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Abstract
We define a harmonic functions called Archimedean spirallike and hyperbolic spiral-
like functions. We investigate their geometric and analytic properties. Some examples
are provided.
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1 Introduction

Let Dr = {z ∈ C : |z| < r} be the open disc of the radius r of the complex plane,
Tr = {z ∈ C : |z| = r} and let D1 = D be the unit disk. Also, we denote by A the
class of analytic functions on D with standard normalization f (0) = f ′(0) − 1 = 0.

A harmonic mapping f of the simply connected region � is a complex-valued
function of the form

f = h + g, (1.1)

where h and g are analytic in �, with g(z0) = 0 for some prescribed point z0 ∈ �.
We call h and g analytic and co-analytic parts of f , respectively. If f is (locally)
injective, then f is called (locally) univalent. The Jacobian and the second complex
dilatation of f are given by J f (z) = | fz |2 − | fz̄ |2 = |h′(z)|2 − |g′(z)|2 and ω(z) =
g′(z)/h′(z) (z ∈ �), respectively. A result of Lewy [5] states that f is locally univalent
if and only if its Jacobian is never zero, and is sense-preserving if the Jacobian is
positive. By H = H(D) we denote the class of complex valued, sense-preserving
harmonic mappings inD. We note that each f of the form (1.1) is uniquely determined
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by coefficients of the power series expansions [3]

h(z) = a0 +
∞∑

n=1

anz
n, g(z) = b0 +

∞∑

n=1

bnz
n (z ∈ D), (1.2)

where an ∈ C, n = 0, 1, 2, ... and bn ∈ C, n = 1, 2, 3, .... ByH0 a subclass ofHwith
the normalization h(0) = g(0) = 0, h′(0) = 1. Following Clunie and Sheil-Small
notation [3], we denote by SH the subclass of H0, consisting of all sense-preserving
univalent harmonic mappings of D. Several fundamental information about harmonic
mappings in the plane can also be found in [4].

2 Differential operators

For f ∈ C1(D), let the differential operators D and D be defined as follows

Df = z
∂ f

∂z
− z

∂ f

∂z
= zh′(z) − zg′(z), (2.1)

and

D f = z
∂ f

∂z
+ z

∂ f

∂z
= zh′(z) + zg′(z), (2.2)

where ∂ f /∂z and ∂ f /∂z are the formal derivatives of the function f

∂ f

∂z
= 1

2

(
∂ f

∂x
− i

∂ f

∂ y

)
and

∂ f

∂z
= 1

2

(
∂ f

∂x
+ i

∂ f

∂ y

)
.

Moreover, we define n-th order differential operator by the recurrence relation

D2 f = D(Df ) = zh′ − zg′ + z2h′′ − z2g′′
= Df + z2h′′ − z2g′′, Dn f = D(Dn−1 f ),

D2 f = D(D f ) = zh′ + zg′ + z2h′′ + z2g′′
= D f + z2h′′ + z2g′′, Dn f = D(Dn−1 f ).

We note that in the case when f is an analytic function (i.e. g(z) = 0), then both
D and D reduce to the Alexander differential operator z f ′.

Now, we present several properties of the differential operators Df andD f . Most
of them follow from the usual rules of differential calculus therefore the proofs will
be omitted.
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Proposition 2.1 Let ϕ,ψ ∈ C1(D) and let the linear differential operators D and D
be defined by (2.1) and (2.2). Then:

(i) D(ϕψ) = ϕDψ + ψDϕ, D(ϕψ) = ϕDψ + ψDϕ,

(i i) D

(
ϕ

ψ

)
= ψDϕ − ϕDψ

ψ2 , D

(
ϕ

ψ

)
= ψDϕ − ϕDψ

ψ2 ,

(i i i) D(ϕ ◦ ψ) = ∂ϕ

∂ψ
Dψ + ∂ϕ

∂ψ
Dψ, D(ϕ ◦ ψ) = ∂ϕ

∂ψ
Dψ + ∂ϕ

∂ψ
Dψ.

Proposition 2.2 Let f ∈ C1(D) and let D andD be defined by (2.1) and (2.2). Then

(a) D f = −Df , D f = D f ,
(b) D Re f = iIm Df , DRe f = ReD f ,
(c) D Im f = −i Re Df , D Im f = ImD f ,

(d) D | f | = i | f | Im Df

f
, D | f | = | f |Re D f

f
( f (z) �= 0),

(e) D arg f = −Re
Df

f
, D arg f = Im

D f

f
( f (z) �= 0),

( f ) Re [DfD f ] = |z|2 J f .

Proposition 2.3 Let f ∈ C1(D), and let D, D be defined by (2.1) and (2.2). Also, let
z = reiθ . Then

∂ f

∂θ
= i D f , r

∂ f

∂r
= D f , r

∂

∂r
D f = D2 f , (2.3)

∂| f |
∂θ

= −| f |Im Df

f
,

∂| f |
∂r

= | f |
r

Re
D f

f
( f (z) �= 0), (2.4)

∂

∂θ
arg f = Re

Df

f
= Re

zh′(z) − zg′(z)
h(z) + g(z)

( f (z) �= 0), (2.5)

∂

∂θ
arg f = 1

r
Im

D f

f
= 1

r
Im

zh′(z) + zg′(z)
h(z) + g(z)

( f (z) �= 0). (2.6)

Remark 2.4 If G ∈ H, then DG(zz) = 0 and DG(arg z) = 0. Therefore the constant
functions for the operators D andD are the functions of the formG(|z|2) andG(arg z),
respectively.

Remark 2.5 We note also that, if f (z) = αz+βz α, β ∈ C, thenD f (z) = αz+βz =
f (z).

3 Starlikeness and spirallikenes of analytic functions

A domain D ⊂ C is said to be starlike w.r.t. origin if each point w ∈ D may be
connected with origin by a segment that lies entirely in D. Geometrically, this means
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that the linear segment joining the origin to every other point w lies entirely in D.
An analytic function f that maps the unit disk D onto starlike domain is called star-
like function [9]. Every starlike function in A is necessarily univalent. An analytic
necessary and sufficient condition for starlikeness of univalent functions is:

� z f ′(z)
f (z)

> 0 (z ∈ D).

Modifying the starlikeness condition by inserting a factor eiγ (|γ | < π/2) we
obtain

�
(
eiγ

z f ′(z)
f (z)

)
> 0 (z ∈ D), (3.1)

that is the condition of γ -spirallikeness of analytic functions f in D. The notion of
γ -spirallikeness of f (D) geometrically means that the arc of the logarithmic spiral
(σt ) = teiγ (t ∈ [0,∞)) joining the origin to every other point w lies entirely
in f (D). It was shown by Spaček [8] that spirallike functions are univalent. Gamma
spirallike functions gained recognition of many researchers, their generalizations were
introduced and many properties were studied (see, for example [2, 6, 10]).

In 1981 Al-Amiri and Mocanu [1] proved a sufficient condition for a function
f ∈ C1(D) to be univalent and to map D onto a spirallike domain.

Theorem 3.1 ([1])Suppose that a function f ∈ C1(D) that vanishes only at the origin,
and let γ be a given real number such that |γ | < π/2. If J f > 0 on D, and

�
{
eiγ

Df (z)

f (z)

}
> 0 (z ∈ D \ {0}) (3.2)

then f is univalent in D and f (D) is γ - spirallike domain.

It is noteworthy that (3.2) reduces then to (3.1) in the case of f ∈ A. The properties
of harmonic starlike and spirallike functions were considered in [7].

4 Harmonic Archimedean and hyperbolic spirallikeness

Al-Amiri and Mocanu in their paper [1] stated that the same method of proof for
γ -spirallikeness can be used to show a sufficient conditions for Archimedean and
hyperbolic starlikeness.

Definition 4.1 Let (σφ) be the parametric family of Archimedean spiral arcs defined
by σφ : w = wφ(t) = tei(t+φ), t ∈ (0,∞), φ ∈ [0, 2π). It is clear that through
each point w ∈ C \ {0} passes only one spiral of the family (σφ). We say that D is an
Archimedean spirallike domain if for each w ∈ D, w �= 0, the part of the spiral arc
σφ joining the origin to the point w lies entirely in D.
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Definition 4.2 Let the family (σφ) of hyperbolic spiral be defined by σφ : w =
wφ(t) = ei(t+φ)/t, t ∈ (0,∞), φ ∈ [0, 2π). We say that D is a hyperbolic spirallike
domain if for each point w ∈ D, w �= 0, the part of the spiral arc σφ , joining the
origin to the point w, lies entirely in D.

Definition 4.3 Let G be differentiable function in the interval (0,∞). We say that D
is a generalized spiral-shaped domain, if for each point w ∈ D, w �= 0, the part of
the spiral arc wφ(t) = tei(G(t)+φ), t ∈ (0,∞), φ ∈ [0, 2π), joining the origin to the
point w, lies entirely in D.

Remark 4.4 We remark that the Definition 4.3 reduces to the definition of:
(i) starlikeness, if G = 0;
(ii) spirallikeness, if G(w) = eiγ , |γ | < π

2 ;
(iii) Archimedean spirallikenes, if G(w) = w.

Now, we define harmonic Archimedean, hyperbolic and generalized spirallikeness.

Definition 4.5 A harmonic function f ∈ H0 is called Archimedean spirallike function
if f is orientation-preserving and univalent onD and if f (D) is Archimedean spirallike
domain. The class of such functions will be denoted by HAS

0 . Similarly, a harmonic
function f ∈ H0 is called hyperbolic spirallike if it is orientation-preserving and
univalent on D and if f (D) is a hyperbolic spirallike domain. We denote by HHS

0
the class of such functions. Generally, a harmonic function f ∈ H0 will be called
generalized spiral-shaped function, if it is orientation-preserving and univalent on D

and if f (D) is a generalized spiral-shaped domain. This class of functions will be
denoted by HGS

0 .

Theorem 4.6 Suppose that a function f ∈ H0 be such that f (z) = 0 iff z = 0, and
that J f > 0 on D. Then f ∈ HAS

0 if and only if the following inequality

�
{
(1 − i | f (z)|) Df (z)

f (z)

}
> 0 (z ∈ D \ {0}) (4.1)

is satisfied.

Proof The proof will be a modification and supplement to that from [1], which con-
cerned the γ -spirallikeness conditions of f ∈ C1(D), and contained only necessary
condition for γ -spirallikeness.

Assume first that (4.1) is satisfied. For 0 < r < 1 we denote Cr = f (Tr ). We
note that 0 /∈ Cr for 0 < r < 1. We now prove that the function f is univalent in D.
To do this we will show that (Cr ) contains only non-intersecting Jordan curves. Let
(σφ) be the family of spirals such that σφ has the parametric representation σφ : w =
wφ(t), t ∈ R, andwφ = tei(t+φ). It is clear that through each point z ∈ C\ {0} passes
only one spiral of the family (σφ). Hence, for z = reiθ (0 < r < 1, 0 ≤ θ < 2π ), the
equation f (z) = wφ(t) determines a unique φ = φ(r , θ) ∈ [0, 2π). We first prove
that Cr is a Jordan curve for each 0 < r < 1. It can be achieved by showing that

∂φ

∂θ
> 0 (θ ∈ [0, 2π)) (4.2)
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and that the total variation of φ(r , θ) on a segment [0, 2π) is equal 2π . From the
representation of wφ we get

| f (z)| = t, Arg f (z) = t + φ, (4.3)

and from this

φ = Arg f (z) − | f (z)| = Arg f (z) − t . (4.4)

Differentiating with respect to θ and using (2.4) and (2.5) we obtain from (4.4)

∂φ

∂θ
= Re

Df

f
+ | f (z)|Im Df

f
= Re

{
(1 − i | f (z)|) Df

f

}
. (4.5)

Hence, by (4.1) the condition (4.2) is satisfied.
Furthermore, condition f (z) = 0 for z ∈ D \ {0} implies that the curves Cr , r ∈

(0, 1), are homotopic in the domain C \ {0}. Thus they have the same index with
respect to the origin, i.e., ind0Cr = const for all r ∈ (0, 1). By condition J f > 0 the
function f is univalent and preserves the orientation in a neighborhood of the origin.
This implies the existence of r0 ∈ (0, 1) such that ind0Cr = 1 for r < r0. Hence the
total variation of the argument along Cr is 2π , that is,

Var0≤θ<2π Arg f (reiθ ) = 2π (r ∈ (0, 1)). (4.6)

Now (4.4) and (4.6) yield

Var0≤θ<2πφ(r , θ) = Var0≤θ<2π Arg f (reiθ ) = 2π, (4.7)

which gives that for each r ∈ (0, 1), Cr is a simple Archimedean spirallike.
To complete the proof of the theorem we need only show that Cr ∩ Cρ = ∅,

whenever r �= ρ, r , ρ ∈ (0, 1). Fix a value φ ∈ [0, 2π). The system

f (z) = wφ(t) (|z| = r , 0 < r < 1)

yields a unique z = reiθ , θ = θ(r), and a unique t = t(r , θ) = t(r). It follows that
our assertion is equivalent to showing

dt

dr
> 0 f or r ∈ (0, 1). (4.8)

Differentiating (4.3) with respect to r , and applying (2.4) and (2.5) we obtain

1

t

dt

dr
= 1

r
Re

D f

f
− dθ

dr
Im

Df

f
,

dt

dr
= 1

r
Im

D f

f
+ dθ

dr
Re

Df

f
.
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Multiplying the first equality by Re Df
f , and the second by Im Df

f and summing up
we get

(
1

t
Re

Df

f
+ Im Df

f

)
dt

dr
= 1

r

(
Re

Df

f
Re

D f

f
+ Im Df

f Im
D f

f

)

= 1

r
Re

Df D f

f f
= 1

r

r2 J f (z)

| f |2
= r J f (z)

| f |2 .

Hence

| f |2
(
1

t
Re

Df

f
+ Im

Df

f

)
dt

dr
= r J f (z),

that is, applying (4.3)

| f |
(
Re

Df

f
+ | f |Im Df

f

)
dt

dr
= r J f (z), (4.9)

which is equivalent to

| f |Re
{
(1 − i | f |) Df

f

}
dt

dr
= r J f (z). (4.10)

By the assumpion f is orientation preserving, so that J f > 0 in D and therefore, by
(4.10), the condition (4.8) holds, Hence f is univalent inD.Moreover f (Dr ) ⊂ f (Dρ)

for 0 < r < ρ < 1. Thus f (Dr ) and hence f (D) are Archimedean spirallike.
Assume now that f is univalent on D, orientation preserving and that f (Dr ) is

Archimedean spirallike. Then the intersection of Cr with wφ(t) is connected for each
0 < r < 1 and φ ∈ R. Hence φ(θ) and t = t(r), given by (4.3) are nondecreasing in
θ , and 0 < r < 1, respectively. The identities (4.10) and (4.5) yields then (4.1). �


Reasoning along the same line, we obtain

Theorem 4.7 Suppose that a function f ∈ H0 vanishes only for z = 0, and be such
that J f > 0 on D. Then f ∈ HHS

0 if and only if the following inequality

�
{
(| f (z)| + i)

Df (z)

f (z)

}
> 0 (z ∈ D \ {0}) (4.11)

is satisfied.



133 Page 8 of 12 S.Kanas

Theorem 4.8 Suppose that a function f ∈ H0 satisfies the conditions that f (z) = 0
for z = 0 and that J f > 0 on D. Moreover, let G be a differentiable function in the

interval (0,∞). Then f ∈ HGS
0 if and only if the following inequality

�
{(

1 − i | f (z)|G ′(| f (z)|)) Df (z)

f (z)

}
> 0 (z ∈ D \ {0}) (4.12)

is satisfied.

Remark 4.9 We note that the condition (4.12) can be rewritten as

�
{

(1 − i | f (z)|) zh
′(z) − zg′(z)
h(z) + g(z)

}
> 0 (z ∈ D \ {0}). (4.13)

5 Examples

The introduced function classes are not empty, even though it is not easy to determine
the appropriate examples. Below we present some examples of the functions of the
considered classes.

Example 5.1 We note that the harmonic Koebe function does not satisfy the condition
(4.1), that is the harmonic Koebe function is not Archimedean spirallike. Also, har-
monic Koebe function is not hyperbolic spirallike. Indeed, for kH(z) = h(z) + g(z),
where

h(z) = z − z2/2 + z3/6

(1 − z)3
, g(z) = z2/2 + z3/6

(1 − z)3

we have

D kH(z) = z(1 + z)

(1 − z)4
− z2(1 + z)

(1 − z)4
,

and for Archimedean case we obtain (using Wolfram Mathematica, ver. 8.0)

Re

{
(1 − i |kH(z0)|) DkH(z0)

kH(z0)

}
≈ −7.8026 f or z0 = −1

2
+ i

2
,

and for z0 = 1
2 − i

2 in the hyperbolic case we have

Re

{
(|kH(z0)| + i)

DkH(z0)

kH(z0)

}
≈ −0.2847.
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Fig. 1 The domain f (D) for f (z) = 4z

4 + z
+ 2z

4 + z

But for G(w) = log w and z0 = − 1
2 + i

2 we obtain

Re

{(
1 − i |kH(z0)|G ′(|kH(z0)|)

) DkH(z0)

kH(z0)

}
≈ 0.6655,

which means, that generalized spirallikeness is possible, for some G.

Example 5.2 Let f (z) = 4z

4 + z
+ 2z

4 + z
= h + g. The image of the unit disk is very

regular and a disk-like as seen in the attached figure (Fig. 1)
This function satisfy the normalized condition f (0) = 0, h′(0) = 1. The analytic

part of f that is h(z) = 4z

4 + z
is Archimedean spirallike, since

Re

{
(1 − i |h(z)|) zh

′(z)
h(z)

}
= Re

zh′(z)
h(z)

+ |h(z)| Im zh′(z)
h(z)

= Re
4

4 + z
+

∣∣∣∣
4z

4 + z

∣∣∣∣ Im
4

4 + z
>

4

5
− 4

3

4

17
≈ 0.4863 > 0.

Also

D f (z) = 16z

(4 + z)2
− 8z

(4 + z)2
,
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Fig. 2 The domain f (D) for f (z) = z

(1 − z/5)(1 − z/5)

hence

∣∣∣∣
g′(z)
h′(z)

∣∣∣∣ = 8

16

∣∣∣∣
4 + z

4 + z

∣∣∣∣
2

≤ 1

2
< 1.

Therefore J f (z) > 0 in D and then f is sense-preserving. However f is not
Archimedean spirallike, since

Re
Df (z)

f (z)
+ | f (z)|Im Df (z)

f (z)
≈ −1.1766 f or z = −1

6
− 1

2
i,

and, for the same z

Re

{
(| f (z)| + i)

Df (z)

f (z)

}
≈ −8.4093,

which means that f is not hyperbolic spirallike.

Example 5.3 Consider now the function mapping the unit disk to a domain similar in
shape to the mapping from the previous example (Fig. 2)

f (z) = z

(1 − z/5)(1 − z/5)
.

Then

h′(z) = 1

(1 − z/5)2(1 − z/5)
, h′(0) = 1, g′(z) = z

(5 − z)(1 − z/5)2
,
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hence |g′(z)/h′(z)| < 1, so that f is orientation-preserving mapping. Moreover

Df (z)

f (z)
= 5

5 − z
− z

5 − z
then Re

Df (z)

f (z)
= 1, Im

Df

f
> − 5

12
.

Also | f (z)| < 25/16. Hence

Re
Df (z)

f (z)
+ | f (z)|Im Df (z)

f (z)
> 1 − 5

12
| f (z)| > 1 − 125

192
> 0 (z ∈ D),

so that f is Archimedean spirallike in D.
Consider now hyperbolic spirallikeness of f . We have

Re

{
(| f (z)| + i)

Df (z)

f (z)

}
= | f (z)|Re Df (z)

f (z)
− Im

Df (z)

f (z)
= | f (z)| − Im

Df (z)

f (z)
.

(5.1)

Since

| f (z)| = 25|z|
|5 − z|2 , Im

Df (z)

f (z)
= 10 Im z

|5 − z|2 , Re
Df (z)

f (z)
= 1,

then (5.1) holds if, and only if 25|z| − 10 Im z > 0, which is satisfied for z ∈ D. Thus
f is also hyperbolic spirallike.
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