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Abstract

Approximation properties of quasi-projection operators Q;(f, ¢, ®) are studied.
These operators are associated with a function ¢ satisfying the Strang—Fix conditions
and a tempered distribution @ such that compatibility conditions with ¢ hold. Error
estimates in the uniform norm are obtained for a wide class of quasi-projection oper-
ators defined on the space of uniformly continuous functions and on the anisotropic
Besov-type spaces. Under additional assumptions on ¢ and @, two-sided estimates in
terms of realizations of the K -functional are also established.
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1 Introduction

Quasi-projection operators are a generalisation of the so-called scaling expansions

Qi(f 0. D)) =2/ Y (f,9Q27 - =k)p@/x —k), [.9,7 € La(R),
keZ
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playing an important role in the wavelet theory (see, e.g., [11, 13, 25, 26, 34]). Such
expansions are also well defined for other classes of functions ¢ and ¢ whenever the
inner product (f, $(2/ - —k)) has meaning and the series converges in some sense.
In [13], Jia considered a larger class of quasi-projection operators Q;(f, ¢, ¢) with
compactly supported functions ¢ and ¢ and obtained error estimates in L, and other
function spaces for these operators. The classical Kantorovich-Kotelnikov operators
(see, e.g., [9, 10, 19, 21, 30, 38]) are operators of the same form Q;(f, ¢, ) with the
characteristic function of [0, 1] as ¢. Another classical special case of quasi-projection
operators is the sampling expansion

Qi(f,0.0)(x) =) fQ 9@/ x —k) =2/ (f.82) - —k)p@/x — k),

keZ keZ

where § is the Dirac delta-function. In the case ¢(x) = sincx := sinwx/mx, it is the
classical Kotelnikov—Shannon expansion. Since § is a tempered distribution, under the
usual notation { f, §) := 8(f), the operator Q;(f, ¢, d) is defined only for functions
f from the Schwartz class, but to extend this class, one can set ( f, §) := (]/‘\, A). The
sampling expansion is of great applied importance, it is especially actively used by
engineers working in signal processing. Approximation properties of the sampling
operators Q;(f, ¢, 8) associated with different functions ¢ were studied by a lot of
authors (see, e.g., [2-7, 14, 28, 33, 37]).

Given a matrix M, we define the multivariate quasi-projection operator Q ; (f, ¢, @)
associated with a function ¢ and a distribution/function ¢ as follows

Qi(f 9. D)) =|det M Y (f, (M) - —n))p(M'x — n),

neZd

where the "inner product” (f, $(M/ - —n)) has meaning in some sense. If the Fourier
transform of f has enough decay, then the operators Q;(f, ¢, @) with (f, @) :=
(f, 5\) are well defined for a wide class of tempered distributions ¢ and appropriate
functions ¢. For fast decaying functions ¢, approximation properties of such quasi-
projection operators were studied in [26]. Namely, the error estimates in the L ,-norm,
2 < p < oo, were given in terms of the Fourier transform of f, and the approximation
order of Q;(f, ¢, ®) was found for the isotropic matrices M. Similar results for a
class of bandlimited functions ¢ and p < oo were obtained in [16], and then the class
of functions ¢ was essentially extended in [8]. These results were improved in several
directions in [20, 22] for fast decaying and bandlimited functions ¢ respectively.
Namely, the error estimates in L,-norm, 1 < p < oo, were given in terms of the
moduli of smoothness and the errors of best approximation. Moreover, the class of
approximated functions f was extended and the requirement on smoothness of ¢ and
5 was weakened in [22] due to using the Fourier multipliers method.

The technique developed in [20, 22] does not work appropriately for p = oo
because a function from L, cannot be uniformly approximated by functions from
L. In [22], the case p = oo is considered, but the estimates are obtained only for
functions f satisfying the additional assumption f(x) — 0 as |x| — oo. The goal
of the present paper is to fix this drawback. To this end, we use a new technique
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based on convolution representations. In particular, we determine an "inner product”
(f,@(MJ - 4n)) as a limit of some convolutions, so that the operator Qi(f,,9)is
well defined on the space of uniformly continuous functions and on the anisotropic
Besov-type spaces whenever the series ) ;74 |¢(x — k)| converges uniformly on any
compact set. Using this approach, we obtain error estimates in the uniform norm for
Q,(f, ¢, ®) under the assumptions of the Strang—Fix conditions for ¢, compatibility
conditions for ¢ and @, and belonging of some special functions associated with ¢ and
@ to Wiener’s algebra. These results are similar to those for p < 00 in [22], where some
Fourier multiplier conditions are assumed instead of belonging to Wiener’s algebra.
Under additional assumptions on ¢ and @, two-sided estimates in terms of realizations
of the K-functional are presented. A new Whittaker—Nyquist—Kotelnikov—Shannon-
type theorem is also proved.

2 Notation

We use the standard multi-index notation. Let x = (xl,...,xd)T and y =
1y eves yd)T be column vectors in RY, then (x,y) :=x1y1 + -+ + xaya, |x| :=
V& x);0 = 0,...,07 e RG24 = (x e 21 x> 0,k = 1,...,d},
T = [—1/2,1/ Z]d. If » > 0, then B, denotes the ball of radius r with the center in
0.Ifa e Zfi,a,b e RY, we set

d
3[a]f 3[a]f
. o —

lo] = Za.,, b'f= 9xe ¥y ...0%xy

j=

d b d
ab:l_[aj/’ a':Ha]'

j:l J=

If M is ad x d matrix, then || M|| denotes its operator norm in R?; M* denotes the
conjugate matrix to M, m = |det M|; the identity matrix is denoted by /. A d x d
matrix M whose eigenvalues are bigger than 1 in modulus s called a dilation matrix. We
denote the set of all dilation matrices by 91. It is well known that lim ; _, oo || M I =0
for any dilation matrix M. A matrix M is called isotropic if it is similar to a diagonal

matrix such that numbers Aq, . .., A4 are placed on the main diagonal and |A{| = - -+ =
[Adl.
Let L, denote the space Lp(Rd), 1 < p < oo, withthenorm || - ||, = || - ”Lp(Rd)‘

As usual, C denotes the space of all uniformly continuous bounded functions on R?
equipped with the norm || f|| = max,ga | f(x)]. We use WI’,’, l1<p<oo,neN,
to denote the Sobolev space on R, i.e. the set of functions whose derivatives up to
order n are in L ,, with the usual Sobolev norm. Let S denote the Schwartz class of
functions defined on R¥. The dual space of S is S’, i.e. S’ is the space of tempered
distributions.
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If f, g are functions defined on R? and fg € L1, then (f, g) denotes the usual
inner product; the convolution of appropriate functions f and g is denoted by f * g;
the Fourier transform of f € &’ is denoted by F f = f Wealsoset f~(x) = f(—x).

We say that f € S’ belongs to Wiener’s algebra Wy if there exists a function g € L
such that

f) = /R L 8E)T e, M

The corresponding norm is given by || fllw, = ligll1-
For a fixed matrix M € 971 and a function ¢ defined on RY, we set

Qin(x) =m!PeMix +k), jeZ, keR"

IfgeS,jeZkeZ then we define §jx by (f, §jx) := (f—j—mix: @) [ €S.

Let Lo denote the set of functions ¢ € Lo such that ), ,alo(- + k)| €
Loo(T?), and let £C denote the set of continuous functions ¢ such that the series
Y kezd |9 (- + k)| converges uniformly on any compact set. Both Lo, and LC are
Banach spaces with the norm

Y e+l

keZd

lellce = llellcy =

Loo(T9)

For any d x d matrix A, we introduce the space B4 := {g € Lo : suppg C A*T¢}
and the corresponding error of best approximation

Ex(f) :=inf{|lf —gll : g € Ba}.

Let o be a positive function defined on the set of all d x d matrices A. We introduce

the anisotropic Besov-type space ]B%o/;(') associated with a matrix A and « as the set of
all functions f such that

(0,¢]
I fllgeo == 111+ ) a(AM)Eav(f) < 0.
= 2
Note that in the case A = 21; and a(t) = t*°, ap > 0, the space IBSZ(') coincides with
the classical Besov space ng,l (Rd ).
For any matrix M € 9, we denote by Ay the set of all positive functions « :
Rdxd _ R that satisfy the condition a(MHTYY < e(M)a(M™) for all i € 7.
For any d x d matrix A, we also introduce the anisotropic fractional modulus of
smoothness of order s, s > 0,

Q(f.A) = sup AL

[A=lt|<1,teRd
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where

ASF(x) = Z(—l)"(i)f(x + ).

v=0

Recall that the standard fractional modulus of smoothness of order s, s > 0, is defined
by

ws(f,h) = sup |AfIl, h>0. 2

It|<h

We refer to [23] for the collection of basic properties of moduli of smoothness in
L,(RY).

Let 1 denote a real-valued function in C % (R9) such that nE)=1for& e T and
nE)=0for& ¢ 2T¢. For 8 > 0 and a d x d matrix A, we set

ns =n@"") and Ny = F 'ns,
na =n(A*"1) and Ny =F "na.

3 Preliminary information and main definitions

In what follows, we discuss the quasi-projection operators

Qi(f.0.9) =Y (. @i)gjk,

kezd

where the "inner product” (f, ¢ ;x) is defined in a special way and the series converges
in some sense. The expansions Zkezd (f, @ k)@ jk are elements of the shift-invariant
spaces generated by ¢. It is well known that a function f can be approximated by
elements of such spaces only if ¢ satisfies the Strang—Fix conditions.

Definition 1 A function ¢ is said to satisfy the Strang—Fix conditions of order s if
DPG(k) = 0 forevery B € Z<, [B] < s, and for all k € Z¢ \ {0}.

Certain compatibility conditions for a distribution ¢ and a function ¢ are also
required to provide good approximation properties of the operator Q;(f, ¢, ¢). For
our purposes, we use the following conditions.

Definition 2 A tempered distribution ¢ and a function ¢ are said to be weakly com-
patible of order s if DP (1 — ¢)(0) = 0 for every 8 € 74, [B] < s.

Definition 3 A tempered distribution @‘ and a function ¢ are said to be strictly com-
patible if there exists § > 0 such that (£)@(&) = 1 a.e. on §T¢.

Denote by S5, N > 0, the set of tempered distributions ¢ whose Fourier transforms
@ are measurable functions on R? such that [p(£)| < Cy(1 + lENN for almost all
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£ € RY. Note that for § € S}, and appropriate classes of functions ¢, such quasi-
projection operators Q ;(f, ¢, ®) with (f, k) = (f, (fj\k) were studied in [16, 21,
26, 34]. In particular, approximation by these operators in the uniform norm was
considered in [26]. The following statement can be derived from Theorems 4 and 5 in
[26].

TheoremA Lets e N, N >0, 5 € (0,1/2), and M € 9. Suppose

1) 9,9 € Lo,

2) §(-+1) € C5(Bs) foralll € Z4\ {0} and 3" Y. sup |DPG(E +1)| < oo;
170 || Bll1=s 1§]<8

3) the Strang—Fix conditions of order s are satisfied for ;

4) 3 € Sy and o¢ € C*(Bs);
5) ¢ and ¢ are weakly compatible of order s.

If f € Log issuchthat f € Ly and f(&) = O(E|"N=97¢), & > 0, as |£| — oo, then
Hf =Y (F G| =il N / €1V 17 (&)] dg
kEZd o ‘M*—jaztg

+ Col| M ¢ / E1°1 £ (&) d,

|M*—E|<8

where the constants C1 and Cy do not depend on f and j. If, moreover, M is an
isotropic matrix, then

|A| =S V+e) ifs>N+e
<C3{(G+ DA™/ ifs=N+e,
o Al ifs<N+e

”f — Y (F e

keZd

where A is an eigenvalue of M and C3 does not depend on j.

Unfortunately, there is a restriction on the decay of fin Theorem A. Obviously, such
arestriction is redundant for some special cases. Namely, the inner product ( f, ¢ %) has
meaning for any f € Lo, whenever ¢ is an integrable function. Moreover, Theorem A
provides approximation order for Q ; (f, ¢, ¢) only for isotropic matrices M, and even
for this case, more accurate error estimates in terms of smoothness of f were not
obtained in [26]. The mentioned drawbacks were avoided in [19,Theorem 17'], where
the uniform approximation by quasi-projection operators Q ; (f, ¢, ¢) associated with
a summable function ¢ and a bandlimited function ¢ was investigated. To formulate
this result, we need to introduce the space B consisting of functions ¢ such that
¢ = F~'6, where the function 6 is supported in arectangle R  R¢ and 6 | R € C4(R).

TheoremB Lets €N, 8,8 >0, M €¢ M, and f € L. Suppose

1) ¢ € BN Loo, Supp@ C By_g, and § € CH4+1(By);
2) € Lyand @ € CST4H1(By);
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3) ¢ and ¢ are weakly compatible of order s.
Then

= Co (f.1M71).

0]

Hf (f, @j)ejk
keZd

where C does not depend on f and j.

In what follows, we consider quasi-projection operators Q ;(f, ¢, @) associated
with a tempered distribution ¢ belonging to the class S(;; v M €M, a e Ay. This
class is defined as follows. We say that ¢ € &’ belongs to S,/ if $ is a measurable
locally bounded function and the function Ny * @~ is summable and

INmv @~ I < ca(M”) forall veZg, 3)

where the constant ¢ is independent of v.

Let us show that inequality (3) is satisfied for the most important special cases of
@. Since [Ny ll1 = IVl = ||[7]l1, one can easily see that (3) with & = 1 holds true
if ¢ € Ly or ¢ is the Dirac delta-function §. Now let ¢ be a distribution associated
with the differential operator D?, g € Z< ie., §(x) = (—1)PIDPS(x) (see [16]). In
this case, we have

Nipe %3~ = F (Nagw DP3) = F1(DPNage) = DP N,

If M = diag(m, ..., mg)anda(M) = m1 . md “, then using Bernstein’s inequality
(see, e.g., [35,p. 252]), we get

INae * @l = IDP NIl < mf! . b (N 1y = (M) |71

Similarly, if M is an isotropic matrix, then ¢ belongs to the class S/, ,, with a(M) =
mlBl/d
To extend the operator Q;(f, ¢, ¢) associated with ¢ € S, . onto the space B,
and onto C, we need to define the "inner product” (f, @jx) properly. Note that a
similar extension in the case p < oo was implemented in [20, 22], but the definition
of (f, ¢ k) given there is not suitable for us now.

o)

Definition4 Let M € M, o € Ay, 5 € (0,11, 9 € S, Ve and 7, € Bsyn, b € Z,
be such that

If = Tull = c(@)Espr(f)- “)
For every f € IB%‘;,I(‘) (f € C inthe case « = const), we set

(f @ox) = Tim T, N x§7) k), k € 27, 3)
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and
(f, @) i=m ™2 fF (M), o), j €L

To approve this definition, we note that, according to Lemma 11 (see below), the
limit in (5) exists and does not depend on the choice of § and functions 7,.

Remark 5 Since Ny * ¢~ belongs to Ly, the convolution in (5) is also well-defined
forall T;, € L, and

T % Ny % ) (K) = (T, Go1)- 6)

Further, if a function f satisfies the conditions of Theorem A, then the functional
{f, @ox) defined in the sense of Definition 4 coincides with the functional (f, ff/o,?k)
from Theorem A. Indeed, since f € Ly, we have lim|y|,» f(x) = 0, and, due to
Lemma 15 in [22], one can choose functions 7, € Bsyr N Ly satistying (4). Then
repeating the arguments in [20,Remark 12], we obtain

(F> @) = Lim (T,,, o),

=00

which together with (6) yields the equality {f, @ox) = (f, (’,5/0,:().

Finally we note that the main results of this paper are given in terms of Wiener’s
algebra Wj. Various conditions of belonging to Wy are overviewed in detail in the
survey [27] (see also [15, 17, 18], for some new efficient sufficient conditions).

4 Main results

LetM € Mo € Ay, ¢ € S, . and g € LC. Suppose that f € IB%‘X,[(') or f € Cinthe
case o = const. In what follows, we understand ( f, @) in the sense of Definition 4.
By Lemmas 11 and 13 below, we have that {(f, @x)}x € foo. This together with
Lemma 12 implies that the quasi-projection operators

Qi(f 0. 9) =Y ([ @i)ejk

kezd
are well defined.

Theorem 6 Let M € M, o € Ay, s € N, and § € (0, 1]. Suppose

1) g €8, andg € LC;

2) the Strang—Fix condition of order s holds for ¢;

3) @ and ¢ are weakly compatible of order s;

4) nsDP%@ € Woand nsDPG(-+1) € Wy forall B € Z4, [B] = s, and | € 74\ {0};
5) Y120 Ims DPQ(- + Dllw, < oo forall B € 29, [l = s.
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Then, for any f € IB%%[('), we have

If = Qi(fr 0. D <c | Q(fs M)+ Y aM" DNEw(f)]. ()

v=j

Moreover, if § € S .y and f € C, then

If = Qj(f @ DIl < cQ(f. M), ®)
In the above inequalities, the constant ¢ does not depend on f and j.

Remark 7 Assumptions 4) and 5) in Theorem 6 may be given in terms of the Fourier
multipliers as in [22,Theorem 20]. In this case, Theorem 6 holds true for any p > 1
after rewriting some basic notation in a more general form. Indeed, although the
definition of the "inner products" (f, @;x) for the operators Q; in [22] is different
from Definition 4, it may also be used for p < oo (see Remark 5).

Theorem 6 and the Beurling-type sufficient condition for belonging to Wiener’s
algebra given in [27,Theorem 6.1] imply the following more convenient to use state-
ment.

Corollary8 Lets € N,§ € (0,11, M € M a € Ay, ¢ € S,,.,, and ¢ € LC. Suppose
that conditions 2) and 3) of Theorem 6 are satisfied and, addltlonally, forsomek € N,
k>dJ/2,

0 € W3tk @sT), G- +1) € WiTR@28TY) forall 1 €7\ {0},

and

> IDPRC+ DIl X (W) <oo forall peZf, [Bl=s.
1#£0

Then inequalities (7) and (8) hold true.

Note that more general efficient sufficient conditions on smoothness of ¢ and ?E can
be obtained by exploiting the results of the papers [15, 17, 18].

Theorem9 Let§ € (0,11, M € M, anda € Apy. Supposethat g € S,,.,, andp € LC
satisfy the following conditions:

1) suppp C T¢;
2) ¢ and ¢ are strictly compatible with respect to 8.

Then, for any f € IB%%[('), we have

If = Qi(fo@. PNl <c D a(M"™)Esp(f). )

v=j
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Moreover, if § € S, .y and f € C, then

If = Qi(f 0. @I <cEspyi(f). (10)
In the above inequalities, the constant ¢ does not depend on f and j.

As a corollary from this theorem, we obtain the following new Whittaker—Nyquist—
Kotelnikov—Shannon-type formula.

Corollary 10 Let M € 9 be such that T ¢ M*T9, § € (0, 11, and let ¢, @ be as in
Theorem 9. If f € By, then

f) =Y (FM )« NG ) (k)p(MIx — k) forall xR

kezd

5 Auxiliary results

Lemma i1l Let M € M, n € N, § € (0, 1], and a € Ayy. Suppose that ¢, f, and T,
W € Z, are as in Definition 4 and

qM(k) =T, * e o) Kk), ke 74,

Then the sequence {{q, (k)}k}/‘i":l converges in Lo as i — 00 and its limit does not
depend on the choice of T), and §; a fortiori for every k € 74 there exists a limit

lim, o g, (k) independent on the choice of T, and 8. Moreover, for all f € IBO;,I('),
we have

D M1 ) = g illen <€D a(M™)Esyu(f), (11)
un=n nw=n

where the constant ¢ depends only on d and M.
Proof Denote j19p = min{u € N : T¢ C %M*”’H‘d forall v > p — 1}. Itis easy to
see that n(M*~#)n(M*~H=H0.) = n(M**.), and hence Ny = Ny % Nyputug.

Similarly, Nyzu+1 = Nygu+1 * Nypusno . Thus, taking into account that 7, = T, « Ny
and Tj41 = Ty41 % Nygu+1, we have

Tv *NMV *a_ = Tv *NMU *NM}L+/LO *a_ = TU *NM/H—/LO *65_, V= M,M+ 1.
It follows that

Gu1(k) = qu(k) = Tyt — Tp) ¥ Npgusng % ) (k).
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Then, using (3), we obtain

g1 (k) — qutellen, < 1(Tpsr — T) % Noygutuo % @)l
< Nyt * @ N1l Tyt — Tl < ca(MPFTEY Ty — Tyl (12)
< c1(aM™) Espn (f) + a(MPTYEgypen (),

which after the corresponding summation implies (11).

Next, it is clear that there exists v(§) € N such that Esyu (f) < E v (f) and
a(M*) < C(8)a(MP @) for big enough . Thus, if £ € B, then it follows
from (11) that {{g, (k)}k}zo: | is a Cauchy sequence in £«,. Fortiori, for every k € 74,
the sequence {g,, (k)}ff’: | has a limit.

Now let @ = const and f € C. For every u', u” € N, there exists v € N such that
both T;/ and T,.; are supported in M**T¢, and similarly to (12), we have

Hqw (k) = g ) Yillene < (T = Tyr) % Ny 5 @) ||
< CZ(E[;M;L’ (f) + ESMM”(f))-

Thus, again {{g, (k)}k}ff: | is a Cauchy sequence in £, and every sequence
{9u (k)};’f:l has a limit.

Let us check that the limit of {{q,, (k)}k}zo: | in £ does not depend on the choice
of T, and §. Let 8" € (0, 1] and Tli € Bs/yr be such that || f — T;i|| < (d)Esypyn(f)
and qL k) = T[L s« (Npe * @) (k). Since both T, and T,i belong to Byu, repeating
the arguments of the proof of inequality (12) with Tli instead of 7},41 and O instead
of 1o, we obtain

g, () — qutillen, < c3a(MMIT,, — Tyl < cao(M*)(Espn(f) + Espn ().

It follows that || {q; (k) —qu(®)}ille,e — 0as o — oo, which yields the independence
on the choice of 7, and §. o

The proof of the next lemma is obvious.
Lemma 12 Let ¢ € Lo and {ai}ycpd € Loo. Then

Z Ak Pok

keZd

< llell o Hartelle,, -

Lemmai3 Let f € C, M € M, and g € S’

const; M* Then

H(fs G dellen < U1,

where the constant ¢ does not depend on f.
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Proof By Lemma 11, for any & > 0, there exists a function 7), € By such that
| f —Tull <c1Eme(f) and

I{(f, @ox) — Ty % Ny % @) (K) Yk llen, < & (13)
Moreover, due to (3), we have
1Ty s« Ny % @)K < (1T % Ny % @) < 2l Tl < el f1I-

Combining this with (13), we prove the lemma. o

In the next two lemmas, we recall some basic inequalities for the error of best
approximation and the modulus of smoothness.

Lemma 14 (SEE [29,5.2.1 (7)JOR [35,5.3.3]) Let f € C and s € N. Then

Ei(f) <cws(f, 1),

where the constant ¢ does not depend on f.

Lemma 15 (SEE [39]OR [23]) Lets € Nand T € Bj. Then

D IDPTI < cog(T, 1),
[Bl=s

where the constant ¢ does not depend on T.

6 Estimates in terms of K-functionals

In Theorem 6, the uniform error estimates for the operators Q; (f, ¢, @) are given in
terms of the classical moduli of smoothness. Similar estimates in the L ,-norm, p < oo,
were obtained in our recent paper [22], where we also established the corresponding
lower estimates of approximation in terms of the same moduli of smoothness. It turns
out that in the uniform metric the classical moduli of smoothness are not suitable
to obtain sharp estimates of approximation (or two-sided inequalities) in the general
case (see, e.g, [36,Ch. 9]). However, this situation can be improved by using K-
functionals and their realizations instead of the classical moduli of smoothness (see,
e.g., [36,Ch. 9], [1, 24]). For our purposes, it is convenient to use realizations of
K -functionals.

In what follows, we need additional notation. We say that a function p belongs
to the class Hy, s > 0,1if p € C"o(Rd \ {0}) is homogeneous of degree s, i.e.,
p(t&) = ¥ p(£), &£ € RY. Any function p € H, generates a Weyl-type differentiation
operator as follows:

D(p)g:=F ' (p2), geS.
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For functions T € B),;, we define D(p)T by
D(p)T := (D(p)Ny) * T.

Note that this operator is well defined because the function F~!1(D(p)N, M) 1s
summable on R, see, e.g., [31].
Important examples of the Weyl-type operators are the linear differential operator

gkit-tka

Pu(D)f = Z akakl—kd ,
kl=m 0% -~ 9%y

which corresponds to p(§) = Z[ k=m @ (@ £k .. (i&7)%; the fractional Laplacian

(=A% f (here p(§) = |£|°, & € RY); the classical Weyl derivative ) (here

p(§) = (i§)",.§ € R).

The realization of the K-functional generated by a function p € H; is defined by

Ro(f, M~y = inf {IIf =TI + ID(e(M* )T}
TeB,,;

Ml

In many cases, the realization R, ( /', M —J) is equivalent to the corresponding modulus
of smoothness or K-functional (see, e.g., [1, 23, 24]). For example, if d = 1 and

p(€) = (i£)*, then
Ro(fs M~ < s (f, M),

where w, (f, M ~J) is the fractional modulus of smoothness defined in (2). If d = 1
and p(§) = |§]*, then

Rp(f,M_j) = sup WH
IMJh|<1 T [v]
In the case d > 1 and p(&) = |€|%, we have
' d
Rp(f. M)y < sup | D" (f(+hep) —2fC)+ f(—hep) |,
=il o

where {e j}‘]':'= | is the standard basis in RY.

Theorem 16 Lets > 0, p € Hy, 8 € (0,1/2), M € M, and o € Ayy. Suppose that
¢ € S,.p and ¢ € LC satisfy the following conditions:

1) supp@ C T¢;

2) nal_% € Wo.
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Then, for any f € IB%%[('), we have

If = Qi(f 0. P <c|Rp(f. M) + > a(M")Ern(f)

v=j

Moreover, if g € S ., and f € C, then

If—Qj(fs o, Dl <cRy(f, M),

In the above inequalities, the constant ¢ does not depend on f and j.

In the next theorem, we obtain lower estimates of the approximation error by the
quasi-projection operators Q ; (f, ¢, ). Note that such type of estimates are also called
strong converse inequalities, see, e.g., [12].

Theorem 17 Lets > 0, p € Hs, M € M, and a € Apy. Suppose that ¢ € S,,.,, and
@ € LC satisfy the following conditions:

1) supp@ C T¢;
0
2) T’ﬁ({? € W().

Then, for any f € IB%?(,,('), we have
Ro(f- M) <clf = Qi(f 0. D) +¢ Y aM" HNEw(f).  (14)
v=j

Py /
Moreover, if ¢ € S_.ps and | € C, then

Ro(f, M) <cllf = Qi(f. 0. Pl 15)

In the above inequalities, the constant ¢ does not depend on f and j.

7 Remarks and examples

Applying Lemma 14, we can present estimate (7) in more traditional form for direct
theorems of approximation theory, which are usually given only in terms of moduli
of smoothness. The same concerns the formulation of Theorem 16.

Remark 18 Under the conditions of Theorem 6, we have that for each f € B‘X,I(') the
following inequality holds

If = Qi(fr 0. @) <cd aM™HQu(f, M),

v=j

where the constant ¢ does not depend on f and ;.
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Remark 19 The conditions on ¢ and ¢ in Theorems 16 and 17 can also be given in
terms of smoothness of ¢ and 5, similarly to those given in Corollary 8. For this, one
can use the sufficient conditions for belonging to Wiener’s algebra given in [27] (see
also [15, 18]).

Example1 Lets =2, f € C,andlet Q;(f, ¢, ) be a mixed sampling-Kantorovich
quasi-projection operator associated with ¢(x) = 4~¢ ]_[fl:l sinc? (x;/4) and

bl d
@(x) =1_[X[—1/2,1/2](Xz) l_[ 8(xp).
I=1

[=d'+1

Thus,

Q;(f. 9. 9)(x)

ki+1/2 kgr+1/2
=Y / dt ... / dty f(M~I (1 + k) o(Mx — k).
’ fd’+1='“=td=0
kel —1)2 kgy—1/2

It is easy to see that all assumptions of Theorem 6 for the case ¢ € S, ., are
satisfied, which implies

If—Qj(f @, @) <cQ(f,M).

Example2 Letd = 1, p(x) = sinc*(x),and $(x) = xr(x) (the characteristic function
of T). Then all conditions of Theorems 16 and 17 are satisfied. Therefore, for any
f € C, we have

”f—ZMj(/ . f(Mjk—t)dt> sinc4(Mj-—k)” = an(f, M), (16)
M-JT

keZ

where < is a two-sided inequality with constants independent of f and j.
Now we consider approximation by quasi-projection operators generated by the
Bochner-Riesz kernel of fractional order.

Example3 Let ¢(x) = R} (x) := F~'((1 = 3§[)%) (x), s > 0, > %L, and
p@&) =I5
1) If g(x) = 8(x), then for any f € C, we have

Hf —m/ Y F(MTIK)RY (M7 - —k) H <R,y (f M) (17)
keZd
2) If g(x) = xpa(x), then for any f € C and s € (0, 2], we have

Hf—mf' > (/MW f(MJ’k—t)dt)RZ(Mf -—k)H = Ry(f. M77). (18)

keZd
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In the above two relations, the symbol < denotes a two-sided inequality with positive
constants independent of f and j. Note that estimate (17) follows from Theorems 16
and 17 and the fact that

—_ — syY ’
nOA=A =160 o 0@ (19)

HR 1—(1— 3857

The proof of relations (19) can be found, e.g., in [32]. The proof of (18) is similar. In
this case, instead of (19), we use the following relations:

n(§)(1 = sinc(§) (1 — 13§)%) € Wo and n@I&l’ € Wo

HR 1 — sinc(x)(1 — [3&9)%

which can be verified using the same arguments as in [32].

8 Proofs

Proof of Theorem 6 First we prove the inequality

<ci ) IDPTI, T eBy. (20)

NT — ) AT, Gox)pox
[Bl=s

kezd

Set d~>(x) =T % (N5 %@ )(—x). Since P e L and ¢ € LC C Ly, the function

gy =Y P(—y+vpkx—y+v), xeR

vezd

is continuous on R¢ and summable on T¢. Let us check that the Fourier series of g,
is absolutely convergent, i.e.,

dlal= )] \ /R (el — e N dy| < oo, 1)

keZd kezd

Let k € Z4, k # 0, be fixed. Denoting @ (y) = @(y)e 200 ¢ (x) = >k
we get

-/]Rd B(—y)p(x — y)e TGy = /Rd T % Ns % 3)0plx — y)e R gy

= ek () (T * No) % (N5 @) % @p(x) = ex () (T % N5 % N+ @) x Pp) ().
(22)
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By condition 2) and Taylor’s formula, we have

PE+n= Y e / (1= "1 DPGee + Dy,
[Bl=s

Using this equality and setting K; 5 x (x) 1= Fl (773 (t&)DPH(tE + k)) (x), we obtain

(-/\/8 *./\/3 * 5_) * Op(x)
:/R ﬂg(f?)?ﬁ(é +k)§(§)e2m(5’x)d§

=y - 5 / (10" f P03 (©)5 (s (15) DPR(E + k)e?™ Vg

[Bl=s
_ 1 =10~ lf Dﬁj\/’ K zm(gx)d d
[/; ﬂ'(zm)ﬂ/( ) o SEMs (E)F () K125 k(E)e Edt
- Z ﬂv(zm)ﬂ/ (1= 0"~ (DP N % (N5 % §7) % Ko 05, 0) ()t (23)
[Bl=

Since the function N * @~ is summable, it follows that

IT % (N5 % N+ @) * O

1
<oy / (1= 07T 5 DP Ny 5 (N5 % &) Ky 25 x| dt o
—_.J0

<cy Yy sup |IT % DP NG K5kl
[B1ms €0.1)

Due to condition 4), we get

IT * DPNs % Kios il = IDPT % Ns % Kpps il < call DPT % Ky o5 4l
= c4||DPT % Nyoig % Ky sl < cal| DPT 5 K, 541l (25)
< callKe skl IDPTN < esllns DPG(- + k) lw, IDP T

Thus, inequalities (24), (25), and condition 5) yield

Hzek(T*(/\/a*Na*fp )@ =6 Y IDTI. 26)
[Bl=s
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which completes the proof of (21). Therefore, by the Poisson summation formula
and (22), we have

D (TN %@ NEgok(x) = Y Dh)p(x + k)

keZd kezd
=Y / D(—y)g(x — y)e T ONdy = 3" e (T 5 (N5 % N §7) * ),
kezd kezd
(27)
and hence
T— Y (T WNsx @ ))Kgor =T 5 (Ns — (N; %§7) x9)
kezd (28)
+ D (T x Ny x N % §7) % @) = Iy + .
k#0

The term I is already estimated in (26). Consider /1. By condition 4) and Taylor’s
formula, there holds

POTEO =1+ Y e / (1= " DG e 1.
[Bl=s

Applying this equality, we obtain
Ns(@) = (N5 §7) % @) (x) = /R ns() (1 = PEFENE

= Z /3,/ (1= 1/ £P s (£)ns (18) DP 3R (18)e™ 60 g dit
[Bl=s

(29)
[/; ﬂ'(2m)ﬁ/ (I—=0" i DN () K. 25(6)e Edt
= /(l—r)é YDP NG K, 25) (x)d1,
o ﬂ'(2m)ﬁ

where K; s(x) = F! (775 (tE)Dﬂﬁ(té)) (x). Next, using condition 4) and the same
arguments as in (25), we have

MEEDY / (1 =) MIT % DP N * K o5l dt
[Bl=s (30)
<cg Yy sup |DPTxK;sll <co Y  [DPTY.
(1= 1€O:D [l=s
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Combining this with (28) and (26), we get (20).
Now let T, u € Z4, be as in Definition 4 and T = Tp. It follows from (20) and
Lemma 15 that

< ciows(T, 1) < c11 (ws(f, 1) + Es1(f)). 31

HT — Y AT, Gon) o

kezd

Iffe IB%?{,I('), then Definition 4 and Lemmas 11 and 12 yield

1Q0(f =T, 0, ®)Il < cr2l{lf =T, Gok)}klles, < c13 Z (Tt 1 — Tpus o) il
n=0

<y a(M")Esyn(f). (32)

n=v

Applying (31) and (32) to the inequality

If = Qo(f 0. @) < IT — Qo(T, 0. DI +11Q0(f —T.0. @) +1If —Tll

(33)
and taking into account that || f — T|| < c¢(d)Es;(f), we obtain
If = Qo(f, 0, 9)ll <cis (ws(f, D+ Za(MU)ESM“(f)> . (34)
v=0

Since there exists vp = v(8) € N such that Esyv (f) < Epp-v (f) and a(MY) <
c(8)a(MV~™) for all v > vy, using Lemma 14 and the inequality w,(f,A) < (1 +
M ws(f, 1) (see, e.g., [23]) to the first vy terms of the sum, we get (7) for j = 0.

If¢ € S q.p and f € C, then, by Definition 4 and Lemma 13, we have

1Q0(f =T, 0. 0l < c16ll{f =T, o) kllew, < c17E51(f). (35)

Combining this with (31) and (33) and applying Lemma 14 and the properties of
moduli of smoothness, we get (8) for j = 0.

Thus, our theorem is proved for the case j = 0. To prove (7) and (8) for arbitrary
J, it remains to note that

= Hf(M‘j D= Y LMY, Gor)o

keZd

Hf— Z(faajk)ﬁﬂjk .
kezd
Epy(fF(M™72)) = Eppsi (),

ws(F(M™7),1) = Q(f, M),

and that f(M~/.) € IB%‘;,I(') whenever f € IEBOI(,I('). o
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Proof of Theorem 9 As above, it suffices to consider only the case j = 0. Repeating
the arguments of the proof of Theorem 6, we obtain from (28) that

T — > (T.Go)pok =0,
kezd

Thus, using (33), (32), and (35), we prove both the statements. o

Proof of Corollary 10 Since obviously Espyv(f) = 0 for any v > j, and both the
functions f and Q;(f, ¢, @) are continuous, it follows from Theorem 9 that f =
Q,;(f, ¢, ®) at each point. Thus, by Definition 4, for every x € R4, we have

F@)=m™I2 Y f M) G = m ™2 Y tim Ty Ny + 3R,
kezd keZdu

where T}, € Bspn is such that
If (M) = Tyl < c(d)Espn f (M),
It remains to note that for sufficiently large © we have
Tk Wige % §7) = f(MT) % WNagn +§7) = f(M7)) % (N % §7).

<&

Proof of Theorem 16 Analyzing the arguments of the proof of Theorem 6, one can see
that it suffices to verify that

IT % N5 % Ns — N5« Ns % @) x9) | < c1lD(0)T || (36)

forany T € Bs; suchthat || f — T|| < c(d)Es;(f).
‘We have

No # N3 (x) = (Ns N5 % @) % p(x) = /Rd n; (&) (1 — a(s)ﬁ(g)) e 6N

1—9E)p :
= [ @ =2 o1 g

B p (&)
= (D(p)N;) * K5(x),

where Ks(x) = F~! (773 1—@((&#) (x). Thus, using condition 2), we get

[T % N5 % Ns — (N5 Ns % @) x @) | = IT * (D(p)Ns) * K|l
< alT = (PPNl = 2D T,

which completes the proof. o
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Proof of Theorem 17 As in the proof of the previous theorems, it suffices to consider
only the case j = 0.Let T € By besuchthat || f —T| < c(d)E;(f).Due to the same
arguments as in the proof of Theorem 6, we have (28), which now takes the following
form

T — Y (T, Pok)pok
kezd

=T =Y (TxWNi %@ NEgok =T x N1 — V1 %57) *¢).

kezd

Thus, denoting K = F -1 (nﬁ) and using condition 2), we obtain

IDATI = IT * DNl = IT % F~ (om) ]| = HT *}"l<n1 _"ﬁ(l —ﬁ)n) H

=IT* N1 =N %@ ) x@) K[| <ctllT* N1 — N1 x@7) *9)
=cilIT = Qo(T, 9. P)l.

Now, by the definition of the realization, we get

A

Rp(f. ) = D(0)TIlp + Er(f)

=ca (T = Qu(T. e, 9l + Er(f))

<cdlf = Qolfs . @l + 1T = fIl + 1Qo(T = f. 9. @) + Ei(f))
<alf—0uf .0l +E(f)+1Qo(f —T.0.9))

=ca(lf = Qo(f.e. @) + Er(f),

where the last inequality follows from Lemmas 12 and 13. Thus, to prove (15), it
remains to note that in view of the inclusion supp F (Qo(f, ¢, @) C supp@p C T¢,
we have E;(f) < |If — Qo(f, @, P)lI.

Similarly, using (32), one can prove (14).
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