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Abstract
Approximation properties of quasi-projection operators Q j ( f , ϕ, ϕ̃) are studied.
These operators are associated with a function ϕ satisfying the Strang–Fix conditions
and a tempered distribution ϕ̃ such that compatibility conditions with ϕ hold. Error
estimates in the uniform norm are obtained for a wide class of quasi-projection oper-
ators defined on the space of uniformly continuous functions and on the anisotropic
Besov-type spaces. Under additional assumptions on ϕ and ϕ̃, two-sided estimates in
terms of realizations of the K -functional are also established.
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estimate · Best approximation · Moduli of smoothness · Realization of K -functional
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1 Introduction

Quasi-projection operators are a generalisation of the so-called scaling expansions

Q j ( f , ϕ, ϕ̃)(x) = 2 j
∑

k∈Z
〈 f , ϕ̃(2 j · −k)〉ϕ(2 j x − k), f , ϕ, ϕ̃ ∈ L2(R),
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playing an important role in the wavelet theory (see, e.g., [11, 13, 25, 26, 34]). Such
expansions are also well defined for other classes of functions ϕ and ϕ̃ whenever the
inner product 〈 f , ϕ̃(2 j · −k)〉 has meaning and the series converges in some sense.
In [13], Jia considered a larger class of quasi-projection operators Q j ( f , ϕ, ϕ̃) with
compactly supported functions ϕ and ϕ̃ and obtained error estimates in L p and other
function spaces for these operators. The classical Kantorovich-Kotelnikov operators
(see, e.g., [9, 10, 19, 21, 30, 38]) are operators of the same form Q j ( f , ϕ, ϕ̃) with the
characteristic function of [0, 1] as ϕ̃. Another classical special case of quasi-projection
operators is the sampling expansion

Q j ( f , ϕ, δ)(x) =
∑

k∈Z
f (2− j k)ϕ(2 j x − k) = 2 j

∑

k∈Z
〈 f , δ(2 j · −k)〉ϕ(2 j x − k),

where δ is the Dirac delta-function. In the case ϕ(x) = sinc x := sin πx/πx , it is the
classical Kotelnikov–Shannon expansion. Since δ is a tempered distribution, under the
usual notation 〈 f , δ〉 := δ( f ), the operator Q j ( f , ϕ, δ) is defined only for functions
f from the Schwartz class, but to extend this class, one can set 〈 f , δ〉 := 〈 ̂f ,̂δ〉. The
sampling expansion is of great applied importance, it is especially actively used by
engineers working in signal processing. Approximation properties of the sampling
operators Q j ( f , ϕ, δ) associated with different functions ϕ were studied by a lot of
authors (see, e.g., [2–7, 14, 28, 33, 37]).

Given amatrix M , we define themultivariate quasi-projection operator Q j ( f , ϕ, ϕ̃)

associated with a function ϕ and a distribution/function ϕ̃ as follows

Q j ( f , ϕ, ϕ̃)(x) = | det M | j
∑

n∈Zd

〈 f , ϕ̃(M j · −n)〉ϕ(M j x − n),

where the "inner product" 〈 f , ϕ̃(M j · −n)〉 has meaning in some sense. If the Fourier
transform of f has enough decay, then the operators Q j ( f , ϕ, ϕ̃) with 〈 f , ϕ̃〉 :=
〈 ̂f , ̂ϕ̃〉 are well defined for a wide class of tempered distributions ϕ̃ and appropriate
functions ϕ. For fast decaying functions ϕ, approximation properties of such quasi-
projection operators were studied in [26]. Namely, the error estimates in the L p-norm,
2 ≤ p ≤ ∞, were given in terms of the Fourier transform of f , and the approximation
order of Q j ( f , ϕ, ϕ̃) was found for the isotropic matrices M . Similar results for a
class of bandlimited functions ϕ and p < ∞ were obtained in [16], and then the class
of functions ϕ was essentially extended in [8]. These results were improved in several
directions in [20, 22] for fast decaying and bandlimited functions ϕ respectively.
Namely, the error estimates in L p-norm, 1 ≤ p < ∞, were given in terms of the
moduli of smoothness and the errors of best approximation. Moreover, the class of
approximated functions f was extended and the requirement on smoothness of ϕ̂ and
̂ϕ̃ was weakened in [22] due to using the Fourier multipliers method.

The technique developed in [20, 22] does not work appropriately for p = ∞
because a function from L∞ cannot be uniformly approximated by functions from
L2. In [22], the case p = ∞ is considered, but the estimates are obtained only for
functions f satisfying the additional assumption f (x) → 0 as |x | → ∞. The goal
of the present paper is to fix this drawback. To this end, we use a new technique
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based on convolution representations. In particular, we determine an "inner product"
〈 f , ϕ̃(M j · +n)〉 as a limit of some convolutions, so that the operator Q j ( f , ϕ, ϕ̃) is
well defined on the space of uniformly continuous functions and on the anisotropic
Besov-type spaces whenever the series

∑

k∈Zd |ϕ(x − k)| converges uniformly on any
compact set. Using this approach, we obtain error estimates in the uniform norm for
Q j ( f , ϕ, ϕ̃) under the assumptions of the Strang–Fix conditions for ϕ, compatibility
conditions for ϕ and ϕ̃, and belonging of some special functions associated with ϕ and
ϕ̃ toWiener’s algebra. These results are similar to those for p < ∞ in [22], where some
Fourier multiplier conditions are assumed instead of belonging to Wiener’s algebra.
Under additional assumptions on ϕ and ϕ̃, two-sided estimates in terms of realizations
of the K -functional are presented. A new Whittaker–Nyquist–Kotelnikov–Shannon-
type theorem is also proved.

2 Notation

We use the standard multi-index notation. Let x = (x1, . . . , xd)T and y =
(y1, . . . , yd)T be column vectors in R

d , then (x, y) := x1y1 + · · · + xd yd , |x | :=√
(x, x); 0 = (0, . . . , 0)T ∈ R

d ; Z
d+ := {x ∈ Z

d : xk ≥ 0, k = 1, . . . , d},
T

d = [−1/2, 1/2]d . If r > 0, then Br denotes the ball of radius r with the center in
0. If α ∈ Z

d+, a, b ∈ R
d , we set

[α] =
d

∑

j=1

α j , Dα f = ∂ [α] f

∂xα
= ∂ [α] f

∂α1x1 . . . ∂αd xd
,

ab =
d

∏

j=1

a
b j
j , α! =

d
∏

j=1

α j !.

If M is a d × d matrix, then ‖M‖ denotes its operator norm in R
d ; M∗ denotes the

conjugate matrix to M , m = | det M |; the identity matrix is denoted by I . A d × d
matrix M whose eigenvalues are bigger than1 inmodulus is called adilationmatrix.We
denote the set of all dilation matrices byM. It is well known that lim j→∞ ‖M− j‖ = 0
for any dilation matrix M . A matrix M is called isotropic if it is similar to a diagonal
matrix such that numbers λ1, . . . , λd are placed on themain diagonal and |λ1| = · · · =
|λd |.

Let L p denote the space L p(R
d), 1 ≤ p ≤ ∞, with the norm ‖ · ‖p = ‖ · ‖L p(Rd ).

As usual, C denotes the space of all uniformly continuous bounded functions on R
d

equipped with the norm ‖ f ‖ = maxx∈Rd | f (x)|. We use W n
p , 1 ≤ p ≤ ∞, n ∈ N,

to denote the Sobolev space on R
d , i.e. the set of functions whose derivatives up to

order n are in L p, with the usual Sobolev norm. Let S denote the Schwartz class of
functions defined on R

d . The dual space of S is S ′, i.e. S ′ is the space of tempered
distributions.
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If f , g are functions defined on R
d and f g ∈ L1, then 〈 f , g〉 denotes the usual

inner product; the convolution of appropriate functions f and g is denoted by f ∗ g;
the Fourier transform of f ∈ S ′ is denoted byF f = ̂f . We also set f −(x) = f (−x).

We say that f ∈ S ′ belongs toWiener’s algebra W0 if there exists a function g ∈ L1
such that

f (x) =
∫

Rd
g(ξ)e2π i(x,ξ)dξ. (1)

The corresponding norm is given by ‖ f ‖W0 = ‖g‖1.
For a fixed matrix M ∈ M and a function ϕ defined on R

d , we set

ϕ jk(x) := m j/2ϕ(M j x + k), j ∈ Z, k ∈ R
d .

If ϕ̃ ∈ S ′, j ∈ Z, k ∈ Z
d , then we define ϕ̃ jk by 〈 f , ϕ̃ jk〉 := 〈 f− j,−M− j k, ϕ̃〉, f ∈ S.

Let L∞ denote the set of functions ϕ ∈ L∞ such that
∑

k∈Zd |ϕ(· + k)| ∈
L∞(Td), and let LC denote the set of continuous functions ϕ such that the series
∑

k∈Zd |ϕ(· + k)| converges uniformly on any compact set. Both L∞ and LC are
Banach spaces with the norm

‖ϕ‖LC = ‖ϕ‖L∞ :=
∥

∥

∥

∥

∑

k∈Zd

|ϕ(· + k)|
∥

∥

∥

∥

L∞(Td )

.

For any d×d matrix A, we introduce the spaceBA := {g ∈ L∞ : supp ĝ ⊂ A∗
T

d}
and the corresponding error of best approximation

E A( f ) := inf{‖ f − g‖ : g ∈ BA}.

Let α be a positive function defined on the set of all d ×d matrices A. We introduce
the anisotropic Besov-type space B

α(·)
A associated with a matrix A and α as the set of

all functions f such that

‖ f ‖
B

α(·)
A

:= ‖ f ‖ +
∞
∑

ν=1

α(Aν)E Aν ( f ) < ∞.

Note that in the case A = 2Id and α(t) ≡ tα0 , α0 > 0, the space B
α(·)
A coincides with

the classical Besov space Bα0∞,1(R
d).

For any matrix M ∈ M, we denote by AM the set of all positive functions α :
R

d×d → R+ that satisfy the condition α(Mμ+1) ≤ c(M)α(Mμ) for all μ ∈ Z+.
For any d × d matrix A, we also introduce the anisotropic fractional modulus of

smoothness of order s, s > 0,


s( f , A) := sup
|A−1t |<1,t∈Rd

‖�s
t f ‖,
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where

�s
t f (x) :=

∞
∑

ν=0

(−1)ν
(

s

ν

)

f (x + tν).

Recall that the standard fractional modulus of smoothness of order s, s > 0, is defined
by

ωs( f , h) := sup
|t |<h

‖�s
t f ‖, h > 0. (2)

We refer to [23] for the collection of basic properties of moduli of smoothness in
L p(R

d).
Let η denote a real-valued function in C∞(Rd) such that η(ξ) = 1 for ξ ∈ T

d and
η(ξ) = 0 for ξ /∈ 2T

d . For δ > 0 and a d × d matrix A, we set

ηδ = η(δ−1·) and Nδ = F−1ηδ,

ηA = η(A∗−1·) and NA = F−1ηA.

3 Preliminary information andmain definitions

In what follows, we discuss the quasi-projection operators

Q j ( f , ϕ, ϕ̃) :=
∑

k∈Zd

〈 f , ϕ̃ jk〉ϕ jk,

where the "inner product" 〈 f , ϕ̃ jk〉 is defined in a special way and the series converges
in some sense. The expansions

∑

k∈Zd 〈 f , ϕ̃ jk〉ϕ jk are elements of the shift-invariant
spaces generated by ϕ. It is well known that a function f can be approximated by
elements of such spaces only if ϕ satisfies the Strang–Fix conditions.

Definition 1 A function ϕ is said to satisfy the Strang–Fix conditions of order s if
Dβϕ̂(k) = 0 for every β ∈ Z

d+, [β] < s, and for all k ∈ Z
d \ {0}.

Certain compatibility conditions for a distribution ϕ̃ and a function ϕ are also
required to provide good approximation properties of the operator Q j ( f , ϕ, ϕ̃). For
our purposes, we use the following conditions.

Definition 2 A tempered distribution ϕ̃ and a function ϕ are said to be weakly com-
patible of order s if Dβ(1 − ϕ̂̂ϕ̃)(0) = 0 for every β ∈ Z

d+, [β] < s.

Definition 3 A tempered distribution ϕ̃ and a function ϕ are said to be strictly com-
patible if there exists δ > 0 such that ϕ̂(ξ)̂ϕ̃(ξ) = 1 a.e. on δT

d .

Denote byS ′
N , N ≥ 0, the set of tempered distributions ϕ̃ whose Fourier transforms

̂ϕ̃ are measurable functions on R
d such that |̂ϕ̃(ξ)| ≤ Cϕ̃(1 + |ξ |)N for almost all
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ξ ∈ R
d . Note that for ϕ̃ ∈ S ′

N and appropriate classes of functions ϕ, such quasi-
projection operators Q j ( f , ϕ, ϕ̃) with 〈 f , ϕ̃ jk〉 := 〈 ̂f , ̂ϕ̃ jk〉 were studied in [16, 21,
26, 34]. In particular, approximation by these operators in the uniform norm was
considered in [26]. The following statement can be derived from Theorems 4 and 5 in
[26].

Theorem A Let s ∈ N, N ≥ 0, δ ∈ (0, 1/2), and M ∈ M. Suppose

1) ϕ, ϕ̂ ∈ L∞;
2) ϕ̂(· + l) ∈ Cs(Bδ) for all l ∈ Z

d \ {0} and
∑

l �=0

∑

‖β‖1=s
sup
|ξ |<δ

|Dβϕ̂(ξ + l)| < ∞;

3) the Strang–Fix conditions of order s are satisfied for ϕ;
4) ϕ̃ ∈ S ′

N and ϕ̂̂ϕ̃ ∈ Cs(Bδ);
5) ϕ and ϕ̃ are weakly compatible of order s.

If f ∈ L∞ is such that ̂f ∈ L1 and ̂f (ξ) = O(|ξ |−N−d−ε), ε > 0, as |ξ | → ∞, then

∥

∥

∥

∥

f −
∑

k∈Zd

〈 ̂f , ̂ϕ̃ jk〉ϕ jk

∥

∥

∥

∥∞
≤ C1‖M∗− j‖N

∫

|M∗− j ξ |≥δ

|ξ |N | ̂f (ξ)| dξ

+ C2‖M∗− j‖s
∫

|M∗− j ξ |≤δ

|ξ |s | ̂f (ξ)| dξ,

where the constants C1 and C2 do not depend on f and j . If, moreover, M is an
isotropic matrix, then

∥

∥

∥

∥

f −
∑

k∈Zd

〈 ̂f , ̂ϕ̃ jk〉ϕ jk

∥

∥

∥

∥∞
≤ C3

⎧

⎪

⎨

⎪

⎩

|λ|− j(N+ε) if s > N + ε

( j + 1)|λ|− js if s = N + ε

|λ|− js if s < N + ε

,

where λ is an eigenvalue of M and C3 does not depend on j .

Unfortunately, there is a restriction on the decay of ̂f in TheoremA.Obviously, such
a restriction is redundant for some special cases.Namely, the inner product 〈 f , ϕ̃ jk〉has
meaning for any f ∈ L∞ whenever ϕ̃ is an integrable function. Moreover, TheoremA
provides approximation order for Q j ( f , ϕ, ϕ̃) only for isotropic matrices M , and even
for this case, more accurate error estimates in terms of smoothness of f were not
obtained in [26]. The mentioned drawbacks were avoided in [19,Theorem 17′], where
the uniform approximation by quasi-projection operators Q j ( f , ϕ, ϕ̃) associated with
a summable function ϕ̃ and a bandlimited function ϕ was investigated. To formulate
this result, we need to introduce the space B consisting of functions ϕ such that
ϕ = F−1θ,where the function θ is supported in a rectangle R ⊂ R

d and θ
∣

∣

R ∈ Cd(R).

Theorem B Let s ∈ N, δ, δ′ > 0, M ∈ M, and f ∈ L∞. Suppose

1) ϕ ∈ B ∩ L∞, supp ϕ̂ ⊂ B1−δ′ , and ϕ̂ ∈ Cs+d+1(Bδ);
2) ϕ̃ ∈ L1 and ̂ϕ̃ ∈ Cs+d+1(Bδ);
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3) ϕ and ϕ̃ are weakly compatible of order s.

Then
∥

∥

∥

∥

f −
∑

k∈Zd

〈 f , ϕ̃ jk〉ϕ jk

∥

∥

∥

∥∞
≤ C ωs

(

f , ‖M− j‖
)

,

where C does not depend on f and j .

In what follows, we consider quasi-projection operators Q j ( f , ϕ, ϕ̃) associated
with a tempered distribution ϕ̃ belonging to the class S ′

α;M , M ∈ M, α ∈ AM . This

class is defined as follows. We say that ϕ̃ ∈ S ′ belongs to S ′
α;M if̂ϕ̃ is a measurable

locally bounded function and the function NMν ∗ ϕ̃− is summable and

‖NMν ∗ ϕ̃−‖1 ≤ c α(Mν) for all ν ∈ Z+, (3)

where the constant c is independent of ν.
Let us show that inequality (3) is satisfied for the most important special cases of

ϕ̃. Since ‖NMν ‖1 = ‖N1‖1 = ‖η̂‖1, one can easily see that (3) with α ≡ 1 holds true
if ϕ̃ ∈ L1 or ϕ̃ is the Dirac delta-function δ. Now let ϕ̃ be a distribution associated
with the differential operator Dβ , β ∈ Z

d+, i.e., ϕ̃(x) = (−1)[β] Dβδ(x) (see [16]). In
this case, we have

NMν ∗ ϕ̃− = F−1(N̂Mν D̂βδ) = F−1(D̂βNMν ) = DβNMν .

If M = diag(m1, . . . , md) andα(M) = mβ1
1 . . . mβd

d , then usingBernstein’s inequality
(see, e.g., [35,p. 252]), we get

‖NMν ∗ ϕ̃−‖1 = ‖DβNMν ‖1 ≤ mβ1
1 . . . mβd

d ‖NMν ‖1 = α(M)‖η̂‖1.

Similarly, if M is an isotropic matrix, then ϕ̃ belongs to the class S ′
α;M with α(M) =

m[β]/d .
To extend the operator Q j ( f , ϕ, ϕ̃) associated with ϕ̃ ∈ S ′

α;M onto the space B
α(·)
M

and onto C , we need to define the "inner product" 〈 f , ϕ̃ jk〉 properly. Note that a
similar extension in the case p < ∞ was implemented in [20, 22], but the definition
of 〈 f , ϕ̃ jk〉 given there is not suitable for us now.

Definition 4 Let M ∈ M, α ∈ AM , δ ∈ (0, 1], ϕ̃ ∈ S ′
α;M , and Tμ ∈ BδMμ , μ ∈ Z+,

be such that

‖ f − Tμ‖ ≤ c(d)EδMμ( f ). (4)

For every f ∈ B
α(·)
M ( f ∈ C in the case α ≡ const), we set

〈 f , ϕ̃0k〉 := lim
μ→∞ Tμ ∗ (NMμ ∗ ϕ̃−)(k), k ∈ Z

d , (5)
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and

〈 f , ϕ̃ jk〉 := m− j/2〈 f (M− j ·), ϕ̃0k〉, j ∈ Z+.

To approve this definition, we note that, according to Lemma 11 (see below), the
limit in (5) exists and does not depend on the choice of δ and functions Tμ.

Remark 5 Since NMμ ∗ ϕ̃− belongs to L2, the convolution in (5) is also well-defined
for all Tμ ∈ L2 and

Tμ ∗ (NMμ ∗ ϕ̃−)(k) = 〈̂Tμ, ̂̃ϕ0,−k〉. (6)

Further, if a function f satisfies the conditions of Theorem A, then the functional
〈 f , ϕ̃0k〉 defined in the sense of Definition 4 coincides with the functional 〈 ̂f , ̂̃ϕ0,−k〉
from Theorem A. Indeed, since ̂f ∈ L1, we have lim|x |→∞ f (x) = 0, and, due to
Lemma 15 in [22], one can choose functions Tμ ∈ BδMμ ∩ L2 satisfying (4). Then
repeating the arguments in [20,Remark 12], we obtain

〈 ̂f , ̂ϕ̃0k〉 = lim
μ→∞〈̂Tμ, ̂̃ϕ0,−k〉,

which together with (6) yields the equality 〈 f , ϕ̃0k〉 = 〈 ̂f , ̂̃ϕ0,−k〉.
Finally we note that the main results of this paper are given in terms of Wiener’s

algebra W0. Various conditions of belonging to W0 are overviewed in detail in the
survey [27] (see also [15, 17, 18], for some new efficient sufficient conditions).

4 Main results

Let M ∈ M, α ∈ AM , ϕ̃ ∈ S ′
α;M , and ϕ ∈ LC . Suppose that f ∈ B

α(·)
M or f ∈ C in the

case α ≡ const. In what follows, we understand 〈 f , ϕ̃ jk〉 in the sense of Definition 4.
By Lemmas 11 and 13 below, we have that {〈 f , ϕ̃ jk〉}k ∈ �∞. This together with
Lemma 12 implies that the quasi-projection operators

Q j ( f , ϕ, ϕ̃) =
∑

k∈Zd

〈 f , ϕ̃ jk〉ϕ jk

are well defined.

Theorem 6 Let M ∈ M, α ∈ AM , s ∈ N, and δ ∈ (0, 1]. Suppose

1) ϕ̃ ∈ S ′
α;M and ϕ ∈ LC;

2) the Strang–Fix condition of order s holds for ϕ;
3) ϕ and ϕ̃ are weakly compatible of order s;
4) ηδ Dβϕ̂̂ϕ̃ ∈ W0 and ηδ Dβϕ̂(·+ l) ∈ W0 for all β ∈ Z

d+, [β] = s, and l ∈ Z
d \ {0};

5)
∑

l �=0 ‖ηδ Dβϕ̂(· + l)‖W0 < ∞ for all β ∈ Z
d+, [β] = s.



Uniform approximation by multivariate quasi-projection… Page 9 of 23 68

Then, for any f ∈ B
α(·)
M , we have

‖ f − Q j ( f , ϕ, ϕ̃)‖ ≤ c

⎛

⎝
s( f , M− j ) +
∞
∑

ν= j

α(Mν− j )EMν ( f )

⎞

⎠ . (7)

Moreover, if ϕ̃ ∈ S ′
const;M and f ∈ C, then

‖ f − Q j ( f , ϕ, ϕ̃)‖ ≤ c 
s( f , M− j ). (8)

In the above inequalities, the constant c does not depend on f and j .

Remark 7 Assumptions 4) and 5) in Theorem 6 may be given in terms of the Fourier
multipliers as in [22,Theorem 20]. In this case, Theorem 6 holds true for any p > 1
after rewriting some basic notation in a more general form. Indeed, although the
definition of the "inner products" 〈 f , ϕ̃ jk〉 for the operators Q j in [22] is different
from Definition 4, it may also be used for p < ∞ (see Remark 5).

Theorem 6 and the Beurling-type sufficient condition for belonging to Wiener’s
algebra given in [27,Theorem 6.1] imply the following more convenient to use state-
ment.

Corollary 8 Let s ∈ N, δ ∈ (0, 1], M ∈ M, α ∈ AM , ϕ̃ ∈ S ′
α;M , and ϕ ∈ LC. Suppose

that conditions 2) and 3) of Theorem 6 are satisfied and, additionally, for some k ∈ N,
k > d/2,

ϕ̂̂ϕ̃ ∈ W s+k
2 (2δT

d), ϕ̂(· + l) ∈ W s+k
2 (2δT

d) for all l ∈ Z
d \ {0},

and

∑

l �=0

‖Dβϕ̂(· + l)‖1−
d
2k

L2(2δTd )
< ∞ for all β ∈ Z

d+, [β] = s.

Then inequalities (7) and (8) hold true.

Note that more general efficient sufficient conditions on smoothness of ϕ̂ and̂ϕ̃ can
be obtained by exploiting the results of the papers [15, 17, 18].

Theorem 9 Let δ ∈ (0, 1], M ∈ M, and α ∈ AM . Suppose that ϕ̃ ∈ S ′
α;M and ϕ ∈ LC

satisfy the following conditions:

1) supp ϕ̂ ⊂ T
d;

2) ϕ and ϕ̃ are strictly compatible with respect to δ.

Then, for any f ∈ B
α(·)
M , we have

‖ f − Q j ( f , ϕ, ϕ̃)‖ ≤ c
∞
∑

ν= j

α(Mν− j )EδMν ( f ). (9)
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Moreover, if ϕ̃ ∈ S ′
const;M and f ∈ C, then

‖ f − Q j ( f , ϕ, ϕ̃)‖ ≤ c EδM j ( f ). (10)

In the above inequalities, the constant c does not depend on f and j .

As a corollary from this theorem, we obtain the following newWhittaker–Nyquist–
Kotelnikov–Shannon-type formula.

Corollary 10 Let M ∈ M be such that T
d ⊂ M∗

T
d , δ ∈ (0, 1], and let ϕ, ϕ̃ be as in

Theorem 9. If f ∈ BδM j , then

f (x) =
∑

k∈Zd

( f (M− j ·) ∗ N1 ∗ ϕ̃−)(k)ϕ(M j x − k) for all x ∈ R
d .

5 Auxiliary results

Lemma 11 Let M ∈ M, n ∈ N, δ ∈ (0, 1], and α ∈ AM . Suppose that ϕ̃, f , and Tμ,
μ ∈ Z+, are as in Definition 4 and

qμ(k) := Tμ ∗ (NMμ ∗ ϕ̃−)(k), k ∈ Z
d .

Then the sequence {{qμ(k)}k}∞μ=1 converges in �∞ as μ → ∞ and its limit does not

depend on the choice of Tμ and δ; a fortiori for every k ∈ Z
d there exists a limit

limμ→∞ qμ(k) independent on the choice of Tμ and δ. Moreover, for all f ∈ B
α(·)
M ,

we have

∞
∑

μ=n

‖{qμ+1(k) − qμ(k)}k‖�∞ ≤ c
∞
∑

μ=n

α(Mμ)EδMμ( f ), (11)

where the constant c depends only on d and M.

Proof Denote μ0 = min{μ ∈ N : T
d ⊂ 1

2 M∗ν
T

d for all ν ≥ μ − 1}. It is easy to
see that η(M∗−μ·)η(M∗−μ−μ0 ·) = η(M∗−μ·), and hence NMμ = NMμ ∗ NMμ+μ0 .
Similarly,NMμ+1 = NMμ+1 ∗NMμ+μ0 . Thus, taking into account that Tμ = Tμ ∗NMμ

and Tμ+1 = Tμ+1 ∗ NMμ+1 , we have

Tν ∗ NMν ∗ ϕ̃− = Tν ∗ NMν ∗ NMμ+μ0 ∗ ϕ̃− = Tν ∗ NMμ+μ0 ∗ ϕ̃−, ν = μ,μ + 1.

It follows that

qμ+1(k) − qμ(k) = (Tμ+1 − Tμ) ∗ (NMμ+μ0 ∗ ϕ̃−)(k).



Uniform approximation by multivariate quasi-projection… Page 11 of 23 68

Then, using (3), we obtain

‖{qμ+1(k) − qμ(k)}k‖�∞ ≤ ‖(Tμ+1 − Tμ) ∗ (NMμ+μ0 ∗ ϕ̃−)‖
≤ ‖NMμ+μ0 ∗ ϕ̃−‖1‖Tμ+1 − Tμ‖ ≤ cα(Mμ+μ0)‖Tμ+1 − Tμ‖
≤ c1

(

α(Mμ)EδMμ( f ) + α(Mμ+1)EδMμ+1( f )
)

,

(12)

which after the corresponding summation implies (11).
Next, it is clear that there exists ν(δ) ∈ N such that EδMμ( f ) ≤ EMμ−ν(δ) ( f ) and

α(Mμ) ≤ C(δ)α(Mμ−ν(δ)) for big enough μ. Thus, if f ∈ B
α(·)
M , then it follows

from (11) that {{qμ(k)}k}∞μ=1 is a Cauchy sequence in �∞. Fortiori, for every k ∈ Z
d ,

the sequence {qμ(k)}∞μ=1 has a limit.
Now let α = const and f ∈ C . For every μ′, μ′′ ∈ N, there exists ν ∈ N such that

both ̂Tμ′ and ̂Tμ′′ are supported in M∗ν
T

d , and similarly to (12), we have

‖{qμ′(k) − qμ′′(k)}k‖�∞ ≤ ‖(Tμ′ − Tμ′′) ∗ (NMν ∗ ϕ̃−)‖
≤ c2

(

E
δMμ′ ( f ) + E

δMμ′′ ( f )
)

.

Thus, again {{qμ(k)}k}∞μ=1 is a Cauchy sequence in �∞, and every sequence
{qμ(k)}∞μ=1 has a limit.

Let us check that the limit of {{qμ(k)}k}∞μ=1 in �∞ does not depend on the choice
of Tμ and δ. Let δ′ ∈ (0, 1] and T ′

μ ∈ Bδ′ Mμ be such that ‖ f − T ′
μ‖ ≤ c′(d)Eδ′ Mμ( f )

and q ′
μ(k) = T ′

μ ∗ (NMμ ∗ ϕ̃−)(k). Since both Tμ and T ′
μ belong to BMμ , repeating

the arguments of the proof of inequality (12) with T ′
μ instead of Tμ+1 and 0 instead

of μ0, we obtain

‖{q ′
μ(k) − qμ(k)}k‖�∞ ≤ c3α(Mμ)‖T ′

μ − Tμ‖ ≤ c4α(Mμ)(EδMμ( f ) + Eδ′ Mμ( f )).

It follows that ‖{q ′
μ(k)−qμ(k)}k‖�∞ → 0 asμ → ∞, which yields the independence

on the choice of Tμ and δ. �

The proof of the next lemma is obvious.

Lemma 12 Let ϕ ∈ L∞ and {ak}k∈Zd ∈ �∞. Then

∥

∥

∥

∥

∑

k∈Zd

akϕ0k

∥

∥

∥

∥

≤ ‖ϕ‖L∞ ‖{ak}k‖�∞ .

Lemma 13 Let f ∈ C, M ∈ M, and ϕ̃ ∈ S ′
const;M . Then

‖{〈 f , ϕ̃0k〉}k‖�∞ ≤ c ‖ f ‖,

where the constant c does not depend on f .
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Proof By Lemma 11, for any ε > 0, there exists a function Tμ ∈ BMμ such that
‖ f − Tμ‖ ≤ c1EMμ( f ) and

‖{〈 f , ϕ̃0k〉 − Tμ ∗ (NMμ ∗ ϕ̃−)(k)}k‖�∞ < ε. (13)

Moreover, due to (3), we have

|Tμ ∗ (NMμ ∗ ϕ̃−)(k)| ≤ ‖Tμ ∗ (NMμ ∗ ϕ̃−)‖ ≤ c2‖Tμ‖ ≤ c3‖ f ‖.

Combining this with (13), we prove the lemma. �
In the next two lemmas, we recall some basic inequalities for the error of best

approximation and the modulus of smoothness.

Lemma 14 (See [29,5.2.1 (7)]or [35,5.3.3]) Let f ∈ C and s ∈ N. Then

EI ( f ) ≤ c ωs( f , 1),

where the constant c does not depend on f .

Lemma 15 (See [39] or [23]) Let s ∈ N and T ∈ BI . Then

∑

[β]=s

‖Dβ T ‖ ≤ c ωs(T , 1),

where the constant c does not depend on T .

6 Estimates in terms of K -functionals

In Theorem 6, the uniform error estimates for the operators Q j ( f , ϕ, ϕ̃) are given in
terms of the classicalmoduli of smoothness. Similar estimates in the L p-norm, p < ∞,
were obtained in our recent paper [22], where we also established the corresponding
lower estimates of approximation in terms of the same moduli of smoothness. It turns
out that in the uniform metric the classical moduli of smoothness are not suitable
to obtain sharp estimates of approximation (or two-sided inequalities) in the general
case (see, e.g, [36,Ch. 9]). However, this situation can be improved by using K -
functionals and their realizations instead of the classical moduli of smoothness (see,
e.g., [36,Ch. 9], [1, 24]). For our purposes, it is convenient to use realizations of
K -functionals.

In what follows, we need additional notation. We say that a function ρ belongs
to the class Hs , s > 0, if ρ ∈ C∞(Rd \ {0}) is homogeneous of degree s, i.e.,
ρ(τξ) = τ sρ(ξ), ξ ∈ R

d .Any function ρ ∈ Hs generates a Weyl-type differentiation
operator as follows:

D(ρ)g := F−1 (ρ ĝ) , g ∈ S.
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For functions T ∈ BM j , we define D(ρ)T by

D(ρ)T := (D(ρ)NM j ) ∗ T .

Note that this operator is well defined because the function F−1(D(ρ)NM j ) is
summable on R

d , see, e.g., [31].
Important examples of the Weyl-type operators are the linear differential operator

Pm(D) f =
∑

[k]=m

ak
∂k1+···+kd

∂xk1
1 · · · ∂xkd

d

f ,

which corresponds to ρ(ξ) = ∑

[k]=m ak(iξ1)k1 . . . (iξd)kd ; the fractional Laplacian
(−�)s/2 f (here ρ(ξ) = |ξ |s , ξ ∈ R

d ); the classical Weyl derivative f (s) (here
ρ(ξ) = (iξ)s , ξ ∈ R).

The realization of the K -functional generated by a function ρ ∈ Hs is defined by

Rρ( f , M− j ) = inf
T ∈BM j

{‖ f − T ‖ + ‖D(ρ(M∗− j ·))T ‖}.

Inmany cases, the realizationRρ( f , M− j ) is equivalent to the correspondingmodulus
of smoothness or K -functional (see, e.g., [1, 23, 24]). For example, if d = 1 and
ρ(ξ) = (iξ)s , then

Rρ( f , M− j ) � ωs( f , M− j ),

where ωs( f , M− j ) is the fractional modulus of smoothness defined in (2). If d = 1
and ρ(ξ) = |ξ |s , then

Rρ( f , M− j ) � sup
|M j h|≤1

∥

∥

∥

∥

∑

ν �=0

f (· + νh) − f (·)
|ν|s+1

∥

∥

∥

∥

.

In the case d ≥ 1 and ρ(ξ) = |ξ |2, we have

Rρ( f , M− j ) � sup
|M j h|≤1

∥

∥

∥

∥

d
∑

j=1

(

f (· + he j ) − 2 f (·) + f (· − he j )
)

∥

∥

∥

∥

,

where {e j }d
j=1 is the standard basis in R

d .

Theorem 16 Let s > 0, ρ ∈ Hs , δ ∈ (0, 1/2), M ∈ M, and α ∈ AM . Suppose that
ϕ̃ ∈ S ′

α;M and ϕ ∈ LC satisfy the following conditions:

1) supp ϕ̂ ⊂ T
d;

2) ηδ
1−ϕ̂̂ϕ̃

ρ
∈ W0.
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Then, for any f ∈ B
α(·)
M , we have

‖ f − Q j ( f , ϕ, ϕ̃)‖ ≤ c

⎛

⎝Rρ( f , M− j ) +
∞
∑

ν= j

α(Mν− j )EMν ( f )

⎞

⎠ .

Moreover, if ϕ̃ ∈ S ′
const;M and f ∈ C, then

‖ f − Q j ( f , ϕ, ϕ̃)‖ ≤ cRρ( f , M− j ).

In the above inequalities, the constant c does not depend on f and j .

In the next theorem, we obtain lower estimates of the approximation error by the
quasi-projection operators Q j ( f , ϕ, ϕ̃). Note that such type of estimates are also called
strong converse inequalities, see, e.g., [12].

Theorem 17 Let s > 0, ρ ∈ Hs , M ∈ M, and α ∈ AM . Suppose that ϕ̃ ∈ S ′
α;M and

ϕ ∈ LC satisfy the following conditions:

1) supp ϕ̂ ⊂ T
d;

2) η
ρ

1−ϕ̂̂ϕ̃
∈ W0.

Then, for any f ∈ B
α(·)
M , we have

Rρ( f , M− j ) ≤ c ‖ f − Q j ( f , ϕ, ϕ̃)‖ + c
∞
∑

ν= j

α(Mν− j )EMν ( f ). (14)

Moreover, if ϕ̃ ∈ S ′
const;M and f ∈ C, then

Rρ( f , M− j ) ≤ c ‖ f − Q j ( f , ϕ, ϕ̃)‖. (15)

In the above inequalities, the constant c does not depend on f and j .

7 Remarks and examples

Applying Lemma 14, we can present estimate (7) in more traditional form for direct
theorems of approximation theory, which are usually given only in terms of moduli
of smoothness. The same concerns the formulation of Theorem 16.

Remark 18 Under the conditions of Theorem 6, we have that for each f ∈ B
α(·)
M the

following inequality holds

‖ f − Q j ( f , ϕ, ϕ̃)‖ ≤ c
∞
∑

ν= j

α(Mν− j )
s( f , M−ν),

where the constant c does not depend on f and j .
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Remark 19 The conditions on ϕ and ϕ̃ in Theorems 16 and 17 can also be given in
terms of smoothness of ϕ̂ and̂ϕ̃, similarly to those given in Corollary 8. For this, one
can use the sufficient conditions for belonging to Wiener’s algebra given in [27] (see
also [15, 18]).

Example 1 Let s = 2, f ∈ C , and let Q j ( f , ϕ, ϕ̃) be a mixed sampling-Kantorovich
quasi-projection operator associated with ϕ(x) = 4−d ∏d

l=1 sinc
3(xl/4) and

ϕ̃(x) =
d ′
∏

l=1

χ[−1/2,1/2](xl)

d
∏

l=d ′+1

δ(xl).

Thus,

Q j ( f , ϕ, ϕ̃)(x)

=
∑

k∈Zd

k1+1/2
∫

k1−1/2

dt1 . . .

kd′+1/2
∫

kd′−1/2

dtd ′ f (M− j (t + k))

∣

∣

∣

td′+1=···=td=0
ϕ(Mx − k).

It is easy to see that all assumptions of Theorem 6 for the case ϕ̃ ∈ S ′
const;M are

satisfied, which implies

‖ f − Q j ( f , ϕ, ϕ̃)‖ ≤ c 
2( f , M− j ).

Example 2 Let d = 1,ϕ(x) = sinc4(x), and ϕ̃(x) = χT(x) (the characteristic function
of T). Then all conditions of Theorems 16 and 17 are satisfied. Therefore, for any
f ∈ C , we have

∥

∥

∥

∥

f −
∑

k∈Z
M j

( ∫

M− jT

f (M− j k − t)dt

)

sinc4(M j · −k)

∥

∥

∥

∥

� ω2( f , M− j ), (16)

where � is a two-sided inequality with constants independent of f and j .
Now we consider approximation by quasi-projection operators generated by the

Bochner-Riesz kernel of fractional order.

Example 3 Let ϕ(x) = Rγ
s (x) := F−1

(

(1 − |3ξ |s)γ+
)

(x), s > 0, γ > d−1
2 , and

ρ(ξ) = |ξ |s .
1) If ϕ̃(x) = δ(x), then for any f ∈ C , we have

∥

∥

∥

∥

f − m j
∑

k∈Zd

f (M− j k)Rγ
s (M j · −k)

∥

∥

∥

∥

� Rρ( f , M− j ). (17)

2) If ϕ̃(x) = χTd (x), then for any f ∈ C and s ∈ (0, 2], we have
∥

∥

∥

∥

f −m j
∑

k∈Zd

( ∫

M− jTd
f (M− j k−t)dt

)

Rγ
s (M j ·−k)

∥

∥

∥

∥

� Rρ( f , M− j ). (18)
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In the above two relations, the symbol � denotes a two-sided inequality with positive
constants independent of f and j . Note that estimate (17) follows from Theorems 16
and 17 and the fact that

η(ξ)(1 − (1 − |3ξ |s)γ+)

|ξ |s ∈ W0 and
η(ξ)|ξ |s

1 − (1 − |3ξ |s)γ+
∈ W0. (19)

The proof of relations (19) can be found, e.g., in [32]. The proof of (18) is similar. In
this case, instead of (19), we use the following relations:

η(ξ)(1 − sinc(ξ)(1 − |3ξ |s)γ+)

|ξ |s ∈ W0 and
η(ξ)|ξ |s

1 − sinc(x)(1 − |3ξ |s)γ+
∈ W0,

which can be verified using the same arguments as in [32].

8 Proofs

Proof of Theorem 6 First we prove the inequality

∥

∥

∥

∥

T −
∑

k∈Zd

〈T , ϕ̃0k〉ϕ0k

∥

∥

∥

∥

≤ c1
∑

[β]=s

‖Dβ T ‖, T ∈ Bδ I . (20)

Set ˜�(x) = T ∗ (Nδ ∗ ϕ̃−)(−x). Since ˜� ∈ L∞ and ϕ ∈ LC ⊂ L1, the function

gx (y) =
∑

ν∈Zd

˜�(−y + ν)ϕ(x − y + ν), x ∈ R
d ,

is continuous on R
d and summable on T

d . Let us check that the Fourier series of gx

is absolutely convergent, i.e.,

∑

k∈Zd

|ĝx (k)| =
∑

k∈Zd

∣

∣

∣

∫

Rd

˜�(−y)ϕ(x − y)e−2π i(y,k)dy
∣

∣

∣ < ∞. (21)

Let k ∈ Z
d , k �= 0, be fixed. Denoting �k(y) = ϕ(y)e−2π i(y,k), ek(x) = e2π i(k,x),

we get

∫

Rd

˜�(−y)ϕ(x − y)e−2π i(y,k)dy =
∫

Rd
T ∗ (Nδ ∗ ϕ̃−)(y)ϕ(x − y)e−2π i(y,k)dy

= ek(x)((T ∗ Nδ) ∗ (Nδ ∗ ϕ̃−) ∗ �k(x) = ek(x)(T ∗ (Nδ ∗ Nδ ∗ ϕ̃−) ∗ �k)(x).

(22)
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By condition 2) and Taylor’s formula, we have

ϕ̂(ξ + l) =
∑

[β]=s

s

β!ξ
β

∫ 1

0
(1 − t)s−1Dβϕ̂(tξ + l)dt .

Using this equality and setting Kt,δ,k(x) := F−1
(

ηδ(tξ)Dβϕ̂(tξ + k)
)

(x), we obtain

(Nδ ∗ Nδ ∗ ϕ̃−) ∗ �k(x)

=
∫

Rd
η2δ (ξ)ϕ̂(ξ + k)̂ϕ̃(ξ)e2π i(ξ,x)dξ

=
∑

[β]=s

s

β!
∫ 1

0
(1 − t)s−1

∫

Rd
ξβη2δ (ξ)̂ϕ̃(ξ)η2δ(tξ)Dβϕ̂(tξ + k)e2π i(ξ,x)dξdt

=
∑

[β]=s

s

β!(2π i)β

∫ 1

0
(1 − t)s−1

∫

Rd
D̂βNδ(ξ)ηδ(ξ)̂ϕ̃(ξ)K̂t,2δ,k(ξ)e2π i(ξ,x)dξdt

=
∑

[β]=s

s

β!(2π i)β

∫ 1

0
(1 − t)s−1(DβNδ ∗ (Nδ ∗ ϕ̃−) ∗ Kt,2δ,k)(x)dt . (23)

Since the function Nδ ∗ ϕ̃− is summable, it follows that

‖T ∗ (Nδ ∗ Nδ ∗ ϕ̃−) ∗ �k‖

≤ c2
∑

[β]=s

∫ 1

0
(1 − t)s−1‖T ∗ DβNδ ∗ (Nδ ∗ ϕ̃−) ∗ Kt,2δ,k‖dt

≤ c3
∑

[β]=s

sup
t∈(0,1)

‖T ∗ DβNδ ∗ Kt,2δ,k‖.

(24)

Due to condition 4), we get

‖T ∗ DβNδ ∗ Kt,2δ,k‖ = ‖Dβ T ∗ Nδ ∗ Kt,2δ,k‖ ≤ c4‖Dβ T ∗ Kt,2δ,k‖
= c4‖Dβ T ∗ Nt−1δ ∗ Kt,δ,k‖ ≤ c4‖Dβ T ∗ Kt,δ,k‖
≤ c4‖Kt,δ,k‖1‖Dβ T ‖ ≤ c5‖ηδ Dβϕ̂(· + k)‖W0‖Dβ T ‖.

(25)

Thus, inequalities (24), (25), and condition 5) yield

∥

∥

∥

∑

k �=0

ek(T ∗ (Nδ ∗ Nδ ∗ ϕ̃−) ∗ �k)

∥

∥

∥ ≤ c6
∑

[β]=s

‖Dβ T ‖, (26)
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which completes the proof of (21). Therefore, by the Poisson summation formula
and (22), we have

∑

k∈Zd

(T ∗ (Nδ ∗ ϕ̃−))(k)ϕ0k(x) =
∑

k∈Zd

˜�(k)ϕ(x + k)

=
∑

k∈Zd

∫

Rd

˜�(−y)ϕ(x − y)e−2π i(y,k)dy =
∑

k∈Zd

ek(T ∗ (Nδ ∗ Nδ ∗ ϕ̃−) ∗ �k),

(27)

and hence

T −
∑

k∈Zd

(T ∗ (Nδ ∗ ϕ̃−))(k)ϕ0k = T ∗ (Nδ − (Nδ ∗ ϕ̃−) ∗ ϕ)

+
∑

k �=0

ek(T ∗ (Nδ ∗ Nδ ∗ ϕ̃−) ∗ �k) =: I1 + I2.
(28)

The term I2 is already estimated in (26). Consider I1. By condition 4) and Taylor’s
formula, there holds

ϕ̂(ξ)̂ϕ̃(ξ) = 1 +
∑

[β]=s

s

β!ξ
β

∫ 1

0
(1 − t)s−1Dβϕ̂̂ϕ̃(tξ)dt .

Applying this equality, we obtain

Nδ(x) − ((Nδ ∗ ϕ̃−) ∗ ϕ)(x) =
∫

Rd
ηδ(ξ)(1 − ϕ̂(ξ)̂ϕ̃(ξ))e2π i(ξ,x)dξ

=
∑

[β]=s

s

β!
∫ 1

0
(1 − t)s−1

∫

Rd
ξβηδ(ξ)η2δ(tξ)Dβϕ̂̂ϕ̃(tξ)e2π i(ξ,x)dξdt

=
∑

[β]=s

s

β!(2π i)β

∫ 1

0
(1 − t)s−1

∫

Rd
D̂βNδ(ξ)K̂t,2δ(ξ)e2π i(ξ,x)dξdt

=
∑

[β]=s

s

β!(2π i)β

∫ 1

0
(1 − t)s−1(DβNδ ∗ Kt,2δ)(x)dt,

(29)

where Kt,δ(x) = F−1
(

ηδ(tξ)Dβϕ̂̂ϕ̃(tξ)
)

(x). Next, using condition 4) and the same

arguments as in (25), we have

‖I1‖ ≤ c7
∑

[β]=s

∫ 1

0
(1 − t)s−1‖T ∗ DβNδ ∗ Kt,2δ‖dt

≤ c8
∑

[β]=s

sup
t∈(0,1)

‖DβT ∗ Kt,δ‖ ≤ c9
∑

[β]=s

‖Dβ T ‖.

(30)
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Combining this with (28) and (26), we get (20).
Now let Tμ, μ ∈ Z+, be as in Definition 4 and T = T0. It follows from (20) and

Lemma 15 that
∥

∥

∥

∥

T −
∑

k∈Zd

〈T , ϕ̃0k〉ϕ0k

∥

∥

∥

∥

≤ c10ωs(T , 1) ≤ c11 (ωs( f , 1) + Eδ I ( f )) . (31)

If f ∈ B
α(·)
M , then Definition 4 and Lemmas 11 and 12 yield

‖Q0( f − T , ϕ, ϕ̃)‖ ≤ c12‖{〈 f − T , ϕ̃0k〉}k‖�∞ ≤ c13

∞
∑

μ=0

‖{〈Tμ+1 − Tμ, ϕ̃0k〉}k‖�∞

≤ c14

∞
∑

μ=ν

α(Mμ)EδMμ( f ). (32)

Applying (31) and (32) to the inequality

‖ f − Q0( f , ϕ, ϕ̃)‖ ≤ ‖T − Q0(T , ϕ, ϕ̃)‖ + ‖Q0( f − T , ϕ, ϕ̃)‖ + ‖ f − T ‖
(33)

and taking into account that ‖ f − T ‖ ≤ c(d)Eδ I ( f ), we obtain

‖ f − Q0( f , ϕ, ϕ̃)‖ ≤ c15

(

ωs( f , 1) +
∞
∑

ν=0

α(Mν)EδMν ( f )

)

. (34)

Since there exists ν0 = ν(δ) ∈ N such that EδMν ( f ) ≤ EMν−ν0 ( f ) and α(Mν) ≤
c(δ)α(Mν−ν0) for all ν > ν0, using Lemma 14 and the inequality ωs( f , λ) ≤ (1 +
λ)sωs( f , 1) (see, e.g., [23]) to the first ν0 terms of the sum, we get (7) for j = 0.

If ϕ̃ ∈ S ′
const;M and f ∈ C , then, by Definition 4 and Lemma 13, we have

‖Q0( f − T , ϕ, ϕ̃)‖ ≤ c16‖{〈 f − T , ϕ̃0k〉}k‖�∞ ≤ c17Eδ I ( f ). (35)

Combining this with (31) and (33) and applying Lemma 14 and the properties of
moduli of smoothness, we get (8) for j = 0.

Thus, our theorem is proved for the case j = 0. To prove (7) and (8) for arbitrary
j , it remains to note that

∥

∥

∥

∥

f −
∑

k∈Zd

〈 f , ϕ̃ jk〉ϕ jk

∥

∥

∥

∥

=
∥

∥

∥

∥

f (M− j ·) −
∑

k∈Zd

〈 f (M− j ·), ϕ̃0k〉ϕ0k

∥

∥

∥

∥

,

EMν ( f (M− j ·)) = EMν+ j ( f ),

ωs( f (M− j ·), 1) = 
s( f , M− j ),

and that f (M− j ·) ∈ B
α(·)
M whenever f ∈ B

α(·)
M . �
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Proof of Theorem 9 As above, it suffices to consider only the case j = 0. Repeating
the arguments of the proof of Theorem 6, we obtain from (28) that

T −
∑

k∈Zd

〈T , ϕ̃0k〉ϕ0k = 0,

Thus, using (33), (32), and (35), we prove both the statements. �
Proof of Corollary 10 Since obviously EδMν ( f ) = 0 for any ν ≥ j , and both the
functions f and Q j ( f , ϕ, ϕ̃) are continuous, it follows from Theorem 9 that f =
Q j ( f , ϕ, ϕ̃) at each point. Thus, by Definition 4, for every x ∈ R

d , we have

f (x) = m− j/2
∑

k∈Zd

〈 f (M− j ·), ϕ̃0k〉ϕ jk = m− j/2
∑

k∈Zd

lim
μ→∞ Tμ ∗ (NMμ ∗ ϕ̃−)(k)ϕ jk,

where Tμ ∈ BδMμ is such that

‖ f (M− j ·) − Tμ‖ ≤ c(d)EδMμ f (M− j ·).

It remains to note that for sufficiently large μ we have

Tμ ∗ (NMμ ∗ ϕ̃−) = f (M− j ·) ∗ (NMμ ∗ ϕ̃−) = f (M− j ·) ∗ (N1 ∗ ϕ̃−).

�
Proof of Theorem 16 Analyzing the arguments of the proof of Theorem 6, one can see
that it suffices to verify that

‖T ∗ (Nδ ∗ Nδ − (Nδ ∗ Nδ ∗ ϕ̃) ∗ ϕ) ‖ ≤ c1‖D(ρ)T ‖ (36)

for any T ∈ Bδ I such that ‖ f − T ‖ ≤ c(d)Eδ I ( f ).
We have

Nδ ∗ Nδ(x) − (Nδ ∗ Nδ ∗ ϕ̃) ∗ ϕ(x) =
∫

Rd
η2δ (ξ)

(

1 − ϕ̂(ξ)̂ϕ̃(ξ)
)

e2π i(ξ,x)dξ

=
∫

Rd
ηδ(ξ)

1 − ϕ̂(ξ)̂ϕ̃(ξ)

ρ(ξ)
ρ(ξ)ηδ(ξ)e2π i(ξ,x)dξ

= (D(ρ)Nδ) ∗ Kδ(x),

where Kδ(x) = F−1
(

ηδ
1−ϕ̂(ξ)̂ϕ̃(ξ)

ρ(ξ)

)

(x). Thus, using condition 2), we get

‖T ∗ (Nδ ∗ Nδ − (Nδ ∗ Nδ ∗ ϕ̃) ∗ ϕ) ‖ = ‖T ∗ (D(ρ)Nδ) ∗ Kδ‖
≤ c2‖T ∗ (D(ρ)Nδ)‖ = c2‖D(ρ)T ‖,

which completes the proof. �
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Proof of Theorem 17 As in the proof of the previous theorems, it suffices to consider
only the case j = 0. Let T ∈ BI be such that ‖ f − T ‖ ≤ c(d)EI ( f ). Due to the same
arguments as in the proof of Theorem 6, we have (28), which now takes the following
form

T −
∑

k∈Zd

〈T , ϕ̃0k〉ϕ0k

= T −
∑

k∈Zd

(T ∗ (N1 ∗ ϕ̃−))(k)ϕ0k = T ∗ (N1 − (N1 ∗ ϕ̃−) ∗ ϕ).

Thus, denoting K = F−1(η
ρ

1−ϕ̂̂ϕ̃
) and using condition 2), we obtain

‖D(ρ)T ‖ = ‖T ∗ D(ρ)N1‖ = ‖T ∗ F−1(ρη)‖ =
∥

∥

∥

∥

T ∗ F−1
(

η
ρ

1 − ϕ̂̂ϕ̃
(1 − ϕ̂̂ϕ̃)η

)∥

∥

∥

∥

= ‖T ∗ (N1 − (N1 ∗ ϕ̃−) ∗ ϕ) ∗ K‖ ≤ c1‖T ∗ (N1 − (N1 ∗ ϕ̃−) ∗ ϕ)‖
= c1‖T − Q0(T , ϕ, ϕ̃)‖.

Now, by the definition of the realization, we get

Rρ( f , I ) ≤ ‖D(ρ)T ‖p + EI ( f )

≤ c1 (‖T − Q0(T , ϕ, ϕ̃)‖ + EI ( f ))

≤ c1 (‖ f − Q0( f , ϕ, ϕ̃)‖ + ‖T − f ‖ + ‖Q0(T − f , ϕ, ϕ̃)‖ + EI ( f ))

≤ c2 (‖ f − Q0( f , ϕ, ϕ̃)‖ + EI ( f ) + ‖Q0( f − T , ϕ, ϕ̃)‖)

≤ c3 (‖ f − Q0( f , ϕ, ϕ̃)‖ + EI ( f )) ,

where the last inequality follows from Lemmas 12 and 13. Thus, to prove (15), it
remains to note that in view of the inclusion suppF (Q0( f , ϕ, ϕ̃)) ⊂ supp ϕ̂ ⊂ T

d ,
we have EI ( f ) ≤ ‖ f − Q0( f , ϕ, ϕ̃)‖.

Similarly, using (32), one can prove (14).
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