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Abstract
We determine all non-Einstein Ricci solitons on four-dimensional Lorentzian Lie
groups whose soliton vector field is left-invariant. In addition to pp-wave and plane
wave Lie groups, there are four families of Lorentzian metrics on semi-direct exten-
sions R

3
� R and E(1, 1) � R. We show that some of these Ricci solitons are

conformally Einstein and they may be expanding, steady or shrinking.
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1 Introduction

A Ricci soliton is a triple (M, g, X) consisting of a vector field X on a pseudo-
Riemannian manifold (M, g) satisfying the differential equation

LX g + ρ = μg (1)

where L denotes the Lie derivative, ρ is the Ricci tensor and μ ∈ R. Ricci solitons not
only generalize Einsteinmetrics but also are self-similar solutions of theRicci flow and
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conversely, thus corresponding to geometric fixed points of the flow (modulo scaling
and diffeomorphisms). A Ricci soliton is said to be expanding, steady, or shrinking if
the soliton constant μ < 0, μ = 0 or μ > 0, respectively. Furthermore, if the soliton
vector field X is the gradient of some potential function, then the soliton is said to be
a gradient Ricci soliton. We refer to [11] for more information.

A Ricci soliton is said to be trivial if the pseudo-Riemannian metric is Einstein, in
which case onemay solve Equation (1) setting X = 0. It immediately follows from (1)
that two Ricci soliton vector fields X1 and X2 on a given manifold (M, g) differ on a
homothetic vector field ξ = X1 − X2. While the existence of homothetic vector fields
is a very rigid condition in the positive definite case, Lorentzian manifolds may admit
homothetic vector fields without being flat. Moreover, the Ricci soliton equation (1)
is invariant by homotheties in the sense that (M, g, X) is a Ricci soliton with soliton
constant μ if and only if (M, κg, 1

κ
X) is a Ricci soliton with soliton constant μ

κ
for

any κ > 0. Hence we work modulo homotheties in what follows.
A metric Lie group (G, 〈, 〉) is an algebraic Ricci soliton if the Ricci operator

satisfies Ric = μ Id+D for some derivation of the corresponding Lie algebra [24].
Algebraic Ricci solitons are critical points of the scalar curvature for an appropriately
restricted family of metrics [24] and, moreover, they are critical for a quadratic cur-
vature functional with zero energy in dimensions three and four [6]. Algebraic Ricci
solitons give rise to Ricci solitons whose soliton vector field is generically not left-
invariant and there is a relation between Riemannian and Lorentzian algebraic Ricci
solitons in the nilpotent case (see [30]). In contrast, Ricci solitons on Lie groups with
left-invariant soliton vector field are not necessarily critical for any quadratic curvature
functional, thus being of a different nature.

Non-trivial homogeneous Ricci solitons are necessarily expanding in the Rieman-
nian setting and they are algebraic in dimension four [1]. Left-invariant Ricci solitons
do not exist on Riemannian unimodular Lie groups, and there are no three-dimensional
non-trivial left-invariant Ricci solitons on Riemannian Lie groups [14]. In sharp con-
trast, the Lorentzian signature supports such solitons (see [4]).

The purpose of this work is to classify left-invariant Ricci solitons on four-
dimensional Lorentzian Lie groups. After reviewing left-invariant Einstein metrics
and plane waves, we recall the situation in dimension three, which is much sim-
pler than the four-dimensional one. Our main result (Theorem 1.2) gives a complete
description modulo homotheties of non-trivial left-invariant Ricci solitons which are
neither symmetric nor pp-waves. The symmetric case is treated in Remark 1.5 and the
pp-wave Lie groups are considered in Sect. 5.

1.1 Einstein metrics on Lorentzian four-dimensional Lie groups

While four-dimensional homogeneous Einstein metrics are locally symmetric in the
Riemannian setting [19], the Lorentzian signature allows other possibilities. Left-
invariant Einstein metrics on four-dimensional Lorentzian Lie groups were studied in
[9] and a different approach shows that left-invariant Einstein metrics split into three
categories: symmetric spaces, plane waves and left-invariant metrics which do not
correspond to any of these.
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Indecomposable locally symmetric Lorentzian spaces either are irreducible (and
hence of constant sectional curvature), or they correspond to Cahen-Wallach symmet-
ric spaces [7],which are a special class of planewaves (seeSect. 1.2). Four-dimensional
products R× N 3 are Einstein if and only if they are flat and so the only decomposable
four-dimensional Einstein Lorentzian symmetric spaces of non-constant sectional cur-
vature are products M1(c) × M2(c) of two surfaces with the same constant sectional
curvature. The other possibilities are covered by the following (see [28]).

Theorem 1.1 Let (G, 〈, 〉) be a four-dimensional Lie group with a left-invariant Ein-
stein Lorentzian metric which is neither locally symmetric nor a plane wave. Then, it
is locally homothetic to the Lie group determined by one of the following:

(i) The Ricci-flat semi-direct product R
3

� R with Lie algebra given by

[e1, e4] = −2e1, [e2, e4] = e2 + √
3e3, [e3, e4] = −√

3e2 + e3, or

(ii) the semi-direct product R
3

� R with Lie algebra given by

[u1, u4] = −u1 + δu2, [u2, u4] = 5u2, [u3, u4] = 2u3, δ �= 0, or

(iii) the semi-direct product R
3

� R with Lie algebra given by

[u1, u4] = 4u1, [u2, u4] = −2u2 + δu3, [u3, u4] = δu1 + u3, δ �= 0,

where {e1, e2, e3, e4} is an orthonormal basis with e3 timelike, and {u1, u2, u3, u4} is
a pseudo-orthonormal basis with 〈u1, u2〉 = 〈u3, u3〉 = 〈u4, u4〉 = 1.

The curvature operator R : �2 → �2 of metrics corresponding to Assertion (i)
has real and complex eigenvalues, and moreover ‖∇R‖2 �= 0. Metrics corresponding
to Assertion (ii) have scalar curvature τ = −48 and their Weyl curvature operator
is two-step nilpotent. Moreover, they are locally isometric to the only non-reductive
homogeneous space which is Einstein but not of constant sectional curvature [10, 15].
Metrics corresponding to Assertion (iii) have scalar curvature τ = −12 and theirWeyl
curvature operator is three-step nilpotent.

1.2 Homogeneous pp-waves and plane waves

Let (M, g,U) be a Brinkmann wave, i.e., a Lorentzian manifold admitting a parallel
degenerate line field U . (M, g,U) is said to be a pp-wave if the parallel line field is
locally generated by a parallel null vector field and (M, g) is transversally flat, i.e.,
its curvature tensor satisfies R(X ,Y ) = 0 for all X ,Y ∈ U⊥. In such case there exist
local coordinates (u, v, x1, x2) so that

g = du ◦ dv + H(v, x1, x2)dv ◦ dv + dx1 ◦ dx1 + dx2 ◦ dx2 .

Leistner showed in [25] that a Brinkmann wave (M, g,U) is a pp-wave if and only
if it is transversally flat and Ricci isotropic, i.e., g(Ric X ,Ric X) = 0 for any vector
field X on M .
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A pp-wave is said to be a plane wave if the covariant derivative of the curvature
tensor satisfies ∇X R = 0 for all X ∈ U⊥. In this case the local coordinates above can
be specialized so that H(v, x1, x2) = ai j (v)xi x j . TheRicci operator of any pp-wave is
two-step nilpotent and the metric is Ricci-flat if �x H = 0, being �x = ∂x1x1 + ∂x2x2

the spacelike Laplacian. It was shown in [17] that locally homogeneous Ricci-flat
pp-waves are plane waves in the four-dimensional case. Homogeneous steady Ricci
solitons on pp-waves which are not plane waves are given in Sect. 5, thus showing
that the result in [17] does not extend to Ricci solitons.

Homogeneous planewaves in dimension four are described in terms of a 2×2 skew-
symmetric matrix F and a 2 × 2 symmetric matrix A0 so that the defining function
H(v, x1, x2) takes the form H = xT A(v)x, where the matrix A(v) is given by (see
[2])

A(v) = evF A0e
−vF , or A(v) = 1

(v + b)2
elog(v+b)F A0e

− log(v+b)F .

Furthermore, the plane wave metric is Ricci-flat if and only if A0 is trace-free.
The existence of Ricci solitons on plane waves was investigated in [5] where it is

shown that any plane wave is a steady gradient Ricci soliton. Due to the existence of
homothetic vector fields, one also has the existence of expanding and shrinking Ricci
solitons on some special classes of plane waves. In any case, the soliton vector field
needs not be left-invariant for a plane wave Lie group, and hence the existence of
left-invariant Ricci solitons on plane wave Lie groups will be considered in Sect. 5.

1.3 Left-invariant Ricci solitons on 3-dimensional Lorentzian Lie groups

Non-trivial three-dimensional left-invariant Ricci solitons are either non-symmetric
pp-waves or locally isometric to a left-invariant metric on G = O(1, 2), the universal
cover of SL(2, R) or the non-unimodular semi-direct extension R

2
� R given by the

Lorentzian Lie algebras

(i) [u1, u2] = λu3, [u1, u3] = −λu1 ∓ u2, [u2, u3] = λu2, λ �= 0,
(i i) [u1, u2] = u1 + λu3, [u1, u3] = −λu1, [u2, u3] = λu2 + u3, λ �= 0,

(i i i) [e1, e3] = e1 − e2, [e2, e3] = e1 + e2

where {u1, u2, u3} is a pseudo-orthonormal basis with 〈u1, u2〉 = 〈u3, u3〉 = 1, and
{e1, e2, e3} is an orthonormal basis with timelike e1.

It was shown in [4] that three-dimensional Lorentzian Lie groups corresponding to
cases (i) and (ii) have a single Ricci curvature which is a double or triple root of the
corresponding minimal polynomial. Moreover, the Lie group corresponding to (iii),
which was omitted in [4], has complex Ricci curvatures −2 ± 2i .

There are two different possibilities for three-dimensional left-invariant pp-waves
which are Ricci solitons: a locally conformally flat plane wave (thus locally isometric
to a Pc–space), or a pp-wave locally isometric to a Nb–space. We refer to [16] for
a classification of homogeneous pp-waves in dimension three, definitions of Pc and
Nb–spaces and more details.
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1.4 Left-invariant Ricci solitons on 4-dimensional Lorentzian Lie groups

The four-dimensional situation is more complicated than the corresponding three-
dimensional one, as in the Einstein case. We consider separately the case of
left-invariant Ricci solitons on pp-wave Lie groups, which is treated in Sect. 5. The
remaining possibilities are given as follows, which is the main result of this paper.

Theorem 1.2 A non-symmetric four-dimensional Lorentzian Lie group which is not a
pp-wave is a non-trivial left-invariant Ricci soliton if and only if it is homothetic to
one of the following:

(i) Gα = R
3

� R with Lie algebra given by

[e1, e4] = αe1, [e2, e4] = ε
(
1 − α2

2

) 1
2
e2−e3, [e3, e4] = e2+ε

(
1 − α2

2

) 1
2
e3,

where {e1, e2, e3, e4} is an orthonormal basis with e3 timelike, and the parameter
0 ≤ α ≤ √

2. If α = 0 then ε = 1, while if 0 < α <
√
2 then ε2 = 1; in this

latter case, α �= 2√
3
whenever ε = −1.

(ii) Gα = R
3

� R with Lie algebra given by
[u1, u4] = αu1, [u2, u4] = −αu2 + u3, [u3, u4] = u1, α > 0,

where {u1, u2, u3, u4} is a pseudo-orthonormal basis with 〈u1, u2〉 = 〈u3, u3〉 =
〈u4, u4〉 = 1.

(iii) G = E(1, 1) � R with Lie algebra given by
[e2, e4] = −[e1, e2] = e2, [e1, e3] = [e3, e4] = 1

2 [e1, e4] = e3,
where {e1, e2, e3, e4} is an orthonormal basis with e3 timelike.

(iv) Gαβ = E(1, 1) � R with Lie algebra given by
[u1, u2] = u1, [u1, u4] = −2α(αβ + 1)u1, [u2, u3] = u3,
[u2, u4] = βu1, [u3, u4] = αu3,
where {u1, u2, u3, u4} is a pseudo-orthonormal basis with 〈u1, u2〉 = 〈u3, u3〉 =
〈u4, u4〉 = 1, and the parameters α > 0 and αβ /∈ {−2,−1,− 1

2

}
.

Remark 1.3 Left-invariant Ricci solitons corresponding to Gα in Assertion (i) are
steady and the left-invariant soliton vector field is defined by X = X1e1 + e4 if the

parameter α = 0, and by X = 1
2

(
α + ε

√
4 − 2α2

)
e4 otherwise.Moreover, the Ricci

operator has eigenvalues

ξ1 = 0, ξ2 = −α

(
α + ε

(
4 − 2α2

) 1
2

)
,

ξ3 = α2 − 2 − εα
(
1 − α2

2

) 1
2 +

(
α2 − 4 − 2εα

(
4 − 2α2

) 1
2

) 1
2

,

ξ4 = α2 − 2 − εα
(
1 − α2

2

) 1
2 −

(
α2 − 4 − 2εα

(
4 − 2α2

) 1
2

) 1
2

.

Hence the Ricci curvatures are {0, 0,−2± 2i} if α = 0, {0, λ, α ± βi} with λαβ �= 0
if 0 < α <

√
2, and {0,−2,±√

2 i} if α = √
2.
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Left-invariant Ricci solitons corresponding to Gα in Assertion (ii) are steady and
their left-invariant soliton vector field is defined by X = X1u1 − X1αu3 − 1

2αu4.
Moreover, their Ricci operator is three-step nilpotent.

Left-invariant Ricci solitons corresponding to Assertion (iii) are steady and their
left-invariant soliton vector field is defined by X = − 1

2e1+ 3
2e4. Moreover, their Ricci

operator has eigenvalues {0,−2,−2 ± √
6 i}.

Left-invariant Ricci solitons corresponding to Gαβ in Assertion (iv) are expanding
with μ = −(2(αβ + 1)2 + 1)α2 and their left-invariant soliton vector field is defined
by X = X1u1 + X2u2 + X4u4, where

X1 = 1
2(2αβ+1) (αβ + 2)(2(αβ + 1)αβ − 1),

X2 = 1
2αβ+1 (αβ + 2)(2(αβ + 2)αβ + 3)α2,

X4 = 1
2αβ+1 (αβ + 2)2 α .

Moreover, the Ricci operator is diagonalizable with non-zero real eigenvalues

ξ1 = ξ2 = −(2αβ + 1)(αβ + 1)α2,

ξ3 = (2αβ + 1)α2, ξ4 = −(2(αβ + 2)αβ + 3)α2 .

Remark 1.4 Let (G1, 〈, 〉1) and (G2, 〈, 〉2) be two Lorentzian Lie groups with non-
zero scalar curvatures. If (G1, 〈, 〉1) and (G2, 〈, 〉2) are homothetic, then one has that
τ−2
1 ‖R1‖2 = τ−2

2 ‖R2‖2 and τ−2
1 ‖W1‖2 = τ−2

2 ‖W2‖2, where Ri and Wi denote the
curvature tensor and the Weyl conformal curvature tensor for i = 1, 2, respectively.
We use the quadratic scalar curvature invariants to show that left-invariant metrics
in different assertions in Theorem 1.2 correspond to distinct homothetic classes. It
also follows that different values of the parameter in Assertion (i) determine distinct
homothetic classes. Metrics in Assertion (iv) with different αβ correspond to distinct
homothetic classes.

Remark 1.5 Locally symmetric Lorentzian spaces which are neither of constant
sectional curvature nor a Cahen-Wallach symmetric space split as a product [7]. Left-
invariant symmetric Ricci solitons which are neither Einstein nor a plane wave are
locally isometric to L

2 × N (c), where N (c) is a surface of constant curvature, and
correspond to one of the following Lie groups:

• Gαβ in Assertion (iv) of Theorem 1.2 for αβ = −1, as discussed in Sect. 2.4.1.
• The Lie group H3

� R determined by the Lie algebra

[u1, u2] = λ1u1, [u1, u4] = − γ3λ
2
1

γ4
u1, [u2, u4] = γ3λ

2
1u3, [u3, u4] = γ4λ1u3,

with λ1γ4 �= 0, where {u1, u2, u3, u4} is a pseudo-orthonormal basis with
〈u1, u1〉 = 〈u2, u2〉 = 〈u3, u4〉 = 1. It is a expanding Ricci soliton with μ = −λ21

and left-invariant soliton vector field X = − γ3λ
2
1

γ 2
4
u2+ γ 2

3 λ31
2γ 3

4
u3− λ1

γ4
u4, as discussed

in Sect. 4.2.2.3.
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Remark 1.6 The Bach tensor of a four-dimensional manifold is defined by B =
div1 div4 W + 1

2W [ρ] (see [23]). Four-dimensional Bach-flat metrics are confor-
mally invariant and Bach-flatness is a necessary condition to be conformally Einstein.
Left-invariant metrics in Theorem 1.2 are Bach-flat if and only if they correspond
to Assertion (iv) with αβ = − 5

4 . Furthermore, in this case the vector field X =
3
2u1 − 3α

2 u4 is locally a gradient and satisfies div4 W + 1
2W (·, ·, ·, X) = 0. A straight-

forward calculation shows that theWeyl operator acting on the space of two-forms has
non-zero eigenvalues and thus the metric is weakly-generic. Hence it is conformally
Einstein (see [20] for more information).

1.5 Left-invariant metrics and Gröbner basis

Connected and simply connected four-dimensional Lie groups are either products
SU (2) × R, S̃L(2, R) × R, or one of the solvable semi-direct extensions of three-
dimensional unimodular Lie groups Ẽ(2) � R, E(1, 1) � R, H3

� R or R
3

� R,
where Ẽ(2), E(1, 1), H3 and R

3 denote the Euclidean, the Poincaré, the Heisenberg
and the Abelian three-dimensional Lie algebras, respectively. Since our purpose is
to investigate left-invariant Ricci solitons, we work at the purely algebraic level, and
therefore we restrict to the corresponding Lie algebras. Left-invariant Riemannian
metrics are described, using the work of Milnor [26], in terms of the corresponding
derivations on the three-dimensional unimodular Lie subalgebras. The Lorentzian
situation is more subtle due to the fact that the restriction of the metric to the three-
dimensional subalgebras su(2), sl(2, R), e(2), e(1, 1),hor r3 maybe a positive definite,
Lorentzian or degenerate inner product.We follow [8] and consider separately the three
possibilities above.

Let (G, 〈, 〉) be a four-dimensional Lie group and let X be a left-invariant vector field
on G. Then (G, 〈, 〉, X , μ) is a left-invariant Ricci soliton if and only if the symmetric
tensor field 1

2P = LX 〈, 〉 + ρ − μ〈, 〉 vanishes identically. It is now immediate, since
the vector field X is left-invariant, that the condition P = 0 equals to a system of
polynomial equations on the structure constants which one has to solve in order to
obtain a complete classification.When the systemunder consideration is simple, it is an
elementary problem tofind all common roots, but if the number of equations, unknowns
and their degrees increase, it may become a quite unmanageable task. Given a set S
of polynomials Pi j ∈ R[x1, . . . , xn], an n-tuple of real numbers a = (a1, . . . , an) is
a solution of S if and only ifPi j (a) = 0 for all i , j . It is immediate to recognize that
a is a solution of S if and only if it is a solution of I = 〈Pi j 〉, the ideal generated by
the Pi j : if two sets of polynomials generate the same ideal, the corresponding zero
sets must be identical. The theory of Gröbner basis provides a well-known strategy to
solve rather large polynomial systems obtaining “better” polynomials that belong to
the ideal generated by the initial polynomial system. We make use of Gröbner basis to
show non-existence results in some cases (see [12, 13] formor information onGröbner
basis).
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2 Extensions of Lorentzian Lie groups

Let (G, 〈, 〉) be a four-dimensional Lorentzian Lie group G3�R so that the restriction
of the metric to the three-dimensional subalgebra g3 is Lorentzian. Three-dimensional
unimodular Lie algebras are completely described by using a Milnor type frame asso-
ciated to the self-dual structure tensor L given by L(X × Y ) = [X ,Y ], where “×”
denotes the vector-cross product 〈X×Y , Z〉 = det(X ,Y , Z). Self-duality of L ensures
the existence of an orthonormal basis {e1, e2, e3} of g3 diagonalizing the structure ten-
sor in the positive definite case [26]. If the inner product is of Lorentzian signature,
then L may have non-trivial Jordan normal form as follows (see, for example [27]).

Ia. L is real diagonalizable.Hence there exists an orthonormal basis {e1, e2, e3}, where
we assume e3 to be timelike, so that L(ei ) = λi ei .

Ib. L has complex eigenvalues. Then there exists an orthonormal basis {e1, e2, e3},
where we assume e3 to be timelike, so that

L =
⎛
⎝

λ 0 0
0 α β

0 −β α

⎞
⎠ , β �= 0 .

II. L has a double root of its minimal polynomial. Then there exists a pseudo-
orthonormal basis {u1, u2, u3} so that

L =
⎛
⎝

λ1 0 0
ε λ1 0
0 0 λ2

⎞
⎠ , ε = ±1, where 〈u1, u2〉 = 〈u3, u3〉 = 1 .

III. L has a triple root of its minimal polynomial. Then there exists a pseudo-
orthonormal basis {u1, u2, u3} so that

L =
⎛
⎝

λ 0 1
0 λ 0
0 1 λ

⎞
⎠ , where 〈u1, u2〉 = 〈u3, u3〉 = 1 .

In what follows, we set g = g3 � r and L denotes the structure operator of the
unimodular subalgebra g3.We follow thework of Rahmani [29] to describe Lorentzian
left-invariant metrics on g3, and to analyse the existence of left-invariant Ricci solitons
on each one of the possibilities above. It follows that all left-invariant metrics in
Theorem 1.2 are realized as extensions of unimodular Lorentzian Lie groups.
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2.1 The structure operator L is diagonalizable

There exists an orthonormal basis {e1, e2, e3, e4} of g = g3 � r, with e3 timelike,
where g3 = span{e1, e2, e3} and r = span{e4}, so that

[e1, e2] = −λ3e3, [e1, e3] = −λ2e2, [e2, e3] = λ1e1, [ei , e4]
(i=1,2,3)

=
3∑
j=1

α
j
i e j ,

for certain α
j
i ∈ R depending on the eigenvalues λi . The Jacobi identity leads to the

following different possibilities.

2.1.1 Structure operator with non-zero eigenvalues: metrics on ˜SL(2,R) × R or
SU(2) × R

Assume λ1λ2λ3 �= 0. Then left-invariant metrics on S̃L(2, R) × R or SU (2) × R are
described by the corresponding Lie algebra structure

[e1, e2] = −λ3e3, [e1, e3] = −λ2e2, [e1, e4] = γ1λ2e2 + γ2λ3e3,
[e2, e3] = λ1e1, [e2, e4] = −γ1λ1e1 + γ3λ3e3, [e3, e4] = γ2λ1e1 + γ3λ2e2,

where {e1, . . . , e4} is an orthonormal basis. A straightforward calculation shows that
a left-invariant vector field X = ∑

� X�e� is a Ricci soliton if and only if the tensor
field 1

2P = LX 〈, 〉 + ρ − μ〈, 〉 vanishes identically. Equivalently {Pi j = 0}, where
the polynomials Pi j are given by

P11 = (γ 2
1 − γ 2

2 − 1)λ21 − (γ 2
1 − 1)λ22 + (γ 2

2 + 1)λ23 − 2λ2λ3 − 2μ,

P12 = γ2γ3(λ
2
3 − λ1λ2) − 2(X4γ1 − X3)(λ1 − λ2),

P13 = −γ1γ3(λ
2
2 − λ1λ3) + 2(X4γ2 − X2)(λ1 − λ3),

P14 = γ3(λ2 − λ3)
2 + 2(X2γ1 − X3γ2)λ1,

P22 = −(γ 2
1 − 1)λ21 + (γ 2

1 − γ 2
3 − 1)λ22 + (γ 2

3 + 1)λ23 − 2λ1λ3 − 2μ,

P23 = γ1γ2(λ
2
1 − λ2λ3) + 2(X4γ3 + X1)(λ2 − λ3),

P24 = −γ2(λ1 − λ3)
2 − 2(X1γ1 + X3γ3)λ2,

P33 = −(γ 2
2 + 1)λ21 − (γ 2

3 + 1)λ22 + (γ 2
2 + γ 2

3 + 1)λ23 + 2λ1λ2 + 2μ,

P34 = γ1(λ1 − λ2)
2 + 2(X1γ2 + X2γ3)λ3,

P44 = −γ 2
1 (λ1 − λ2)

2 + γ 2
2 (λ1 − λ3)

2 + γ 2
3 (λ2 − λ3)

2 − 2μ .

Since λ1λ2λ3 �= 0, wemay assume λ1 = 1 just working with the homothetic metric
determined by êi = 1

λ1
ei . Let I ⊂ R[γ1, γ2, γ3, λ2, λ3, μ, X1, X2, X3, X4] be the

ideal generated by the polynomials Pi j . We compute a Gröbner basis G of I with
respect to the graded reverse lexicographical order and we get that the polynomials

g1 = μ2 and g2 = 4λ2λ3 + 3(λ2 + λ3 + 1)μ
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belong to G. Since λ2λ3 �= 0, there are no left-invariant Ricci solitons in this case.

2.1.2 Structure operator with a zero eigenvalue: metrics on Ẽ(2) � R or E(1, 1) � R

We distinguish two possibilities depending on the causality of ker L . If ker L is space-
like then either λ1 = 0 or λ2 = 0, while if ker L is timelike then λ3 = 0. Next we
show that left-invariant Ricci solitons exist only in the flat case.

2.1.2.1. Structure operator L with spacelike kernel. Without loss of generality, we
assume λ1 = 0 and λ2λ3 �= 0. Left-invariant metrics are described by

[e1, e2] = −λ3e3, [e1, e3] = −λ2e2, [e1, e4] = γ1e2 + γ2e3,
[e2, e4] = γ3e2 + γ4λ3e3, [e3, e4] = γ4λ2e2 + γ3e3,

where {e1, . . . , e4} is an orthonormal basis. We focus on the following components of
the tensor field P:

P11 = (λ3 − λ2)
2 − γ 2

1 + γ 2
2 − 2μ, P14 = γ4(λ3 − λ2)

2,

P22 = −(γ 2
4 + 1)(λ22 − λ23) + γ 2

1 − 4(γ3 − X4)γ3 − 2μ,

P33 = −(γ 2
4 + 1)(λ22 − λ23) + γ 2

2 + 4(γ3 − X4)γ3 + 2μ,

P44 = γ 2
4 (λ3 − λ2)

2 − γ 2
1 + γ 2

2 − 4γ 2
3 − 2μ .

One easily checks thatP11+γ4P14−P44 = (λ2−λ3)
2+4γ 2

3 and therefore λ3 = λ2
and γ3 = 0. Now, we have P22 + P33 = γ 2

1 + γ 2
2 which implies γ1 = γ2 = 0 and

the metric is flat.

2.1.2.2. Structure operator L with timelike kernel.
If λ3 = 0 and λ1λ2 �= 0 then left-invariant metrics are described by

[e1, e3] = −λ2e2, [e1, e4] = γ1e1 + γ2λ2e2, [e2, e3] = λ1e1,
[e2, e4] = −γ2λ1e1 + γ1e2, [e3, e4] = γ3e1 + γ4e2,

where {e1, . . . , e4} is an orthonormal basis. We get the following components of the
tensor field P:

P11 = (γ 2
2 − 1)(λ21 − λ22) − γ 2

3 − 4(γ1 − X4)γ1 − 2μ, P34 = γ2(λ1 − λ2)
2,

P33 = −(λ1 − λ2)
2 − γ 2

3 − γ 2
4 + 2μ, P44 = −γ 2

2 (λ1 − λ2)
2 − 4γ 2

1 + γ 2
3 + γ 2

4 − 2μ .

It now follows that P33 + γ2P34 + P44 = −(λ1 − λ2)
2 − 4γ 2

1 and thus λ2 = λ1
and γ1 = 0. Now, P11 + P33 = −2γ 2

3 − γ 2
4 which implies γ3 = γ4 = 0 and the

metric is flat as in the previous case.

2.1.3 Structure operator of rank one: metrics on H3
� R

We consider separately the cases when the restriction of the metric to ker L is positive
definite (λ3 �= 0) or Lorentzian (λ3 = 0). We make use of Gröbner basis to show
non-existence of left-invariant Ricci solitons in both cases.
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2.1.3.1. Structure operator L with positive definite kernel.
Setting λ1 = λ2 = 0 and λ3 �= 0 left-invariant metrics are described by

[e1, e2] = −λ3e3, [e1, e4] = γ1e1 + γ2e2 + γ3e3,
[e2, e4] = γ4e1 + γ5e2 + γ6e3, [e3, e4] = (γ1 + γ5)e3,

where {e1, . . . , e4} is an orthonormal basis. Now, X ∈ h�R determines a left-invariant
Ricci soliton if and only if the system of polynomial equations {Pi j = 0} is satisfied,
where the polynomials Pi j are given by

P11 = λ23 − 4γ 2
1 − γ 2

2 + γ 2
3 + γ 2

4 − 4γ1γ5 + 4X4γ1 − 2μ,

P12 = −γ1γ2 − 3γ1γ4 − 3γ2γ5 + γ3γ6 − γ4γ5 + 2X4(γ2 + γ4),

P13 = 2X2λ3 + 2γ1γ3 + 3γ3γ5 − γ4γ6 − 2X4γ3,

P14 = γ6λ3 − 2X1γ1 − 2X2γ4,

P22 = λ23 + γ 2
2 − γ 2

4 − 4γ 2
5 + γ 2

6 − 4γ1γ5 + 4X4γ5 − 2μ,

P23 = −2X1λ3 + 3γ1γ6 − γ2γ3 + 2γ5γ6 − 2X4γ6,

P24 = −γ3λ3 − 2X1γ2 − 2X2γ5, P34 = 2{X3(γ1 + γ5) + X1γ3 + X2γ6},
P33 = λ23 + 4γ 2

1 + γ 2
3 + 4γ 2

5 + γ 2
6 + 8γ1γ5 − 4X4(γ1 + γ5) + 2μ,

P44 = −4γ 2
1 − γ 2

2 + γ 2
3 − γ 2

4 − 4γ 2
5 + γ 2

6 − 4γ1γ5 − 2γ2γ4 − 2μ .

Since λ3 �= 0, we may assume λ3 = 1 just working with the homothetic metric
determined by êi = 1

λ3
ei . Let I1 ⊂ R[γ1, γ2, γ3, γ4, γ5, γ6, μ, X1, X2, X3, X4] be the

ideal generated by the polynomials Pi j . We compute a Gröbner basis G1 of I1 with
respect to the lexicographical order and get that the polynomials

g11 = X3

(
2617344X8

4 + 13139712X6
4 + 18557248X4

4 + 7213356X2
4 + 61803

)
,

g12 = X4

(
83755008X14

4 + 776429568X12
4 + 2689679360X10

4 + 4517104000X8
4

+4237066048X6
4 + 2362718304X4

4 + 591574590X2
4 + 5006043

)

belong to G1. Thus, X3 = X4 = 0. Next, we compute a second Gröbner basis G2 of the
ideal generated by the polynomials G1 ∪ {X3, X4} ⊂ R[γ1, γ2, γ3, γ4, γ5, γ6, μ, X1,
X2, X3, X4] with respect to the lexicographical order, obtaining that the polynomial
g21 = X2

1 + X2
2 belongs to G2, which shows that X = 0 and Ricci solitons reduce to

Einstein metrics, which do not exist in this case.

2.1.3.2. Structure operator L with Lorentzian kernel. In this case λ3 = 0 and we may
assume without loss of generality that λ1 = 0 and λ2 �= 0 so that left-invariant metrics
are described by

[e1, e3] = −λ2e2, [e1, e4] = γ1e1 + γ2e2 + γ3e3,
[e2, e4] = γ4e2, [e3, e4] = γ5e1 + γ6e2 − (γ1 − γ4)e3,
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where {e1, . . . , e4} is an orthonormal basis. Proceeding as in the previous case, one
has that the polynomials Pi j are given by

P11 = λ22 − γ 2
2 + γ 2

3 − γ 2
5 − 4γ1γ4 + 4γ1X4 − 2μ,

P12 = −2X3λ2 + γ1γ2 − 3γ2γ4 − γ5γ6 + 2X4γ2,

P13 = −2γ1(γ3 + γ5) − γ2γ6 + 3γ3γ4 − γ4γ5 − 2X4(γ3 − γ5),

P14 = γ6λ2 − 2(X1γ1 + X3γ5), P34 = γ2λ2 − 2X3(γ1 − γ4) + 2X1γ3,

P22 = −λ22 + γ 2
2 − 4γ 2

4 − γ 2
6 + 4X4γ4 − 2μ, P24 = −2{X1γ2 + X2γ4 + X3γ6},

P23 = 2X1λ2 − γ1γ6 − γ2γ3 − 2γ4γ6 + 2X4γ6,

P33 = −λ22 + γ 2
3 + 4γ 2

4 − γ 2
5 − γ 2

6 − 4γ1γ4 + 4X4(γ1 − γ4) + 2μ,

P44 = −4γ 2
1 − γ 2

2 + γ 2
3 − 4γ 2

4 + γ 2
5 + γ 2

6 + 4γ1γ4 − 2γ3γ5 − 2μ .

Since λ2 �= 0, we assume λ2 = 1 just working with the homothetic metric determined
by êi = 1

λ2
ei . Let I1 ⊂ R[γ1, γ2, γ3, γ4, γ5, γ6, μ, X1, X2, X3, X4] be the ideal

generated by the polynomialsPi j . We compute a Gröbner basis G1 of I1 with respect
to the lexicographical order so that that the polynomials

g11 = X2

(
2617344X8

4 + 13139712X6
4 + 18557248X4

4 + 7213356X2
4 + 61803

)
,

g12 = X4

(
83755008X14

4 + 776429568X12
4 + 2689679360X10

4 + 4517104000X8
4

+4237066048X6
4 + 2362718304X4

4 + 591574590X2
4 + 5006043

)

belong to G1. Thus, X2 = X4 = 0. We compute a second Gröbner basis G2 of the
ideal generated by the polynomials G1 ∪ {X2, X4} ⊂ R[γ1, γ2, γ3, γ4, γ5, γ6, μ, X1,
X2, X3, X4] with respect to the lexicographical order and we get that the polynomial
g21 = γ 2

4 +1 belongs to G2, which shows that there are no left-invariant Ricci solitons
in this case.

2.1.4 Structure operator with zero eigenvalues: metrics onR
3

� R

Since λ1 = λ2 = λ3 = 0, any linear map D : r3 → r3 is a derivation. In order to
simplify the structure constants, we proceed as follows. Let �(x, y) = 〈Dx, y〉 be
the bilinear form associated to D( ·) = [ · , e4], and let �s = 1

2 (� + t�) and �a =
1
2 (�− t�) be the symmetric and skew-symmetric parts of �, respectively. Moreover,
let Dsad and Dasad defined by �s(x, y) = 〈Dsad x, y〉 and �a(x, y) = 〈Dasad x, y〉
be the corresponding self-adjoint and anti-self-adjoint endomorphisms. We analyse
separately the different Jordan normal forms of Dsad .

2.1.4.1. The self-adjoint part of the derivation Dsad is diagonalizable.
In this case, there exists an orthonormal basis {e1, e2, e3} of r3, with e3 timelike, so

that

Dsad =
⎛
⎝

η1 0 0
0 η2 0
0 0 η3

⎞
⎠ , Dasad =

⎛
⎝

0 γ1 γ2
−γ1 0 γ3
γ2 γ3 0

⎞
⎠
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and therefore left-invariant metrics are described by

[e1, e4] = η1e1 − γ1e2 + γ2e3, [e2, e4] = γ1e1 + η2e2 + γ3e3,
[e3, e4] = γ2e1 + γ3e2 + η3e3,

where {e1, e2, e3, e4} is an orthonormal basis of r3 � R with e3 timelike. After a
straightforward calculation we get the following polynomials P̃i j = 1

2Pi j :

P̃11 = −η1(η1 + η2 + η3 − 2X4) − μ, P̃22 = −η2(η1 + η2 + η3 − 2X4) − μ,

P̃33 = η3(η1 + η2 + η3 − 2X4) + μ, P̃44 = −η21 − η22 − η23 − μ .

Hence, η2P̃11 − η1P̃22 = (η1 − η2)μ and η3P̃11 + η1P̃33 = (η1 − η3)μ. These
relations, together with the expression of P̃44, imply that η1 = η2 = η3 = κ and a
standard calculation shows that the corresponding left-invariant metric has constant
sectional curvature −κ2.
2.1.4.2. The self-adjoint part of the derivation Dsad has complex eigenvalues.

If the self-dual part of the derivation, Dsad , has complex eigenvalues then there
exists an orthonormal basis {e1, e2, e3} of r3, with e3 timelike, so that

Dsad =
⎛
⎝

η 0 0
0 δ ν

0 −ν δ

⎞
⎠ , Dasad =

⎛
⎝

0 γ1 γ2
−γ1 0 γ3
γ2 γ3 0

⎞
⎠ ,

where ν �= 0. The corresponding left-invariant metrics are described by

[e1, e4] = ηe1 − γ1e2 + γ2e3, [e2, e4] = γ1e1 + δe2 + (γ3 − ν)e3,
[e3, e4] = γ2e1 + (γ3 + ν)e2 + δe3,

and a standard calculation shows that the polynomials P̃i j = 1
2Pi j are given by

P̃11 = −η2 − 2(δ − X4)η − μ, P̃12 = γ1(δ − η) − γ2ν,

P̃13 = γ2(δ − η) + γ1ν, P̃14 = −X1η − X2γ1 − X3γ2,

P̃22 = −2δ2 − (η − 2X4)δ − 2γ3ν − μ, P̃23 = −(2δ + η − 2X4)ν,

P̃24 = X1γ1 − X2δ − X3(ν + γ3), P̃33 = 2δ2 + (η − 2X4)δ − 2γ3ν + μ,

P̃34 = X1γ2 − X2(ν − γ3) + X3δ, P̃44 = −2δ2 − η2 + 2ν2 − μ .

We work with the homothetic metric determined by êi = 1
ν
ei . Since γ2P̃12 −

γ1P̃13 = −γ 2
1 − γ 2

2 and P̃22 + P̃33 = −4γ3, it follows that γ1 = γ2 = γ3 = 0. Now,
P̃23 = −2δ−η+2X4, P̃24−δ P̃34 = −X3(δ

2+1), and δ P̃24+P̃34 = −X2(δ
2+1)

lead to X2 = X3 = 0 and X4 = δ + 1
2η. Thus, the system of polynomial equations

{P̃i j = 0} reduces to

P̃11 = P̃22 = −P̃33 = −μ = 0, P̃14 = −X1η = 0,

P̃44 = −2δ2 − η2 − μ + 2 = 0,
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which shows that X1η = 0 and the left-invariant metric given by

[e1, e4] = ηe1, [e2, e4] = ε

√
1 − 1

2η
2 e2 − e3, [e3, e4] = e2 + ε

√
1 − 1

2η
2 e3,

with −√
2 ≤ η ≤ √

2 and ε2 = 1 is a left-invariant steady Ricci soliton which
corresponds toAssertion (i) in Theorem 1.2.Moreover, the left-invariant soliton vector

field is given by X = X1e1 +ε e4 if η = 0, and X = 1
2

(
η + ε

√
4 − 2η2

)
e4 if η �= 0.

Note that (e1, e2, e3, e4) �→ (e1, e2,−e3,−e4) defines an isometry interchanging
(η, ε) and (−η,−ε), and hence we may assume 0 ≤ η ≤ √

2. Moreover, for η = 0,
the same isometry interchanges ε = 1 and ε = −1. A straightforward calculation
shows that the above metrics are never symmetric and they are Einstein if and only if
η = − 2ε√

3
, in which case corresponds to Assertion (i) in Theorem 1.1.

2.1.4.3. The self-adjoint part of the derivation Dsad has a double root.
In this case, there exists a pseudo-orthonormal basis {u1, u2, u3} of r3, with

〈u1, u2〉 = 〈u3, u3〉 = 1, so that

Dsad =
⎛
⎝

η1 0 0
ε η1 0
0 0 η2

⎞
⎠ , Dasad =

⎛
⎝

γ1 0 γ2
0 −γ1 γ3

−γ3 −γ2 0

⎞
⎠ ,

where ε2 = 1. Thus, corresponding left-invariant metrics are described by

[u1, u4] = (η1 + γ1)u1 + εu2 − γ3u3, [u2, u4] = (η1 − γ1)u2 − γ2u3,
[u3, u4] = γ2u1 + γ3u2 + η2u3,

where {u1, u2, u3, u4} is a pseudo-orthonormal basis with 〈u1, u2〉 = 〈u3, u3〉 =
〈u4, u4〉 = 1. We will consider the following polynomials P̃i j = 1

2Pi j :

P̃11 = −ε(2η1 + η2 + 2γ1 − 2X4), P̃12 = −η1(2η1 + η2) + 2X4η1 − μ,

P̃13 = −γ3(η1 − η2) − εγ2, P̃23 = −γ2(η1 − η2),

P̃33 = −η2(2η1 + η2) + 2X4η2 − μ, P̃44 = −2η21 − η22 − μ .

One easily checks that

γ2P̃13 − γ3P̃23 = −εγ 2
2 , η2P̃12 − η1P̃33 = (η1 − η2)μ,

εη1P̃11 − P̃33 + P̃44 = −η1(4η1 − η2 + 2γ1) + 2X4(η1 − η2),

and since P̃44 = −2η21−η22−μ it follows that γ2 = 0, η2 = η1 and η1(3η1+2γ1) = 0.
If 3η1+2γ1 = 0 then the resulting left-invariantmetric isEinstein and it corresponds

to Assertion (ii) in Theorem 1.1. Finally, if η1 = γ2 = η2 = 0 and γ1 �= 0, then the
left-invariant metric corresponds to

[u1, u4] = γ1u1 + εu2 − γ3u3, [u2, u4] = −γ1u2, [u3, u4] = γ3u2, (2)
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and u2 is a recurrent null vector. Furthermore, a straightforward calculation shows
that the curvature tensor is transversally flat (i.e., R(Y , Z) = 0 for all Y , Z ∈ u⊥

2 )
and the Ricci operator is isotropic (ρ11 = −2εγ1 is the only non-zero component of
the Ricci tensor). Hence the underlying structure is that of a pp-wave which is neither
symmetric nor locally conformally flat.

2.1.4.4. The self-adjoint part of the derivation Dsad has a triple root.
Let {u1, u2, u3} be a pseudo-orthonormal basis of r3, with 〈u1, u2〉 = 〈u3, u3〉 = 1,

so that

Dsad =
⎛
⎝

η 0 1
0 η 0
0 1 η

⎞
⎠ , Dasad =

⎛
⎝

γ1 0 γ2
0 −γ1 γ3

−γ3 −γ2 0

⎞
⎠ .

Therefore the corresponding left-invariant metrics are given by

[u1, u4] = (η + γ1)u1 − γ3u3, [u2, u4] = (η − γ1)u2 − (γ2 − 1)u3,
[u3, u4] = (γ2 + 1)u1 + γ3u2 + ηu3,

where {u1, u2, u3, u4} is a pseudo-orthonormal basis of of r3 � R, with 〈u1, u2〉 =
〈u3, u3〉 = 〈u4, u4〉 = 1. A straightforward calculation shows that the non-zero poly-
nomials P̃i j = 1

2Pi j are given by

P̃12 = −3η2 + 2X4η + γ3 − μ, P̃14 = −X2(η − γ1) − X3γ3,

P̃22 = 2γ2, P̃23 = −3η + γ1 + 2X4,

P̃24 = −X1(η + γ1) − X3(γ2 + 1), P̃33 = −3η2 + 2X4η − 2γ3 − μ,

P̃34 = −X3η + X2(γ2 − 1) + X1γ3, P̃44 = −3η2 − μ .

Since P̃22 = 2γ2, P̃12 − P̃33 = 3γ3 and P̃12 − η P̃23 − P̃44 = η(3η − γ1) + γ3,
it follows that γ2 = γ3 = 0 and η(3η − γ1) = 0.

Now, if 3η − γ1 = 0 then the corresponding left-invariant metric is Einstein, and
it corresponds to Assertion (iii) in Theorem 1.1 if γ1 = 3η �= 0. (The case where
η = γ1 = 0 corresponds to a Ricci-flat plane wave).

If η = 0 and γ1 �= 0, then a straightforward calculation shows that left-invariant
metrics, which are given by

[u1, u4] = γ1u1, [u2, u4] = −γ1u2 + u3, [u3, u4] = u1,

are neither Einstein nor symmetric. Moreover, the system of polynomial equations
{P̃i j = 0} reduces to

P̃12 = P̃33 = P̃44 = −μ = 0, P̃14 = X2γ1 = 0, P̃23 = γ1 + 2X4 = 0,
P̃24 = −X1γ1 − X3 = 0, P̃34 = −X2 = 0,

and it defines a left-invariant steady Ricci soliton with left-invariant soliton vector
field X = X1u1 − X1γ1u3 − 1

2γ1u4.
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Finally, note that (u1, u2, u3, u4) �→ (−u1,−u2, u3,−u4) defines an isometry
interchanging γ1 and −γ1 and hence, without loss of generality, we can restrict the
parameter γ1 to γ1 > 0. Setting α = γ1, this case corresponds to Assertion (ii) in
Theorem 1.2.

2.2 The structure operator L has complex eigenvalues

If the structure operator L is of type Ib then there exists an orthonormal basis
{e1, e2, e3, e4} of g = g3 � r, with e3 timelike, where g3 = span{e1, e2, e3} and
r = span{e4}, so that

[e1, e2] = −βe2 − αe3, [e1, e3] = −αe2 + βe3, [e2, e3] = λe1, [ei , e4]
(i=1,2,3)

=
3∑
j=1

α
j
i e j ,

with β �= 0, for certain α
j
i ∈ R. Next we consider separately the cases when the real

eigenvalue λ = 0 and λ �= 0.

2.2.1 Case of zero real eigenvalue: metrics on E(1, 1) � R

If λ = 0 then the corresponding metrics are given by

[e1, e2] = −βe2 − αe3, [e1, e3] = −αe2 + βe3, [e1, e4] = γ1e2 + γ2e3,
[e2, e4] = 2γ3βe2 + (γ3 − γ4)αe3, [e3, e4] = (γ3 − γ4)αe2 + 2γ4βe3,

where {e1, e2, e3, e4} is an orthonormal basis of e(1, 1)�rwith e3 timelike. A straight-
forward calculation shows that the polynomials Pi j are given by

P11 = −4β2 − γ 2
1 + γ 2

2 − 2μ, P23 = −4((γ3 − γ4)
2 + 1)αβ − γ1γ2,

P12 = (γ2(γ3 − γ4) − 2X3)α − 2(γ1(2γ3 + γ4) + X2)β + 2X4γ1,

P13 = −(γ1(γ3 − γ4) − 2X2)α + 2(γ2(γ3 + 2γ4) − X3)β − 2X4γ2,

P14 = −4(γ3 − γ4)β
2, P44 = −8(γ 2

3 + γ 2
4 )β2 − γ 2

1 + γ 2
2 − 2μ,

P22 = −8γ3(γ3 + γ4)β
2 + 4(2X4γ3 + X1)β + γ 2

1 − 2μ,

P24 = −(γ2 + 2X3(γ3 − γ4))α + (γ1 − 4X2γ3)β − 2X1γ1,

P33 = 8(γ3 + γ4)γ4β
2 − 4(2X4γ4 − X1)β + γ 2

2 + 2μ,

P34 = (γ1 + 2X2(γ3 − γ4))α + (γ2 + 4X3γ4)β + 2X1γ2 .

Since β �= 0, we may assume β = 1 just working with the homothetic metric deter-
mined by êi = 1

β
ei . Using the expressions above forP14,P11,P23 andP44, together

with P22 + P33 = γ 2
1 + γ 2

2 − 8(γ 2
3 − γ 2

4 − X4(γ3 − γ4) − X1), we get

γ4 = γ3, μ = − 1
2 (γ

2
1 − γ 2

2 + 4), α = − 1
4γ1γ2, γ3 = ε1

2 , X1 = − 1
8 (γ

2
1 + γ 2

2 ),
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where ε21 = 1. Now, one easily checks that

ε1P12 − P24 − 1
4γ1γ2P34 + 1

2γ1P33 = 1
16γ1(γ

2
2 − 8)(γ 2

2 + 2γ 2
1 + 8),

ε1P13 − 1
4γ1γ2P24 + P34 − 1

2γ2P33 = − 1
16γ2(γ

2
1 + 8)(2γ 2

2 + γ 2
1 − 8),

from where it follows that γ1 = 0 and γ2 ∈ {−2, 0, 2}. A standard calculation shows
that the corresponding left-invariant metric, which is given by

[e1, e2] = −e2, [e1, e3] = e3, [e1, e4] = γ2e3, [e2, e4] = ε1e2, [e3, e4] = ε1e3,

is Einstein if and only if γ2 = 0 (and locally isometric to a product of two surfaces
with the same constant curvature). Hence we take γ2 = 2ε2, with ε22 = 1, and the
system of polynomial equations {Pi j = 0} reduces to

P12 = −2X2 = 0, P13 = −2(X3 + 2ε2X4) + 6ε1ε2 = 0,P22 = 4ε1X4 − 6 = 0,
P24 = −2ε1X2 = 0,P33 = −4ε1X4 + 6 = 0, P34 = 2ε1X3 = 0,

which shows that X2 = X3 = 0, X4 = 3ε1
2 , and the left-invariant metric given by

[e1, e2] = −e2, [e1, e3] = e3, [e1, e4] = 2ε2e3, [e2, e4] = ε1e2, [e3, e4] = ε1e3,

is an steady Ricci soliton with left-invariant soliton vector field X = − 1
2e1 + 3ε1

2 e4.
Note that (e1, e2, e3, e4) �→ (e1,−e2,−e3,−e4) is an isometry interchanging

ε1 = 1 and ε1 = −1, and (e1, e2, e3, e4) �→ (e1,−e2,−e3, e4) defines an isome-
try which interchanges ε2 = 1 and ε2 = −1. Hence we can set ε1 = ε2 = 1 obtaining
Assertion (iii) in Theorem 1.2.

2.2.2 Case of non-zero real eigenvalue: metrics on ˜SL(2,R) × R

If λ �= 0 then the corresponding left-invariant metrics are given by

[e1, e2] = −βe2 − αe3, [e1, e3] = −αe2 + βe3, [e2, e3] = λe1,
[e1, e4] = (α2 + β2)(γ1e2 + γ2e3), [e2, e4] = −(γ1α − γ2β)λe1 + γ3βe2 + γ3αe3,
[e3, e4] = (γ2α + γ1β)λe1 + γ3αe2 − γ3βe3,

where {e1, e2, e3, e4} is an orthonormal basis of sl(2, R) � r with e3 timelike.
A straightforward calculation shows that the polynomials Pi j are given by

P11 = −((α2 + β2)2 − (α2 − β2)λ2)(γ 2
1 − γ 2

2 ) − 4αβλ2γ1γ2 − 4β2 − λ2 − 2μ,

P12 = (2X4(α
2 + β2 − αλ) − (α2 + β2 + 2αλ)βγ3)γ1

+ (((α2 + β2)α − (α2 − β2)λ)γ3 + 2X4βλ)γ2 − 2(X3(α − λ) + X2β),

P13 = −(((α2 + β2)α − (α2 − β2)λ)γ3 − 2X4βλ)γ1

− (2X4(α
2 + β2 − αλ) + (α2 + β2 + 2αλ)βγ3)γ2 + 2(X2(α − λ) − X3β),

P14 = 2(X2α − X3β)λγ1 − 2(X3α + X2β)λγ2 − 4β2γ3,
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P22 = ((α2 + β2)2 − α2λ2)γ 2
1 − β2λ2γ 2

2 + 2αβλ2γ1γ2 + 4X4βγ3

+ 4X1β − (2α − λ)λ − 2μ,

P23 = αβ(λ2(γ 2
1 − γ 2

2 ) − 4γ 2
3 ) − ((α2 + β2)2 − (α2 − β2)λ2)γ1γ2 − 2(2α − λ)β,

P24 = ((α2 + β2)(β − 2X1) − βλ2)γ1 − ((α2 + β2)(α − 2λ) + αλ2)γ2 − 2(X3α + X2β)γ3,

P33 = −β2λ2γ 2
1 + ((α2 + β2)2 − α2λ2)γ 2

2 − 2αβλ2γ1γ2 + 4X4βγ3

+ 4X1β + (2α − λ)λ + 2μ,

P34 = ((α2 + β2)(α − 2λ) + αλ2)γ1 + ((α2 + β2)(2X1 + β) − βλ2)γ2

+ (2X2α − 2X3β)γ3,

P44 = −(α2 + β2 − (α + β)λ)(α2 − αλ + (β + λ)β)(γ 2
1 − γ 2

2 ) − 4β2γ 2
3

− 4(α2 + β2 − αλ)βλγ1γ2 − 2μ .

In this case we make use of Gröbner basis again, but due to the difficulty in getting
such a basis using the above polynomials Pi j , we reduce the number of variables as
follows. After a straightforward calculation, the expressions of P11, P22, β P12 −
(α − λ)P13 and (α − λ)P12 + β P13 let us to clear μ, X1, X2 and X3, respectively,
obtaining:

μ = − 1
2 ((α2 + β2)2 − (α2 − β2)λ2)(γ 2

1 − γ 2
2 ) − 2αβλ2γ1γ2 − 2β2 − 1

2λ2,

X1 = − 1
4β ((α2 + β2)2 − α2λ2)γ 2

1 + 1
4βλ2γ 2

2 − 1
2αλ2γ1γ2 − X4γ3 − 1

4β ((λ − 2α)λ − 2μ),

X2 =
(
1
2

(
α2 − β2 − 4αβ2λ

(α−λ)2+β2

)
γ3 + X4β

)
γ1 +

(
αβ(α2+β2−λ2)

(α−λ)2+β2 γ3 + X4α
)

γ2,

X3 = −
(

αβ(α2+β2−λ2)

(α−λ)2+β2 γ3 − X4α
)

γ1 +
(
1
2

(
α2 − β2 − 4αβ2λ

(α−λ)2+β2

)
γ3 − X4β

)
γ2 .

Hence we can eliminate the above variables from the polynomials Pi j and, as a
consequence, X4 is also eliminated. Let us denote by Qi j the expressions obtained
from the polynomialsPi j after substituting μ, X1, X2 and X3. These expressionsQi j

are not directly polynomials since they contain variables in denominators. We avoid
this problem considering Q′

i j given by

Q′
14 =

(
(α − λ)2 + β2

)
Q14, Q′

23 = Q23, Q′
24 = 2

(
(α − λ)2 + β2

)
β Q24,

Q′
33 = Q33, Q′

34 = 2
(
(α − λ)2 + β2

)
β Q34, Q′

44 = Q44,

the remaining ones being zero. Thus, Q′
i j are polynomials in R[γ1, γ2, γ3, λ, α, β].

Now, let I ⊂ R[γ1, γ2, γ3, λ, α, β] be the ideal generated by the polynomials Q′
i j .

We compute a Gröbner basis G of I with respect to the lexicographical order and one
gets that the polynomial g = (α2 + β2)2β2 belongs to G. Since β �= 0, one has that
there are no left-invariant Ricci solitons in this case.

2.3 The structure operator L has a double root of its minimal polynomial

If the structure operator L is of type II then there exists a pseudo-orthonormal basis
{u1, u2, u3, u4} of g = g3 � r, with 〈u1, u2〉 = 〈u3, u3〉 = 〈u4, u4〉 = 1, where
g3 = span{u1, u2, u3} and r = span{u4}, so that
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[u1, u2] = λ2u3, [u1, u3] = −λ1u1 − εu2, [u2, u3] = λ1u2, [ui , u4]
(i=1,2,3)

=
3∑
j=1

α
j
i u j ,

with ε2 = 1, for certain α
j
i ∈ R. Next, depending on the eigenvalues λi , we are led to

the following different possibilities.

2.3.1 Case of zero eigenvalues: metrics on H3
� R

If λ1 = λ2 = 0 then the corresponding metrics are determined by

[u1, u3] = −εu2, [u1, u4] = γ1u1 + γ2u2 + γ3u3,
[u2, u4] = γ4u2, [u3, u4] = γ5u1 + γ6u2 − (γ1 − γ4)u3,

and the following polynomials Pi j are obtained:

P12 = −2γ 2
4 − 2γ1γ4 + γ5γ6 + 2X4γ1 + 2X4γ4 − 2μ, P22 = γ 2

5 ,

P14 = −2X1γ2 − 2X2γ4 − 2X3γ6 − εγ5, P34 = 2(X3γ1 − X1γ3 − X3γ4),

P33 = −2(2γ 2
4 − 2γ1γ4 + γ5γ6 + 2X4γ1 − 2X4γ4 + μ),

P44 = −3γ 2
1 − 3γ 2

4 + 2γ1γ4 − 2γ3γ5 − 2γ5γ6 − 2μ, P24 = −2(X1γ1 + X3γ5) .

Note that γ5 must vanish and hence 2(γ1−γ4)P12+(γ1+γ4)P33 = 2(γ4−3γ1)μ.
Thus, either μ = 0 or γ4 = 3γ1. If μ = 0 thenP44 = −2γ 2

1 − 2γ 2
4 − (γ1 − γ4)

2 and
if γ4 = 3γ1 then one easily checks that

P24 = −2X1γ1,

2γ 2
1P14 − (2γ1γ2 − γ3γ6)P24 − γ1γ6P34 = −12X2γ

3
1 ,

γ1P34 − γ3P24 = −4X3γ
2
1 ,

P12 − P44 = 8X4γ1 .

Hence, in any case, γ1 = γ4 = 0, and the left-invariant metric is given by

[u1, u3] = −εu2, [u1, u4] = γ2u2 + γ3u3, [u3, u4] = γ6u2 . (3)

A straightforward calculation shows that u2 is parallel and the curvature tensor satisfies
R(Y , Z) = 0 and ∇Y R = 0 for all Y , Z ∈ u⊥

2 . Thus, the underlying structure is a
plane wave.

2.3.2 Case �1 = 0, �2 �= 0: metrics on Ẽ(2) � R or E(1, 1) � R

In this case one has

[u1, u2] = λ2u3, [u1, u3] = −εu2, [u1, u4] = γ1u2 + γ2u3,
[u2, u4] = γ3u2 + γ4λ2u3, [u3, u4] = −εγ4u2 + γ3u3,

and the following polynomials Pi j are obtained after a straightforward calculation:



61 Page 20 of 35 M. Ferreiro-Subrido et al.

P12=λ22 − γ2γ4λ2 − 2(γ 2
3 − X4γ3 + μ), P24=−γ4λ

2
2,

P44=2(γ4ε − γ2)γ4λ2 − 3γ 2
3 − 2μ, P33=2γ2γ4λ2−λ22−2(2γ 2

3 −2X4γ3+μ) .

It now follows that 2P12 − 2(γ2+εγ4)
λ2

P24 − P33 − P44 = 3(λ22 + γ 2
3 ) and, since

λ2 �= 0, there are no left-invariant Ricci solitons in this case.

2.3.3 Case �1 �= 0, �2 = 0: metrics on E(1, 1) � R

If λ1 �= 0 and λ2 = 0 then

[u1, u3] = −λ1u1 − εu2, [u1, u4] = γ1u1 + γ2u2, [u2, u3] = λ1u2,
[u2, u4] = −(2εγ2λ1 − γ1)u2, [u3, u4] = γ3u1 + γ4u2,

and straightforward calculations show that the non-zero polynomialsPi j are given by

P11 = −4ελ1 + γ 2
4 − 4γ1γ2 + 4X4γ2 − 4εX3, P22 = γ 2

3 ,

P12 = −4γ 2
2 λ21 + 4ε(2γ1 − X4)γ2λ1 − 4γ 2

1 + γ3γ4 + 4X4γ1 − 2μ,

P13 = (2εγ2γ4 − 2X2)λ1 − 3γ1γ4 − γ2γ3 + 2X4γ4 + 2εX1,

P14 = (4εX2γ2 − γ4)λ1 − 2X2γ1 − 2X1γ2 − εγ3 − 2X3γ4,

P23 = 2(2εγ2γ3 + X1)λ1 − 3γ1γ3 + 2X4γ3, P24 = γ3λ1 − 2X1γ1 − 2X3γ3,

P44 = −4γ 2
2 λ21 + 8εγ1γ2λ1 − 4γ 2

1 − 2γ3γ4 − 2μ , P33 = −2(γ3γ4 + μ) .

Since γ3 must be zero, it follows that P23 = 2X1λ1 and P33 = −2μ, and hence
X1 = μ = 0. Now, P44 = −4(εγ2λ1 − γ1)

2 implies γ1 = εγ2λ1 and thus P13 =
−(εγ2γ4+2X2)λ1+2X4γ4, from where we get X2 = − ε

2γ2γ4+ X4
γ4
λ1
. At this point,

the left-invariant metric is given by

[u1, u3] = −λ1u1 − εu2, [u1, u4] = εγ2λ1u1 + γ2u2, [u2, u3] = λ1u2,
[u2, u4] = −εγ2λ1u2, [u3, u4] = γ4u2,

and the system of polynomial equations {Pi j = 0} reduces to

P11 = −4ε(γ 2
2 + 1)λ1 + γ 2

4 + 4X4γ2 − 4εX3 = 0,
P14 = −γ4{(γ 2

2 + 1)λ1 + 2(X3 − εX4γ2)} = 0 .

Set v1 = u1, v2 = 1
2u2, v3 = εγ2u3 + u4 and v4 = u3. A straightforward calculation

shows that [vi , v j ] = 0 for all i, j ∈ {1, 2, 3} and [v4, vi ] ∈ span{v1, v2, v3}. Hence
any left-invariant metric above is isometric to some left-invariant metric on R

3
� R

as discussed in Sect. 2.1.4.
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2.3.4 Case of non-zero eigenvalues: metrics on ˜SL(2,R) × R

In this case one has the metric expressed in terms of the Lie brackets

[u1, u2] = λ2u3, [u1, u3] = −λ1u1 − εu2, [u2, u3] = λ1u2,
[u1, u4] = λ1γ1u1 + εγ1u2 + γ2λ2u3, [u2, u4] = −γ1λ1u2 + γ3λ2u3,
[u3, u4] = −γ3λ1u1 − (γ2λ1 + εγ3)u2,

and a straightforward calculation shows that the polynomials Pi j are given by

P11 = γ 2
2 (λ21 − λ22) − 2ε(2γ 2

1 − γ2γ3 + 2)λ1 + 2ελ2 + γ 2
3 + 4εX4γ1 − 4εX3,

P12 = γ2γ3λ
2
1 − (γ2γ3 − 1)λ22 − 2λ1λ2 + εγ 2

3 λ1 − 2μ,

P13 = γ1γ2(λ
2
1 − λ1λ2) + 2(εγ1γ3 − X4γ2 − X2)λ1

+ (εγ1γ3 + 2X4γ2 + 2X2)λ2 − 2εγ3X4 + 2εX1,

P14 = γ2(λ1 − λ2)
2 + 2(X2γ1 + X3γ2 + εγ3)λ1 − 2εγ3λ2 − 2εX1γ1 + 2εX3γ3,

P22 = γ 2
3 (λ21 − λ22), P34 = −2(X1γ2 + X2γ3)λ2,

P23 = −γ1γ3(λ
2
1 − λ1λ2) − 2(X4γ3 − X1)(λ1 − λ2),

P24 = −γ3(λ
2
1 + λ22) + 2γ3λ1λ2 − 2(X1γ1 − X3γ3)λ1,

P33 = −2γ2γ3λ
2
1 + (2γ2γ3 − 1)λ22 − 2εγ 2

3 λ1 − 2μ,

P44 = −2γ2γ3(λ1 − λ2)
2 − 2εγ 2

3 (λ1 − λ2) − 2μ .

Let I ⊂ R[γ1, γ2, γ3, ε, λ1, λ2, μ, X1, X2, X3, X4] be the ideal generated by
the polynomials Pi j . We compute a Gröbner basis G of I with respect to the graded
reverse lexicographical order and obtain that the polynomial g = λ32 belongs to G.
Since λ2 �= 0, there are no left-invariant Ricci solitons in this case.

2.4 The structure operator L has a triple root of its minimal polynomial

If the structure operator L is of type III then there exists a pseudo-orthonormal basis
{u1, u2, u3, u4} of g = g3 � r, with 〈u1, u2〉 = 〈u3, u3〉 = 〈u4, u4〉 = 1, where
g3 = span{u1, u2, u3} and r = span{u4}, so that

[u1, u2] = u1 + λu3, [u1, u3] = −λu1, [u2, u3] = λu2 + u3, [ui , u4]
(i=1,2,3)

=
3∑
j=1

α
j
i u j ,

for certain α
j
i ∈ R. Next we consider separately the cases λ = 0 and λ �= 0.

2.4.1 Case of zero eigenvalue: metrics on E(1, 1) � R

If λ = 0, then

[u1, u2] = u1, [u1, u4] = γ1u1, [u2, u3] = u3,

[u2, u4] = γ2u1 + γ3u3, [u3, u4] = γ4u3,
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and a straightforward calculation shows that the non-zero polynomials Pi j are given
by

P12 = −γ 2
1 − γ1γ4 + 2X4γ1 + 2X2 − 2μ, P23 = −2γ3γ4 + 2X4γ3 + 2X3,

P22 = −γ 2
3 − 2γ2γ4 + 4X4γ2 − 4X1 − 4, P34 = −2(X2γ3 + X3γ4),

P24 = −(2X1 + 1)γ1 − 2X2γ2 + 2γ4, P44 = −γ 2
1 − 2γ 2

4 − 2μ,

P33 = −2(γ 2
4 + γ1γ4 − 2X4γ4 + 2X2 + μ) .

From the expressions of P22, P23 and P44 we get

X1 = − 1
4γ

2
3 − 1

2 (γ4 − 2X4)γ2 − 1, X3 = (γ4 − X4)γ3, μ = − 1
2γ

2
1 − γ 2

4 ,

and thusP12 = 2γ 2
4 −(γ4−2X4)γ1+2X2 which implies X2 = −γ 2

4 + 1
2 (γ4−2X4)γ1.

Now, P24 = 1
2 (γ

2
3 + 2)γ1 + 2(γ2γ4 + 1)γ4 and hence γ1 = − 4(γ2γ4+1)γ4

γ 2
3 +2

. At this

point, the system of polynomial equations {Pi j = 0} reduces to

P33 = 4
(γ 2

3 +2)2

{
(γ 2

3 + 2γ2γ4 + 4)2γ4 + X4(γ
2
3 + 2)(γ 2

3 − 4γ2γ4 − 2)
}
γ4 = 0,

P34 = 2
γ 2
3 +2

{
2(γ2γ4 + 1)γ4 + (γ 2

3 − 4γ2γ4 − 2)X4
}
γ3γ4 = 0 .

One easily checks that

γ3
2 P33 − P34 = 1

2(γ 2
3 +2)2

{
3γ 4

3 + 12γ 2
3 + (γ 2

3 + 4γ2γ4 + 6)2 + 12
}

γ3γ
2
4

and therefore γ3γ4=0.
If γ4 = 0 (which implies γ1 = 0), the left-invariant metric is given by

[u1, u2] = u1, [u2, u3] = u3, [u2, u4] = γ2u1 + γ3u3, (4)

and a standard calculation shows that u1 is a recurrent null vector. Moreover, the only
non-zero component of the Ricci tensor ρ22 = −2− 1

2γ
2
3 shows that the Ricci operator

is isotropic, R(Y , Z) = 0, and ∇Y R = 0 for all Y , Z ∈ u⊥
1 . Hence the underlying

structure corresponds to a plane wave.
If γ4 �= 0 then γ3 = 0, and P33 = 4

{
(γ2γ4 + 2)2γ4 − X4(2γ2γ4 + 1)

}
γ4. Note

that if 2γ2γ4 + 1 = 0 then P33 �= 0. Hence the left-invariant metric is given by

[u1, u2] = u1, [u1, u4] = −2(γ2γ4 + 1)γ4u1, [u2, u3] = u3,
[u2, u4] = γ2u1, [u3, u4] = γ4u3,

and it is an expanding left-invariant Ricci soliton with μ = −(2(γ2γ4 + 1)2 + 1)γ 2
4

and left-invariant soliton vector field X = X1u1 + X2u2 + X4u4, where

X1 = 1
2(2γ2γ4+1) (γ2γ4 + 2)(2(γ2γ4 + 1)γ2γ4 − 1),

X2 = 1
2γ2γ4+1 (γ2γ4 + 2)(2(γ2γ4 + 2)γ2γ4 + 3)γ 2

4 ,

X4 = 1
2γ2γ4+1 (γ2γ4 + 2)2 γ4 .
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A straightforward calculation shows that the above metric is symmetric if and only if
(γ2γ4 + 1)(γ2γ4 + 2) = 0. Moreover, it is Einstein if and only if γ2γ4 + 2 = 0, in
which case the sectional curvature is constant. Otherwise, if γ2γ4 + 1 = 0, then the
metric is locally a product L2 × N (c), where L

2 is the Minkowskian plane and N (c) a
surface of constant curvature c. Finally, note that (u1, u2, u3, u4) �→ (u1, u2, u3,−u4)
defines an isometry interchanging (γ4, γ2) and (−γ4,−γ2) and hence, without loss of
generality, we can restrict the parameter γ4 to γ4 > 0. Setting α = γ4 and β = γ2,
this case corresponds to Assertion (iv) in Theorem 1.2 and Remark 1.5.

2.4.2 Case of non-zero eigenvalue: metrics on ˜SL(2,R) × R

If λ �= 0, then

[u1, u2] = u1 + λu3, [u1, u3] = −λu1, [u2, u3] = λu2 + u3,
[u1, u4] = γ1λu1 + γ2λ

2u3, [u3, u4] = −γ3λu1 − γ2λ
2u2 − γ2λu3,

[u2, u4] = γ3u1 − (γ1 − γ2)λu2 − (γ1 − γ2 − γ3λ)u3,

and the following polynomials Pi j are obtained:

P12 = −(γ 2
2 − γ1γ2 + 1)λ2 + 2X4γ2λ + 2X2 − 2μ, P13 = 3γ 2

2 λ3,

P33 = (2γ 2
2 − 2γ1γ2 − 1)λ2 − 4X4γ2λ − 4X2 − 2μ, P44 = −3γ 2

2 λ2 − 2μ .

One easily checks that 2P12 − 3
λ
P13 + P33 − 3P44 = −3λ2. Since λ �= 0, there

are no left-invariant Ricci solitons in this case.

3 Extensions of Riemannian Lie groups

In this section we analyze left-invariant Lorentzian metrics which are extensions of
three-dimensional unimodular Riemannian Lie groups. In particular, we show that any
left-invariant Ricci soliton in this setting is trivial.

Lemma 3.1 A four-dimensional Lie group G = G3 �R equipped with a left-invariant
Lorentzian metric whose restriction to G3 is Riemannian, is a left-invariant Ricci
soliton if and only if it is a space of non-negative constant sectional curvature.

Let g = g3 � r and let L be the structure operator of g3. L is self-adjoint and diag-
onalizable, so there exists an orthonormal basis {e1, e2, e3, e4} of g, with e4 timelike,
where g3 = span{e1, e2, e3} and r = span{e4}, so that

[e1, e2] = λ3e3, [e1, e3] = −λ2e2, [e2, e3] = λ1e1, [ei , e4]
(i=1,2,3)

=
3∑
j=1

α
j
i e j ,

for certain α
j
i ∈ R. Next, depending on the eigenvalues λi and imposing the Jacobi

identity, we are led to the following different possibilities.
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3.1 Structure operator with non-zero eigenvalues: metrics on ˜SL(2,R) × R and
SU(2) × R

If λ1λ2λ3 �= 0, left-invariant Lorentzian metrics are described by

[e1, e2] = λ3e3, [e1, e3] = −λ2e2, [e1, e4] = γ1λ2e2 + γ2λ3e3,
[e2, e3] = λ1e1, [e2, e4] = −γ1λ1e1 + γ3λ3e3, [e3, e4] = −γ2λ1e1 − γ3λ2e2,

and proceeding as in Sect. 2.1.1 a straightforward calculation shows that there are no
left-invariant Ricci solitons in this case.

3.2 Structure operator with a zero eigenvalue:metrics on Ẽ(2)� R and E(1, 1)� R

Without loss of generality, we assume λ3 = 0 and λ1λ2 �= 0. Then Lorentzian left-
invariant metrics on Ẽ(2) � R or E(1, 1) � R are given by

[e1, e3] = −λ2e2, [e1, e4] = γ1e1 + γ2λ2e2, [e2, e3] = λ1e1,
[e2, e4] = −γ2λ1e1 + γ1e2, [e3, e4] = γ3e1 + γ4e2 .

Proceeding as in Sect. 2.1.2.2 one has that the existence of left-invariant Ricci solitons
leads to λ2 = λ1, γ1 = γ3 = γ4 = 0 and hence to flat metrics on Ẽ(2) � R.

3.3 Structure operator of rank one: metrics on H3
� R

Set λ1 = λ2 = 0 and λ3 �= 0 to express left-invariant Lorentzian metrics as

[e1, e2] = λ3e3, [e1, e4] = γ1e1 + γ2e2 + γ3e3,
[e2, e4] = γ4e1 + γ5e2 + γ6e3, [e3, e4] = (γ1 + γ5)e3 .

A straightforward calculation as in Sect. 2.1.3.1 shows that there are no left-invariant
Ricci solitons in this case.

3.4 Case of zero eigenvalues: metrics onR
3

� R

Proceeding as in Sect. 2.1.4.1 one has that left-invariant metrics are described by

[e1, e4] = η1e1 − γ1e2 − γ2e3, [e2, e4] = γ1e1 + η2e2 − γ3e3,
[e3, e4] = γ2e1 + γ3e2 + η3e3 .

Analogous calculations to those in Sect. 2.1.4.1 show that R
3

� R is a left-invariant
Ricci soliton if and only if η1 = η2 = η3 = κ , in which case the sectional curvature
is constant κ2.
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4 Extensions of degenerate Lie groups

In this section we study left-invariant Lorentzian metrics which are extensions of
three-dimensional unimodular Lie groups with degenerate metric. We show that the
underlying structure of any non-Einstein soliton is either a plane wave (Sect. 4.1 and
Sect. 4.2.1.1) or a symmetric product L

2 × N (c) (Sect. 4.2.2.3.). While products
L
2 × N (c) discussed in Sect. 4.2.2.3 are left-invariant Ricci solitons, the case of plane

waves is more complicated and we analyze it in Sect. 5.
Let g = g3�r be a four-dimensional Lie algebrawith a Lorentzian inner product 〈, 〉

which restricts to a degenerate inner product on the subalgebra g3. Let g′
3 = [g3, g3] be

the derived subalgebra of g3. We consider separately the different cases for dim g′
3 ∈

{0, 1, 2, 3}.

4.1 dim g′
3 = 0: left-invariant metrics onR

3
� R

The Lie algebra g3 is Abelian, since dim g′
3 = 0. In this case there exists a pseudo-

orthonormal basis {u1, u2, u3, u4} of g = g3 � span{u4}, with 〈u1, u1〉 = 〈u2, u2〉 =
〈u3, u4〉 = 1, so that

[u1, u4] = γ1u1 + γ2u2 + γ3u3, [u2, u4] = γ4u1 + γ5u2 + γ6u3,
[u3, u4] = γ7u1 + γ8u2 + γ9u3,

where γi ∈ R. A straightforward calculation leads to the polynomials

P11 = −γ 2
7 + 4X4γ1 − 2μ, P13 = 2X4γ7,

P34 = γ 2
7 + γ 2

8 + 2X4γ9 − 2μ, P23 = 2X4γ8 .

It follows from the expressions of P13 and P23, together with P11 − P34 =
−2γ 2

7 − γ 2
8 + 2X4(2γ1 − γ9), that γ7 = γ8 = 0. Hence the left-invariant metric is

given by

[u1, u4] = γ1u1 + γ2u2 + γ3u3, [u2, u4] = γ4u1 + γ5u2 + γ6u3, [u3, u4] = γ9u3, (5)

and a standard calculation shows that u3 is a recurrent null vector such that R(Y , Z) =
0 and ∇Y R = 0 for all Y , Z ∈ u⊥

3 . Moreover, the only non-zero component of the
Ricci tensor is ρ44 = −γ 2

1 − 1
2 (γ2 + γ4)

2 − γ 2
5 + (γ1 + γ5)γ9 which shows that the

Ricci operator is isotropic, and thus the underlying structure is a plane wave.

4.2 dim g′
3 = 1: left-invariant metrics on H3

� R

Since the restriction of the metric to g3 has signature (+,+, 0) then g′
3 = span{v} can

be a null or a spacelike subspace. We analyse those two possibilities separately.
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4.2.1 g′
3 = span{v} is a null subspace

In this case, setting u3 = v there exists a pseudo-orthonormal basis {u1, u2, u3, u4}
of g = g3 � r, with 〈u1, u1〉 = 〈u2, u2〉 = 〈u3, u4〉 = 1, where g3 = span{u1, u2, u3}
and r = span{u4}, so that

[u1, u2] = λ1u3, [u1, u3] = λ2u3, [u2, u3] = λ3u3, [ui , u4]
(i=1,2,3)

=
3∑
j=1

α
j
i u j ,

for certain α
j
i ∈ R andwhere at least one of λ1, λ2 and λ3 is non-zero. Next, depending

on the λi ’s, we are led to the following different possibilities.

4.2.1.1. Case λ2 = λ3 = 0.
If λ2 = λ3 = 0, then necessarily λ1 �= 0 and one gets

[u1, u2] = λ1u3, [u1, u4] = γ1u1 + γ2u2 + γ3u3,
[u2, u4] = γ4u1 + γ5u2 + γ6u3, [u3, u4] = (γ1 + γ5)u3 .

(6)

A standard calculation shows that u3 is a recurrent vector field and the curvature tensor
satisfies R(Y , Z) = 0 and∇Y R = 0 for all Y , Z ∈ u⊥

3 . The only non-zero component
of the Ricci tensor is ρ44 = 1

2 {λ21 + 4γ1γ5 − (γ2 + γ4)
2} which shows that the Ricci

operator is isotropic and hence the underlying structure is a plane wave.

4.2.1.2. Case λ2 = 0, λ3 �= 0.
In this case one has

[u1, u2] = λ1u3, [u1, u4] = γ1λ3u1 + (γ1 − γ2)λ1u3, [u2, u3] = λ3u3,
[u2, u4] = γ3u1 + γ4u3, [u3, u4] = γ2λ3u3,

and the non-zero polynomials Pi j are given by

P11 = 4X4γ1λ3 − 2μ, P12 = 2X4γ3, P22 = −λ23 − 2μ,

P14 = λ1λ3 + 2(X4(γ1 − γ2) + X2)λ1 − 2X1γ1λ3 − 2X2γ3,

P24 = −γ1λ
2
3 − 2X1λ1 + 2X3λ3 + 2X4γ4, P34 = (2X4γ2 − 2X2)λ3 − λ23 − 2μ,

P44 = λ21 − 2γ1(γ1 − γ2)λ
2
3 − 4X1(γ1 − γ2)λ1 − 4X3γ2λ3 − 4X2γ4 − γ 2

3 .

Since λ3 �= 0, P11 − P22 = (λ3 + 4X4γ1)λ3 implies that X4 �= 0. Hence this
expression, together with the expressions of P12 and P22, lead to

γ3 = 0, γ1 = − 1
4X4

λ3, μ = − 1
2λ

2
3,

and a direct calculation shows that

2λ1P14 − 2γ2λ3P24 + 2
λ3

(λ21 − γ3λ1 + γ4λ3)P34 − λ3P44 = 1

8X2
4

λ53 .
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Since λ3 �= 0, there are no left-invariant Ricci solitons in this case.

4.2.1.3. Case λ2 �= 0.
If λ2 �= 0, then the Lie algebra structure is given by

[u1, u2] = λ1u3, [u1, u3] = λ2u3, [u2, u3] = λ3u3, [u3, u4] = γ4λ2u3,
[u1, u4] = −γ1λ2λ3u1 + γ1λ

2
2u2 + γ2λ2u3,

[u2, u4] = −γ3λ3u1 + γ3λ2u2 + (γ1λ1λ3 − (γ3 − γ4)λ1 + γ2λ3)u3,

and the non-zero polynomials Pi j are as follows:

P11 = −λ22 − 4X4γ1λ2λ3 − 2μ, P12 = 2X4γ1λ
2
2 − λ2λ3 − 2X4γ3λ3,

P14 = γ1λ
2
2λ3 − γ3λ

2
2 + λ1λ3 + 2X2(λ1 + γ3λ3) + 2(X4γ2 + X3 + X1γ1λ3)λ2,

P22 = −λ23 + 4X4γ3λ2 − 2μ,

P24 = γ1λ2λ
2
3 − 2X1γ1λ

2
2 − λ1λ2 + 2X4γ1λ1λ3 − γ3λ2λ3

− 2(X4(γ3 − γ4) + X1)λ1 − 2X2γ3λ2 + 2(X4γ2 + X3)λ3,

P34 = −λ22 − λ23 + 2(X4γ4 − X1)λ2 − 2X2λ3 − 2μ,

P44 = −γ 2
1 λ42 − 2γ 2

1 λ22λ
2
3 + 2γ1(γ3 − γ4)λ

2
2λ3 + λ21 − 2γ3(γ3 − γ4)λ

2
2 − γ 2

3 λ23

− 4X2γ1λ1λ3 + 4X2(γ3 − γ4)λ1 − 4(X1γ2 + X3γ4)λ2 − 4X2γ2λ3 .

Since λ2 �= 0, then

P11 − P22 = −λ22 + λ23 − 4X4(γ1λ3 + γ3)λ2, P12 = −λ2λ3 + 2X4(γ1λ
2
2 − γ3λ3),

imply that X4 �= 0. Now, from the expressions of P12, P11 and P22 we obtain

γ1 = (λ2 + 2X4γ3)λ3

2X4λ
2
2

, μ = −λ32 + 2(λ2 + 2X4γ3)λ
2
3

2λ2
, γ3 = − λ2

4X4
,

and a direct calculation shows that

2(γ4λ22 − λ1λ3)P14 + 2(λ1 + γ4λ3)λ2P24

−2(λ21 + (γ1λ1 + γ2)(λ
2
2 + λ23) + γ4λ1λ3)P34 + (λ22 + λ23)P44 = − (λ22 + λ23)

3

8X2
4

.

Since λ2 �= 0, there are no left-invariant Ricci solitons in this case.

4.2.2 g′
3 = span{v} is a spacelike subspace

Setting u1 = v
‖v‖ , there exists a pseudo-orthonormal basis {u1, u2, u3, u4} of g =

g3 � r, with 〈u1, u1〉 = 〈u2, u2〉 = 〈u3, u4〉 = 1, where g3 = span{u1, u2, u3} and
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r = span{u4}, so that

[u1, u2] = λ1u1, [u1, u3] = λ2u1, [u2, u3] = λ3u1, [ui , u4]
(i=1,2,3)

=
3∑
j=1

α
j
i u j ,

for certain α
j
i ∈ R and where at least one of λ1, λ2 and λ3 is non-zero. Depending on

the λi ’s we are led to the following different possibilities.

4.2.2.1. Case λ1 = λ2 = 0.
Since λ3 �= 0 one has the Lie algebra structure

[u1, u4] = γ1u1, [u2, u3] = λ3u1, [u2, u4] = γ2u1 + γ3u2 + γ4u3,
[u3, u4] = γ5u1 + γ6u2 + (γ1 − γ3)u3 .

A direct calculation showsP33 = −λ23; hence there are no left-invariant Ricci solitons
in this case.

4.2.2.2 Case λ1 = 0, λ2 �= 0.
In this case one has

[u1, u3] = λ2u1, [u1, u4] = γ1λ2u1, [u2, u3] = λ3u1,
[u2, u4] = (γ1 − γ2)λ3u1 + γ2λ2u2, [u3, u4] = γ3u1 + γ4u2 .

It now follows from P33 = −2λ22 − λ23 that there are no left-invariant Ricci solitons
in this case.

4.2.2.3. Case λ1 �= 0.
If λ1 �= 0 then the Lie algebra structure becomes

[u1, u2] = λ1u1, [u1, u3] = λ2u1, [u1, u4] = γ1λ1u1, [u2, u3] = λ3u1,
[u2, u4] = λ1γ2u1 − γ3λ1λ2u2 + γ3λ

2
1u3,[u3, u4] = −(γ3λ2λ3 − γ2λ2 + (γ1 − γ4)λ3)u1 − γ4λ2u2 + γ4λ1u3,

and one has the polynomials Pi j as follows:

P11 = −γ 2
3 λ22λ

2
3 + 2γ3λ1λ

2
2 + 2γ2γ3λ

2
2λ3 − 2(γ1 − γ4)γ3λ2λ

2
3 − 2λ21 − γ 2

2 λ22

− (γ1 − γ4)
2λ23 − 2(2γ1 + γ4)λ1λ2 + 2γ2λ1λ3 + 2(γ1 − γ4)γ2λ2λ3

+ 4(X4γ1 + X2)λ1 + 4X3λ2 − 2μ,

P12 = −γ3γ4λ
2
2λ3 + γ2γ4λ

2
2 − 2γ2λ1λ2 − (2γ1 + γ4)λ1λ3 − (γ1 − γ4)γ4λ2λ3

+ 2(X4γ2 − X1)λ1 + 2X3λ3,

P13 = 2γ3λ
2
2λ3 − 2γ2λ

2
2 + 2λ1λ3 + 2(γ1 − γ4 − X4γ3)λ2λ3 + (2X4γ2 − 2X1)λ2

− 2(X4(γ1 − γ4) + X2)λ3,

P14 = γ 2
3 λ1λ

2
2λ3 + γ3λ

2
1λ3 − γ2γ3λ1λ

2
2 − (γ1 + γ4)γ3λ1λ2λ3 + 2γ2λ

2
1 + 2γ1γ2λ1λ2
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− 2γ1(γ1 − γ4)λ1λ3 + 2X3γ3λ2λ3 − 2(X1γ1 + X2γ2)λ1 − 2X3γ2λ2

+ 2X3(γ1 − γ4)λ3,

P22 = 2γ3λ1λ
2
2 − 2λ21 − γ 2

4 λ22 − 4X4γ3λ1λ2 − 2γ2λ1λ3 − 2μ,

P23 = γ3λ2λ
2
3 + γ4λ

2
2 + (γ1 − γ4)λ

2
3 − 2λ1λ2 − γ2λ2λ3 − 2X4γ4λ2,

P24 = −2γ3λ
2
1λ2 + 2γ3γ4λ1λ

2
2 − γ2γ3λ1λ2λ3 − 2(γ1 − X4γ3)λ

2
1

+ (γ 2
2 − γ1γ4 + 2X2γ3)λ1λ2 − (γ1 − γ4)γ2λ1λ3 + 2X3γ4λ2,

P33 = −2λ22 − λ23,

P34 = γ 2
3 λ22λ

2
3 − 2γ2γ3λ

2
2λ3 + 2(γ1 − γ4)γ3λ2λ

2
3 + (γ 2

2 + γ 2
4 )λ22 + (γ1 − γ4)

2λ23

− (2γ1 + γ4)λ1λ2 − γ2λ1λ3 − 2(γ1 − γ4)γ2λ2λ3 + 2X4γ4λ1 − 2μ,

P44 = −2γ 2
3 λ21λ

2
2 + 2γ3λ

3
1 − (2γ 2

1 + γ 2
2 − 2γ1γ4 + 4X2γ3)λ

2
1 − 4X3γ4λ1 .

The polynomialP33 gives λ2 = λ3 = 0, and thusP22 −P34 = −2(λ1 + X4γ4)λ1
implies X4 �= 0 and γ4 �= 0. Hence

γ2P11 − 2γ1P12 + 2P14 − γ2P22 = 4γ2λ21,
γ1P22 − P24 − γ1P34 = −2X4(γ3λ1 + γ1γ4)λ1,

lead to γ2 = 0, and γ1 = − γ3λ1
γ4

. Finally, a standard calculation shows that the left-
invariant metric, given by

[u1, u2] = λ1u1, [u1, u4] = − γ3λ
2
1

γ4
u1, [u2, u4] = γ3λ

2
1u3, [u3, u4] = γ4λ1u3,

is symmetric and locally isometric to a product L
2 × N (c) where N is a surface of

constant curvature c. Furthermore, it is a expanding Ricci soliton with μ = −λ21 and

left-invariant soliton vector field X = − γ3λ
2
1

γ 2
4
u2 + γ 2

3 λ31
2γ 3

4
u3 − λ1

γ4
u4.

4.3 dim g′
3 = 2: left-invariant metrics on Ẽ(2) � R and E(1, 1) � R

Let g′ = [g, g] be the derived subalgebra of g. Without loss of generality we may
assume g′ = g3. Indeed, if dim g′ < 3 then there exist two linearly independent
vectors x1, x2 ∈ g acting as derivations on g. Since g is Lorentzian, we can choose a
non-null vector y ∈ span{x1, x2} so that g = h� span{y}, where the restriction of the
metric to the three-dimensional subalgebra h is non-degenerate. Thus, g corresponds
to one of the cases already studied in Sects. 2 and 3.

Let g′
3 = span{w1, w2}, where wi = vi + ξi u3, with vi spacelike and u3 null and

orthogonal to v1 and v2.
If {v1, v2} are linearly independent, i.e., g′

3 is a spacelike subspace, we choose
an orthonormal basis {u1, u2} for span{v1, v2} which can be completed to a pseudo-
orthonormal basis {u1, u2, u3, u4}ofg = g3�rwith 〈u1, u1〉 = 〈u2, u2〉 = 〈u3, u4〉 =



61 Page 30 of 35 M. Ferreiro-Subrido et al.

1, where g3 = span{u1, u2, u3} and r = span{u4}, so that

[u1, u2] = γ1u1 + γ2u2, [u1, u3] = γ3u1 + γ4u2,

[u2, u3] = γ5u1 + γ6u2, [ui , u4]
(i=1,2,3)

=
3∑
j=1

α
j
i u j ,

for certain γi , α
j
i ∈ R.

If {v1, v2} are linearly dependent, i.e., the restriction of themetric tog′
3 is degenerate,

then {u1 = v1‖v1‖ , u3} is a basis of g′
3 which can be completed to a pseudo-orthonormal

basis {u1, u2, u3, u4} of g = g3 � r, with 〈u1, u1〉 = 〈u2, u2〉 = 〈u3, u4〉 = 1, where
g3 = span{u1, u2, u3} and r = span{u4}, so that

[u1, u2] = γ1u1 + γ2u3, [u1, u3] = γ3u1 + γ4u3,

[u2, u3] = γ5u1 + γ6u3, [ui , u4]
(i=1,2,3)

=
3∑
j=1

α
j
i u j ,

for certain γi , α
j
i ∈ R.

In any of the two cases above, a straightforward calculation shows that the Jacobi
identity is not satisfied since dim g′

3 = 2 and dim g′ = 3. Hence there are no left-
invariant Ricci solitons in this case.

4.4 dim g′
3 = 3: left-invariant metrics on ˜SL(2,R) × R and SU(2) × R

In this case, g′
3 = g3 and we consider the pseudo-orthonormal basis {u1, u2, u3, u4}

of g = g3 � span{u4} with 〈u1, u1〉 = 〈u2, u2〉 = 〈u3, u4〉 and adu3 : g3 → g3.
Since g′

3 = g3, adu3 must be of rank 2 and, apart from 0, it must have either two real
eigenvalues or two conjugate complex eigenvalues. Moreover, writing u3 = [x1, x2],
x1, x2 ∈ g3, we have adu3 = adx1 ◦ adx2 − adx2 ◦ adx1 , which implies tr(adu3) =
0. Thus, two possibilities may occur, none of them supporting left-invariant Ricci
solitons.

4.4.1 adu3 has real eigenvalues {0,�,−�}, with � �= 0

Let v1 and v2 be unit eigenvectors, i.e., [v1, u3] = λv1 and [v2, u3] = −λv2. The
Jacobi identity implies [v1, v2] ∈ span{u3}. Thus, rescaling u3 if necessary, we get
a basis {v1, v2, v3, v4} of g = g3 � r, with 〈v1, v1〉 = 〈v2, v2〉 = 〈v3, v4〉 = 1,
〈v1, v2〉 = κ �= ±1, where g3 = span{v1, v2, v3} and r = span{v4}, so that

[v1, v2] = v3, [v1, v3] = λv1, [v1, v4] = γ1v1 + γ2v3,

[v2, v3] = −λv2, [v2, v4] = −γ1v2 + γ3v3, [v3, v4] = γ3λv1 + γ2λv2 .

We compute P33 = 4λ2

κ2−1
and, since λ �= 0, there are no left-invariant Ricci solitons

in this case.
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4.4.2 adu3 has complex eigenvalues {0, iˇ,−iˇ}, withˇ �= 0

Let v1 and v2 be unit vectors so that [v1, u3] = βv2 and [v2, u3] = −βv1. The
Jacobi identity implies [v1, v2] ∈ span{u3}. Thus, rescaling u3 if necessary, we get
a basis {v1, v2, v3, v4} of g = g3 � r, with 〈v1, v1〉 = 〈v2, v2〉 = 〈v3, v4〉 = 1,
〈v1, v2〉 = κ �= ±1, where g3 = span{v1, v2, v3} and r = span{v4}, so that

[v1, v2] = v3, [v1, v3] = βv2, [v1, v4] = γ1v2 + γ2v3,

[v2, v3] = −βv1, [v2, v4] = −γ1v1 + γ3v3, [v3, v4] = γ2βv1 + γ3βv2 .

We will make use of the following polynomials P̃i j = (κ2 − 1)Pi j :

P̃11 = −(κ2 − 1)β2(γ2 + κγ3)
2 − 4(2κβ − X4(κ

2 − 1))κγ1

+ 2(2X3κ
3 − κ2 − 2X3κ + 1)β − 2(κ2 − 1)μ,

P̃12 = −(κ2 − 1)κβ2(γ 2
2 + γ 2

3 ) − (κ4 − 1)β2γ2γ3 − 8κβγ1 − 2(κ2 − 1)κμ,

P̃22 = −(κ2 − 1)β2(κγ2 + γ3)
2 − 4(2κβ + X4(κ

2 − 1))κγ1

− 2(2X3κ
3 + κ2 − 2κX3 − 1)β − 2(κ2 − 1)μ,

P̃33 = 4β2κ2,

P̃44 = 4κ2γ 2
1 − 2(κ2 − 1)β(γ 2

2 + γ 2
3 ) − 4(κ2 − 1)(X1γ2 + X2γ3) − 1 .

Since β �= 0, P̃33 shows that κ = 0, and by a direct calculation one has

γ3P̃11 − γ2P̃12 − γ3P̃22 = −β2γ 3
3 , γ2P̃11 + γ3P̃12 − γ2P̃22 = β2γ 3

2 .

Hence γ2 = γ3 = 0 and thus P̃44 = −1, which shows that there are no left-invariant
Ricci solitons in this case.

5 Left-invariant Ricci solitons on pp-wave Lie groups

Based on the analysis of previous sections, left-invariant Ricci solitons on pp-wave
Lie groups split naturally into two distinct possibilities as they are plane waves or not.
The case of pp-wave Lie groups which are not plane waves is as follows:

Theorem 5.1 A four-dimensional Lorentzian pp-wave Lie group which is not a plane
wave is a non-trivial left-invariant Ricci soliton if and only it is homothetic to G =
R
3

� R with left-invariant metric given by the Lie algebra

[u1, u4] = γ1u1 + εu2, [u2, u4] = −γ1u2,

where γ1 �= 0, ε = ±1, and {u1, . . . , u4} is a pseudo-orthonormal basis with
〈u1, u2〉 = 〈u3, u3〉 = 〈u4, u4〉 = 1.
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Proof Lorentzian Lie groups as above are extensions of unimodular Lorentzian Lie
groups and have been discussed in Sect. 2.1.4.3. Since the sectional curvature is inde-
pendent of the structure constant γ3, we set γ3 = 0 in Equation (2) and work at the
homothetic level ( [21, 22]). Now, the non-zero polynomials P̃i j = 1

2Pi j reduce to

P̃11 = 2ε(X4 − γ1), P̃12 = P̃33 = P̃44 = −μ, P̃14 = X2γ1 − εX1, P̃24 = −X1γ1,

so we get a left-invariant steady Ricci soliton with left-invariant soliton vector field
X = X3u3 + γ1u4, for any γ1 �= 0.

��
Remark 5.2 Globke andLeistner proved in [17] that four-dimensional Ricci-flat homo-
geneous pp-waves are plane waves. Examples in Theorem 5.1 show that the result
above cannot be extended to steady Ricci soliton pp-waves. Moreover, pp-wave Lie
groups in Theorem 5.1 are conformal C-spaces, but not conformally Einstein (see [3,
18] for more information).

Theorem 5.3 A four-dimensional Lorentzian plane wave Lie group is a non-trivial
left-invariant Ricci soliton if and only if it is homothetic to one of the following:

(i) G = H3
� R with Lie algebra given by

[u1, u3] = u2, [u1, u4] = γ3u3,

where γ3 �= 0 and {u1, . . . , u4} is pseudo-orthonormal with 〈u1, u2〉= 〈u3, u3〉=
〈u4, u4〉= 1.

(ii) G = E(1, 1) � R with Lie algebra given by

[u1, u2] = u1, [u2, u3] = u3, [u2, u4] = γ3u3,

and {u1, . . . , u4} is pseudo-orthonormal with 〈u1, u2〉=〈u3, u3〉=〈u4, u4〉= 1.
(iii) G = R

3
� R with Lie algebra given by

[u1, u4] = γ1u1 + γ2u2, [u2, u4] = γ4u1 + γ5u2, [u3, u4] = u3,

where {u1, . . . , u4} is pseudo-orthonormal with 〈u1, u1〉=〈u2, u2〉=〈u3, u4〉= 1.
(iv) G = H3

� R with Lie algebra given by

[u1, u2] = λ1u3, [u1, u4] = γ1u1 + γ2u2,
[u2, u4] = γ4u1 + γ5u2, [u3, u4] = (γ1 + γ5)u3,

where γ1 + γ5 �= 0, and {u1, . . . , u4} is pseudo-orthonormal with 〈u1, u1〉 =
〈u2, u2〉=〈u3, u4〉= 1.

Proof Lie groups in Assertions (i) and (ii) are Lorentzian extensions of unimodular
LorentzianLie groups.Assertion (i)was considered inSect. 2.3.1 and a straightforward
calculation shows that the curvature tensor does not involve the structure constants ε
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and γ2, so we can take ε = −1 and γ2 = 0 in Equation (3) (see [21, 22]). Now, the only
component of the Ricci tensor is ρ11 = − 1

2 (γ
2
3 − γ 2

6 ) and the non-zero polynomials
Pi j reduce to

P11 = − 1
2 {γ 2

3 − γ 2
6 − 4X3}, P12 = P33 = P44 = −μ,

P13 = X4(γ3 + γ6) − X1, P14 = −X3γ6, P34 = −X1γ3 .

Hence, we get a left-invariant steady Ricci soliton if and only if it is Ricci-flat (γ 2
3 =

γ 2
6 ) or, otherwise, γ6 = 0 and γ3 �= 0. In this latter case, the left-invariant soliton

vector field is given by X = X2u2 + 1
4γ

2
3 u3. Assertion (ii) was treated in Sect. 2.4.1

and since the curvature tensor does not depend on the structure constant γ2, one can
eliminate it in Equation (4) remaining in the same homothetic class due to the work
of Kulkarni [22] (see also [21]). The non-zero polynomials Pi j now reduce to

P12 = X2 − μ, P22 = − 1
2γ

2
3 − 2(X1 + 1), P23 = X4γ3 + X3,

P33 = −2X2 − μ, P34 = −X2γ3, P44 = −μ,

so we get a left-invariant steady Ricci soliton with left-invariant soliton vector field
X = −( 14γ

2
3 + 1)u1 − X4γ3u3 + X4u4.

Plane wave Lie groups in Assertion (iii) are Lorentzian extensions of unimodular
degenerate Lie groups and correspond to Sect. 4.1. First of all, observe that proceed-
ing as in the previous cases, one can eliminate the structure constants γ3 and γ6 in
Equation (5) and remain in the same homothetic class. A straightforward calculation
shows that the Ricci tensor vanishes if and only if ρ44 = −γ 2

1 − 1
2 (γ2 + γ4)

2 − γ 2
5 +

(γ1 + γ5)γ9 = 0, and the non-zero polynomials P̃i j = 1
2Pi j are given by

P̃11 = 2X4γ1 − μ, P̃14 = −X1γ1 − X2γ4, P̃12 = X4(γ2 + γ4), P̃34 = X4γ9 − μ,

P̃22 = 2X4γ5 − μ, P̃24 = −X1γ2 − X2γ5, P̃44 = ρ44 − 2X3γ9 .

We consider separately the cases γ9 �= 0 and γ9 = 0. Assuming γ9 �= 0, we can
take γ9 = 1 without loss of generality. If γ2 = −γ4 and γ1 = γ5 = 1

2 , then X =
1
2ρ44u3+μu4 is a locally conformally flat expanding, steady or shrinking left-invariant
Ricci soliton. Otherwise, if γ2 �= −γ4, or γ1 �= 1

2 , or γ5 �= 1
2 , then X = 1

2ρ44u3 is a
steady left-invariant Ricci soliton. Finally, if γ9 = 0, then G is a left-invariant Ricci
soliton if and only if it is Ricci-flat.

Plane wave Lie groups in Assertion (iv) are Lorentzian extensions of unimodular
degenerate Lie groups and correspond to Sect. 4.2.1.1. We proceed as in the previous
case and eliminate the structure constants γ3 and γ6, so that the Ricci tensor vanishes
if and only if ρ44 = 1

2 {λ21 + 4γ1γ5 − (γ2 + γ4)
2} = 0, and the non-zero polynomials

P̃i j = 1
2Pi j are given by

P̃11 = 2X4γ1 − μ, P̃14 = −X1γ1 + X2(λ1 − γ4), P̃12 = X4(γ2 + γ4),

P̃22 = 2X4γ5 − μ, P̃24 = −X1(λ1 + γ2) − X2γ5, P̃34 = X4(γ1 + γ5) − μ,

P̃44 = ρ44 − 2X3(γ1 + γ5) .
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If γ1 + γ5 = 0, then the existence of left-invariant Ricci solitons reduces to the Ricci-
flat case. Assuming γ1 + γ5 �= 0 one has two distinct possibilities. If γ2 + γ4 = 0
and γ1 − γ5 = 0, then X = 1

2(γ1+γ5)
ρ44u3 + 1

γ1+γ5
μu4 is a locally conformally flat

expanding, steady or shrinking left-invariant Ricci soliton. Otherwise, if γ2 + γ4 �= 0
or γ1 − γ5 �= 0, then X = 1

2(γ1+γ5)
ρ44u3 is a steady left-invariant Ricci soliton. ��

Remark 5.4 Plane wave Lie groups in Theorem 5.3 have vanishing Cotton tensor,
and thus they are conformally Einstein [3]. Plane wave Lie groups corresponding
to Assertion (iii) and Assertion (iv) which admit expanding, steady and shrinking
left-invariant Ricci solitons are locally conformally flat.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

Data availability Not applicable in the manuscript as no datasets were generated or analysed during the
current study.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Arroyo, R., Lafuente, R.: Homogeneous Ricci solitons in low dimensions. Int. Math. Res. Not. IMRN
13, 4901–4932 (2015)

2. Blau, M., O’Loughlin, M.: Homogeneous plane waves. Nucl. Phys. B 654(1–2), 135–176 (2003)
3. Brozos-Vázquez, M., García-Río, E., Valle-Regueiro, X.: Isotropic quasi-Einstein manifolds. Class.

Quantum Gravity 36(24), 245005 (2019)
4. Brozos-Vázquez, M., Calvaruso, G., García-Río, E., Gavino-Fernández, S.: Three-dimensional

Lorentzian homogeneous Ricci solitons. Israel J. Math. 188, 385–403 (2012)
5. Brozos-Vázquez, M., García-Río, E., Gavino-Fernández, S.: Locally conformally flat Lorentzian gra-

dient Ricci solitons. J. Geom. Anal. 23, 1196–1212 (2013)
6. Brozos-Vázquez, M., Caeiro-Oliveira, S., García-Río, E.: Homogeneous Ricci solitons and critical

metrics (to appear)
7. Cahen, M., Leroy, J., Parker, M., Tricerri, F., Vanhecke, L.: Lorentz manifolds modelled on a Lorentz

symmetric space. J. Geom. Phys. 7(4), 571–581 (1990)
8. Calvaruso, G., Castrillón-López, M.: Cyclic Lorentzian Lie groups. Geom. Dedicata 181, 119–136

(2016)
9. Calvaruso, G., Zaeim, A.: Four-dimensional Lorentzian Lie groups. Differ. Geom. Appl. 31, 496–509

(2013)
10. Calvaruso,G., Storm,R., van derVeken, J.: Parallel and totally geodesic hypersurfaces of non-reductive

homogeneous four-manifolds. Math. Nachr. 293, 1707–1729 (2020)

http://creativecommons.org/licenses/by/4.0/


Ricci solitons on four-dimensional Lorentzian Lie groups Page 35 of 35 61

11. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, Ch., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo,
F., Ni, L.: The Ricci Flow: Techniques and Applications. Part I. Geometric Aspects. Mathematical
Surveys and Monographs, vol. 135. American Mathematical Societ, Providence (2007)

12. Cox, D., Little, D., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational
Algebraic Geometry and Commutative Algebra. Undergraduate Texts inMathematics, Springer, Cham
(2015)

13. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-0—a computer algebra system
for polynomial computations. http://www.singular.uni-kl.de (2016)

14. di Cerbo, L.: Generic properties of homogeneous Ricci solitons. Adv. Geom. 14, 225–237 (2014)
15. Fels, M.E., Renner, A.G.: Non-reductive homogeneous pseudo-Riemannian manifolds of dimension

four. Can. J. Math. 58(2), 282–311 (2006)
16. García-Río, E., Gilkey, P., Nikcevic, S.: Homogeneity of Lorentzian three-manifolds with recurrent

curvature. Math. Nachr. 287, 32–47 (2014)
17. Globke, W., Leistner, Th.: Locally homogeneous pp-waves. J. Geom. Phys. 108, 83–101 (2016)
18. Gover, A.R., Nagy, P.A.: Four-dimensional conformal C-spaces. Q. J. Math. 58, 443–462 (2007)
19. Jensen, G.R.: Homogeneous Einstein spaces of dimension four. J. Diff. Geom. 3, 309–349 (1969)
20. Kozameh, C.N., Newman, E.T., Tod, K.P.: Conformal Einstein spaces. Gen. Relativ. Gravit. 17, 343–

352 (1985)
21. Kowalski, O.: On regular curvature structures. Math. Z. 125, 129–138 (1972)
22. Kulkarni, R.S.: Curvature and metric. Ann. Math. (2) 91, 311–331 (1970)
23. Kühnel, W., Rademacher, H.B.: Conformal transformations of pseudo-Riemannian manifolds, recent

developments in pseudo-Riemanniangeometry. In:ESILectures inMathematics andPhysics. European
Mathematical Society, Zürich, pp. 261–298 (2008)

24. Lauret, J.: Ricci soliton homogeneous nilmanifolds. Math. Ann. 319, 715–733 (2001)
25. Leistner, Th.: Conformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds. Differ. Geom.

Appl. 24, 458–478 (2006)
26. Milnor, J.: Curvature of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)
27. O’Neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press, New York

(1983)
28. Otero-Casal, T.: Métricas de Einstein en grupos de Lie lorentzianos, Publicaciones del Departamento

de Geometría y Topología, Universidad de Santiago de Compostela
29. Rahmani, S.: Metriques de Lorentz sur les groupes de Lie unimodulaires, de dimension trois. J. Geom.

Phys. 9, 295–302 (1992)
30. Yan, Z., Deng, S.: Double extensions on Riemannian Ricci nilsolitons. J. Geom. Anal. 31, 9996–10023

(2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://www.singular.uni-kl.de

	Ricci solitons on four-dimensional Lorentzian Lie groups
	Abstract
	1 Introduction
	1.1 Einstein metrics on Lorentzian four-dimensional Lie groups
	1.2 Homogeneous pp-waves and plane waves
	1.3 Left-invariant Ricci solitons on 3-dimensional Lorentzian Lie groups
	1.4 Left-invariant Ricci solitons on 4-dimensional Lorentzian Lie groups
	1.5 Left-invariant metrics and Gröbner basis

	2 Extensions of Lorentzian Lie groups
	2.1 The structure operator L is diagonalizable
	2.1.1 Structure operator with non-zero eigenvalues: metrics on widetildeSL(2,mathbbR)timesmathbbR or SU(2)timesmathbbR
	2.1.2 Structure operator with a zero eigenvalue: metrics on tildeE(2)mathbbR or E(1,1)mathbbR
	2.1.3 Structure operator of rank one: metrics on H3mathbbR
	2.1.4 Structure operator with zero eigenvalues: metrics on mathbbR3mathbbR

	2.2 The structure operator L has complex eigenvalues
	2.2.1 Case of zero real eigenvalue: metrics on E(1,1)mathbbR
	2.2.2 Case of non-zero real eigenvalue: metrics on widetildeSL(2,mathbbR)timesmathbbR

	2.3 The structure operator L has a double root of its minimal polynomial
	2.3.1 Case of zero eigenvalues: metrics on H3mathbbR
	2.3.2 Case λ1=0, λ2neq0: metrics on tildeE(2)mathbbR or E(1,1)mathbbR
	2.3.3 Case λ1neq0, λ2= 0: metrics on E(1,1)mathbbR
	2.3.4 Case of non-zero eigenvalues: metrics on widetildeSL(2,mathbbR)timesmathbbR

	2.4 The structure operator L has a triple root of its minimal polynomial
	2.4.1  Case of zero eigenvalue: metrics on E(1,1)mathbbR
	2.4.2 Case of non-zero eigenvalue: metrics on widetildeSL(2,mathbbR)timesmathbbR


	3 Extensions of Riemannian Lie groups
	3.1 Structure operator with non-zero eigenvalues: metrics on widetildeSL(2, mathbbR)timesmathbbR and SU(2)timesmathbbR
	3.2 Structure operator with a zero eigenvalue: metrics on tildeE(2)mathbbR and E(1,1)mathbbR
	3.3 Structure operator of rank one: metrics on H3mathbbR
	3.4 Case of zero eigenvalues: metrics on mathbbR3mathbbR

	4 Extensions of degenerate Lie groups
	4.1 dimmathfrakg'3=0: left-invariant metrics on mathbbR3mathbbR
	4.2 dimmathfrakg'3=1: left-invariant metrics on H3mathbbR
	4.2.1 mathfrakg'3=span{v} is a null subspace
	4.2.2 mathfrakg'3=span{v} is a spacelike subspace

	4.3 dimmathfrakg'3=2: left-invariant metrics on tildeE(2)mathbbR and E(1,1)mathbbR
	4.4 dimmathfrakg'3=3: left-invariant metrics on widetildeSL(2,mathbbR)timesmathbbR and SU(2)timesmathbbR
	4.4.1 adu3 has real eigenvalues {0,λ,-λ}, with λneq0
	4.4.2 adu3 has complex eigenvalues {0, iβ,-iβ}, with βneq0


	5 Left-invariant Ricci solitons on pp-wave Lie groups
	References




