sup
n→∞

∫

RN
|(−�)

s
2 un|2ψεdx

=
(
1

2
− 1

θξθ

) ∫

RN
ψεdω

≥
(
1

2
− 1

θξθ

)

ω j ≥
(
1

2
− 1

θξθ

)

S N
2s ,

which is a contradiction.
(2) If p = min{p, q, θ}. Similar to (1), there is also a constant γ

′′
big enough, such

that cγ (m1,m2) <
(
1
2 − 1

pξp
S N

2s

)
for any γ ≥ γ

′′
. We also obtain

cγ (m1,m2) = lim
n→∞

(

I (un, vn) − 1

pξp
P(un, vn)

)

≥
(
1

2
− 1

pξp

)

ω j ≥
(
1

2
− 1

pξp

)

S N
2s ,

which contradicts our hypothesis.
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(3) If q = min{p, q, θ}. Analogously as (1) and (2), we can also get our conclusion,
which we omit here.

To sumup, there exists a bigger positive constantγ ∗(m1,m2) such thatω j = 0 = ν j

for any j ∈ J and γ ≥ γ ∗. Therefore, for γ ≥ γ ∗, we have un → ũ in L2∗
s (RN ). The

proof for vn → ṽ in L2∗
s (RN ) is similar.

Finally, we claim that ũ, ṽ �= 0. In fact, if not, we have (̃u, ṽ) = (0, 0). According
to (3.6), (3.7), un → ũ, vn → ṽ in L2∗

s (RN ) and Lemma 3.4, we have

lim
n→∞([un]2Hs + [vn]2Hs ) = 0. (3.21)

It follows from (3.21) that cγ (m1,m2) = lim
n→∞ I (un, vn) = 0, which is impossible

since cγ (m1,m2) > 0. As a result, we end the proof. ��
Set c0(m1, 0) := Eη1

m1 and c0(0,m2) := Eη2
m2 .

Remark 3.1 For any m1,m2 > 0, according to Lemma 3.3, if necessary, to choose a
bigger γ ∗ such that cγ (m1,m2) < min{c0(m1, 0), c0(0,m2)} for any γ ≥ γ ∗.

Lemma 3.7 Assume that cγ (m1,m2) < min{c0(m1, 0), c0(0,m2)}, then (un, vn) →
(̃u, ṽ) in Wr . Moreover, (̃u, ṽ) ∈ Wr is a positive normalized solution for system (1.3)
associated with μ1, μ2 < 0.

Proof From Lemma 3.6, we know that ũ, ṽ �= 0. Next, we are going to classify it into
two cases and prove by contradiction:

Case 1 ũ � 0, ṽ ≡ 0. From the strong maximum principle for fractional Laplace
operators [32, Proposition 2.17], we have that ũ > 0. It follows from Lemma 2.1 and
[25, Theorem 1.3] that ũ is a positive radial symmetric solution for problem (2.1) with
parameters p, η1,m

′
1 where m

′
1 = ‖ũ‖ ≤ m2

1, and c0(m1, 0) ≤ c0(m
′
1, 0) ≤ I (̃u, 0).

In view of (3.7), Lemmas 2.4, 3.6, and two kinds of Brézis-Lieb Lemmas [36–38],
we obtain that

0 = lim
n→∞ P(un, vn) = lim

n→∞ P(un − ũ, vn) + P (̃u, 0)

= lim
n→∞[un − ũ]2Hs + [vn]2Hs ,

and

cγ (m1,m2) = lim
n→∞ I (un, vn) = lim

n→∞ I (un − ũ, vn) + I (̃u, 0)

≥ 1

2
lim
n→∞[un − ũ]2Hs + [vn]2Hs + c0(m1, 0)

= c0(m1, 0).

This contradicts our hypothesis.
Case 2 ũ ≡ 0, ṽ � 0. Similarly to Case 1, ṽ is a positive radial symmetric solution

for problem (2.1) with parameters q, η2,m
′
2 wherem

′
2 = ‖̃v‖ ≤ m2

2, and c0(0,m2) ≤
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c0(0,m
′
2) ≤ I (0, ṽ). We also have that

cγ (m1,m2) = lim
n→∞ I (un, vn) = lim

n→∞ I (un, vn − ṽ) + I (0, ṽ)

≥ c0(m1, 0),

which is still a contradiction. So, we obtain that ũ � 0 and ṽ � 0. Therefore,μ1, μ2 <

0 follows from Lemma 2.3 and (3.7) and (3.8).
Onbasis of (3.7) and (3.8), Lemma3.4 and the boundedness of sequence {(μn

1, μ
n
2)},

we have

μ1m
2
1 + μ2m

2
2 = lim

n→∞(μn
1‖un‖22 + μn

2‖vn‖22)

= lim
n→∞

(

(ξp − 1)η1‖un‖pp+(ξq−1)η2‖vn‖qq+(ξθ −1)γ θ

∫

RN
|un |α |vn |β

)

= (ξp − 1)η1‖ũ‖pp + (ξq − 1)η2‖̃v‖qq + (ξθ − 1)γ θ

∫

RN
|̃u|α |̃v|β

= μ1‖ũ‖22 + μ2‖̃v‖22,

which means that

μ1(‖ũ‖22 − m2
1) + μ2(‖̃v‖22 − m2

2) = 0.

Thus,

‖ũ‖22 = m2
1, ‖̃v‖22 = m2

2, i.e., (un, vn) → (̃u, ṽ) in L2 × L2.

The proof is now complete. ��
Again by (3.7) and (3.8) and Lemma 3.4, we have

lim
n→∞

(
[un]2Hs + μ1‖un‖22

)
= lim

n→∞

(

‖un‖2
∗
s

2∗
s
+ η1‖un‖p

p + γα

∫

RN
|un|α|vn|β

)

= ‖ũ‖2∗
s

2∗
s
+ η1‖ũ‖p

p + γα

∫

RN
|̃u|α |̃v|β

= [̃u]2Hs + μ1‖ũ‖22,
which implies that ‖un‖Wr → ‖ũ‖Wr as n → ∞. Similar to the above argument, we
also obtain

lim
n→∞

(
[vn]2Hs + μ1‖vn‖22

)
= [̃v]2Hs + μ1‖̃v‖22,

which also means that ‖vn‖Wr → ‖̃v‖Wr as n → ∞. Therefore, we conclude that
(un, vn) → (̃u, ṽ) in Wr × Wr . The proof of Lemma 3.7 is complete.

Proof of Theorem 1.1 It follows from Lemmas 3.5–3.7 that the proof of Theorem 1.1
is complete. ��
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4 Proof of theorem 1.2

Lemma 4.1 Assume that N > 2s, α > 1, β > 1, p = q = α + β + θ = 2∗
s , and

η1, η2, γ,m1,m2 > 0. Then the following system

⎧
⎨

⎩

(−�)su = μ1u + |u|2∗
s−2u + η1|u|2∗

s−2u + γα|u|α−2u|v|β in R
N ,

(−�)sv = μ2v + |v|2∗
s−2v + η2|v|2∗

s−2v + γβ|u|α|v|β−2v in R
N ,

‖u‖2
L2 = m2

1 and ‖v‖2
L2 = m2

2, u, v ∈ Hs(RN )

(4.1)

has no positive normalized solution.

Proof We will use the proof by contradiction. If (u, v) is a positive solution for the
system (4.1) with someμ1, μ2 ∈ R. According to Lemma 2.3, we know thatμ1, μ2 <

0. Then, it follows from (4.1) and the Pohozaev identity that

P(u, v) = [u]2Hs + [v]2Hs − ‖u‖2∗
s

2∗
s
− ‖v‖2∗

s
2∗
s
− η1‖u‖2∗

s
2∗
s
− η2‖v‖2∗

s
2∗
s

−γ 2∗
s

∫

RN
|u|α|v|β = 0.

Again by the definition of weak solution for the above system (4.1), we have

[u]2Hs + [v]2Hs + μ1‖u‖22 + μ2‖v‖22 = ‖u‖2∗
s

2∗
s
+ |v‖2∗

s
2∗
s
+ η1‖u‖2∗

s
2∗
s
+ η2‖v‖2∗

s
2∗
s

+γ 2∗
s

∫

RN
|u|α|v|β.

The proof is now complete. ��
Thus, we obtain

μ1‖u‖22 + μ2‖v‖22 = μ1m
2
1 + μ2m

2
2 = 0.

This is clearly a contradiction. The proof of Lemma 4.1 is complete.

Proof of Theorem 1.2 It follows from Lemma 4.1 that the proof of Theorem 1.2 is
complete. ��
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