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Abstract
In this paper we prove a result which can be regarded as a sub-Riemannian version
of de Rham decomposition theorem. More precisely, suppose that (M, H , g) is a
contact and oriented sub-Riemannian manifold such that the Reeb vector field ξ is
an infinitesimal isometry. Under such assumptions there exists a unique metric and
torsion-free connection on H . Suppose that there exists a point q ∈ M such that
the holonomy group �(q) acts reducibly on H(q) yielding a decomposition H(q) =
H1(q)⊕· · ·⊕Hm(q) into�(q)-irreducible factors. Using parallel transport we obtain
the decomposition H = H1 ⊕ · · · ⊕ Hm of H into sub-distributions Hi . Unlike
the Riemannian case, the distributions Hi are not integrable, however they induce
integrable distributions �i on M/ξ , which is locally a smooth manifold. As a result,
every point in M has a neighborhoodU such that T (U/ξ) = �1 ⊕ · · · ⊕ �m , and the
latter decomposition of T (U/ξ) induces the decomposition ofU/ξ into the product of
Riemannian manifolds. One can restate this as follows: every contact sub-Riemannian
manifold whose holonomy group acts reducibly has, at least locally, the structure of
a fiber bundle over a product of Riemannian manifolds. We also give a version of the
theorem for indefinite metrics.

Keywords Contact distributions · Connections · Sub-Riemannian geometry · De
Rham decomposition theorem

1 Introduction and statement of results

LetM be a smooth (by smoothwemeanof classC∞) connectedmanifold. Suppose that
H is a smooth bracket generating distribution on M of constant rank and g is a smooth
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Riemannian metric on H . The pair (H , g) is called a sub-Riemannian metric or a sub-
Riemannian structure on M . The triple (M, H , g) is referred to as a sub-Riemannian
manifold. Sub-Riemannianmanifolds appear inmanymathematical aswell as physical
problems and have been studied by many authors—see for instance [1–5,8,12,14] and
the reference sections therein. Various problems in sub-Riemannian geometry like for
instance the behavior of sub-Riemannian geodesics and their minimizing properties,
conjugate and cut loci, sub-Riemannian spheres, isometries and conformal mappings,
nilpotent approximations, differential properties of the sub-Riemannian distance etc.
have been investigated in detail. In this paper we deal with holonomy determined by
a class of connections introduced in [13] for contact sub-Riemannian manifolds, and
prove a theorem that can be considered as a version of deRhamdecomposition theorem
for Riemannian manifolds. Different approaches to sub-Riemannian holonomy and
some other problems involving it are treated, e.g., in [7,9].

By a contact sub-Riemannian manifolds we mean a sub-Riemannian manifold
(M, H , g), where dim M = 2n + 1, and H is a contact distribution on M . Given
a contact connected sub-Riemannian manifold (M, H , g) it is natural to consider the
bundle of orthonormal horizontal frames OH ,g(M) associated with it:

OH ,g(M) = {(q; v1, . . . , v2n) : v1, . . . , v2n is an orthonormal basis of H(q), q ∈ M}.

This is a principle bundle with structure group O(2n). Moreover we will assume that
H and T M are oriented, so the structure group can be reduced to SO(2n). Let ξ be
the Reeb vector field which is well defined in such a situation. We will assume that
ξ is an infinitesimal isometry. Now it can be proved [13] that there exists a unique
connection � on OH ,g(M) which is torsion-free (the definition of the torsion in our
case is presented below). In the usual way � defines the covariant differentiation

∇ : Sec(T M) × Sec(H) −→ Sec(H),

where we use the following notation: if E −→ M is a vector bundle then by Sec(E)

we denote the C∞(M)-module of sections of E . Having a connection on the bundle
OH ,g(M) we can consider its holonomy group �(q) at a point q ∈ M . Since M is
connected the groups�(q1) and�(q2) are isomorphic for any two points q1, q2 ∈ M .
The holonomy group �(q) naturally acts on H(q) (for H is an associated vector
bundle to OH ,g(M) with typical fiber R

2n). Suppose that the action of �(q) on H(q)

is reducible. Then H(q) decomposes into �(q)-irreducible factors

H(q) = H1(q) ⊕ · · · ⊕ Hm(q) (1.1)

which are mutually orthogonal with respect to g. By use of parallel translations we
extend Hi (q) to distributions Hi on M resulting in a global decomposition

H = H1 ⊕ · · · ⊕ Hm . (1.2)

Next let us consider the set M/ξ of orbits of ξ . It is locally a smooth manifold of
dimension 2n.
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If we fix an arbitrary point q0 ∈ M and a neighborhood U of q0 such that U/ξ is
a connected smooth manifold, then we can canonically identify U/ξ with a regular
2n-dimensional submanifold B of M with q0 ∈ B (the details can be found below).
Then the sub-Riemannian metric (H|U , g|U ) induces a natural Riemannian metric gB
on B, and the connection ∇ induces a connection ∇B on B which turns out to be the
Levi-Civita connection with respect to gB . Moreover, if we denote by p : U −→ B
the projection in the direction of ξ , then

dq p|H(q) : H(q) −→ Tπ(q)B

is a linear isometry. Using this projection, the decomposition (1.2) induces a decom-
position

T B = �1 ⊕ · · · ⊕ �m (1.3)

of T B into the Whitney sum of mutually orthogonal distributions. It is proved that �i

are integrable and parallel with respect to∇B , so in turn (1.3) induces a decomposition
of B. The main theorem may be stated as follows.

Theorem 1.1 Suppose that (M, H , g) is a contact oriented sub-Riemannian manifold
such that the Reeb vector field ξ is an infinitesimal isometry. Denote by � the unique
torsion-free connection on OH ,g(M) and suppose that there exists a point q ∈ M such
that the holonomy group�(q) of� acts reducibly on H(q) inducing the decomposition
(1.1). Then every point in M has a neighborhood U such that the manifold U/ξ is
isometric to the product (B1, g1) × · · · × (Bm, gm) of Riemannian manifolds, where
Bi is of dimension rank Hi , i = 1, . . . ,m. More precisely, each Bi may be identified
with a maximal integrable manifold for the distribution �i , i = 1, . . . ,m.

In particular, suppose that (M1, H1, g1), (M2, H2, g2) are two sub-Riemannian man-
ifolds satisfying the above assumptions. Let f : (M1, H1, g1) −→ (M2, H2, g2) be
an isometry and let ξ be the Reeb vector field on (M1, H1, g1). Then for every suffi-
ciently small open setU ⊂ M1, which is convex with respect to ξ (that is to say every
trajectory of ξ intersects U in a connected set), the Riemannian manifolds U/ξ and
f (U )/ f∗ξ are isometric.
Using the results from [16] we can generalized the above theorem to contact sub-

pseudo-Riemannian manifolds (e.g. sub-Lorentzian manifolds), i.e., when the metric
g on H is not necessarily positive definite. We need only to assume that �(q) acts
nondegenerately and reducibly on H(q) which means that the decomposition (1.1)
consists of subspaces Hi (q) nondegenerate with respect to g.

Theorem 1.2 Suppose that the assumptions of Theorem 1.1, where “sub-Riemannian
manifold” is replaced with “sub-pseudo-Riemannian manifold” and “�(q) acts
reducibly on H(q)” is replaced with “�(q) acts nondegenerately and reducibly on
H(q)”, are satisfied. Then every point in M has a neighborhood U such that the man-
ifold U/ξ is isometric to the product (B1, g1)×· · ·×(Bm, gm) of pseudo-Riemannian
manifolds, where Bi is of dimension rank Hi and, as above, may be identified with a
maximal integrable manifold of the distribution �i , i = 1, . . . ,m.
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Of course the remark made after the statement of Theorem 1.1 remains true with
obvious modifications.

Finally, we state the last theorem that we prove in the present paper. If (M, H , g)
is a given contact and oriented sub-Riemannian manifold, dim M = 2n + 1, denote
by α the normalized contact 1-from (see Sect. 2 for details). Then we can define the
operator J : H −→ H by dα(X ,Y ) = g(X , J (Y )). The operator J is a vector bundle
morphism covering the identity. Furthermore, J is nondegenerate and antisymmetric
with respect to g, therefore it has purely imaginary eigenvalues ±ib j , j = 1, . . . , n
(see [11] for further properties of J in the indefinite case). If the b j ’s are pointwise
mutually distinct, then each b j : M −→ R is a smooth function. We say that the
structure (H , g) is strongly nondegenerate at a point q ∈ M , if b1(q) < · · · < bn(q)

under suitable numeration (cf. [1] where the numbers b1(q), . . . , bn(q) are called
fundamental frequencies).

Theorem 1.3 Suppose that (M, H , g) is a contact oriented sub-Riemannian manifold.
Suppose that (i) the Reeb vector field ξ is an infinitesimal isometry. Denote by � the
unique torsion-free connection on OH ,g(M). Suppose next that (ii) the operator J
is parallel with respect to �. If J is strongly nondegenerate at a point q and U
is a sufficiently small neighborhood of q, then U/ξ is isometric to a product of 2-
dimensional Riemannianmanifolds. Consequently, the conformal type ofU/ξ depends
neither on the choice of a metric g satisfying (i) and (ii) nor on a point q at which J
is strongly nondegenerate.

As the reader can see, all above theorems concern a decomposition of the quotient
manifoldU/ξ into a product of (pseudo-)Riemannian manifolds, provided thatU is a
sufficiently small neighborhood of a fixed point. However, it would be very interesting
to know if the set U itself admits a decomposition into a product of sub-(pseudo-
)Riemannian manifolds. In the sub-Riemannian case, for instance, the set U is a
so-called geodesic metric space. Then we know [10] that U admits a decomposition
into a product of metric spaces. Such a decomposition is unique (up to a permutation of
factors) and it would be of high importance to explicate if the factors in the mentioned
decomposition carry some natural sub-Riemannian structure.

Content of the paper

In Sect. 2we recall basic notions from contact sub-Riemannian geometry. In particular,
we present the theory of connections on H introduced in the paper [13]. In Sect. 3 we
prove the theorems.

Throughout the paper we adopt the following convention. A vector v ∈ T M which
belongs to H will be called horizontal. On the other hand, if � is a distribution on
OH ,g(M), e.g., a connection, then a vector V ∈ T OH ,g(M) belonging to � will be
referred to as a �-horizontal vector.
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2 Contact sub-Riemannian geometry

Suppose that (M, H , g) is a contact sub-Riemannian manifold, dim M = 2n + 1. We
assume M to be connected. Let us suppose that M is oriented as a contact manifold
which means that the vector bundles T M and H are oriented. This is equivalent to the
existence of a globally defined contact form, i.e., a 1-form α on M with the property
that H = ker α (see [6,11]). In such a situation, i.e., when there exists a globally
defined contact form, we will say that the sub-Riemannian manifold (M, H , g) is
oriented. Such a contact form is not unique, so we normalize it as follows: we suppose
that

dα ∧ · · · ∧ dα
︸ ︷︷ ︸

n factors

(X1, . . . , X2n) = 1, (2.1)

where X1, . . . , X2n is a fixed local positively oriented orthonormal frame for H . For
n even we have two such forms α defined up to a sign, so we choose either of them.
A form satisfying (2.1) will be referred to as the normalized contact form.

If α is the normalized contact form then we define the Reeb vector field ξ on
(M, H , g) as the solution to the system of equations

dα(ξ, ·) = 0, α(ξ) = 1.

Such afield has the property that [ξ, X ] ∈ Sec(H)whenever X ∈ Sec(H). In particular
the (local) flow ϕt of ξ preserves the distribution H . Moreover, ξ defines a canonical
decomposition T M = H ⊕ Span{ξ}. The projection defined by this decomposition
will be denoted by

P : T M −→ H . (2.2)

2.1 Geodesics

Suppose that X1, . . . , X2n be an orthonormal frame defined on an open set U ⊂ M .
Let H : T ∗M|U −→ R be defined by

H(q, λ) = 1

2

2n
∑

i=1

〈λ, Xi (q)〉2. (2.3)

Clearly, the value of (2.3) does not depend on the choice of an orthonormal basis,
so H is in fact defined on the whole cotangent bundle: H : T ∗M −→ R. We call
H the geodesic Hamiltonian. By a normal or Hamiltonian geodesic we mean any

curve being a projection onto M of the trajectory of the Hamiltonian vector field
−→H .

In other words, a curve σ : [a, b] −→ M is a Hamiltonian geodesic if there exists
λ : [a, b] −→ T ∗M such that

λ(t) ∈ T ∗
σ(t)M and (σ̇ (t), λ̇(t)) = −→H . (2.4)
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It can be proved that in the contact case, every geodesic, i.e., a curve which locally
minimizes the sub-Riemannian distance, is a Hamiltonian geodesic. However we will
not use this fact. Let σ : [a, b] −→ M be a Hamiltonian geodesic and let λ(t) be its
lift to T ∗M as in (2.4). Suppose that S is a submanifold in M such that σ(a) ∈ S.
We say that σ satisfies the (Pontryagin) transversality condition with respect to S if
λ(a)|Tσ(a)S = 0.

For a point q ∈ M , denote by Dq the set of all covectors λ ∈ T ∗
q M such that the

Hamiltonian geodesic with initial condition (q, λ) exists on the interval [0, 1]. Then
we define the exponential mapping with pole at q as follows:

expq : Dq −→ M, expq(λ) = σ(1),

where σ(t) is the Hamiltonian geodesic with initial condition (q, λ). One proves that
expq is smooth.

2.2 Isometries and infinitesimal isometries

Given two contact sub-Riemannian manifolds (M1, H1, g1), (M2, H2, g2), a diffeo-
morphism f : M1 −→ M2 is called an isometry if dq f (H1(q)) ⊂ H2( f (q)) and
dq f : H1(q) −→ H2( f (q)) is a linear isometry for every q ∈ M . In other words
g2(dq f (v), dq f (w)) = g1(v,w) for all q ∈ M and v,w ∈ H1(q). If the mani-
folds (Mi , Hi , gi ), i = 1, 2, are oriented and f : M1 −→ M2 is an isometry, then
f ∗α2 = ±α1, as well as f∗ξ1 = ±ξ2, where αi is the normalized contact form and ξi
is the Reeb vector field on Mi , i = 1, 2. It can be also proved that isometries preserve
Hamiltonian geodesics. More precisely, if f is an isometry and σ : [a, b] −→ M is a
Hamiltonian geodesic satisfying the transversality condition with respect to a subman-
ifold S, then f ◦ σ is a Hamiltonian geodesic satisfying the transversality condition
with respect to f (S).

A vector field Z on a sub-Riemannian manifold (M, H , g) is called an infinites-
imal isometry if its (local) flow consists of isometries. It can be shown that Z is an
infinitesimal isometry if and only if (i) [Z ,Y ] ∈ Sec(H) and (ii) Z(g(X ,Y )) =
g([Z , X ],Y ) + g(X , [Z ,Y ]) for every X ,Y ∈ Sec(H).

2.3 Connection on the bundle of horizontal frames

In this subsection we present the construction of the connection which agrees with a
given sub-Riemannian structure. Details are described in [13]. Note that [13, Propo-
sition 7.1] is not true (one needs to impose stronger assumptions).

Let (M, H , g) be an oriented contact sub-Riemannian manifold. Consider the bun-
dle of horizontal frames determined by it:

LH (M) = {(q; v1, . . . , v2n) : q ∈ M, H(q) = Span{v1, . . . , v2n}};

by π : LH (M) −→ M we denote its projection, i.e., π(q; v1, . . . , v2n) = q. This
is a principle bundle with the structure group GL(2n). Indeed, we have a natural
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right action: (q; v1, . . . , v2n).a = (q; ai1vi , . . . , ai2nvi ), a ∈ GL(2n) (here and below
we use the Einstein summation convention). Moreover, if X1, . . . , X2n is a basis
of sections of H defined on an open set U ⊂ M then the local trivialization ψ :
π−1(U ) −→ U × GL(2n) of LH (M) acts as follows. If l = (q; v1, . . . , v2n) then

ψ(l) = (q, a(l)),

where a(l) ∈ GL(2n) is such that vi = a j
i (l)X j (q). The metric g reduces LH (M) to

the bundle

OH ,g(M) = {(q; v1, . . . , v2n) ∈ LH (M) : g(vi , v j ) = δi j , i, j = 1, . . . , 2n}

of orthonormal horizontal frames. This is a principle O(2n)-bundle. Every l =
(q; v1, . . . , v2n) ∈ OH ,g(M) defines the linear isomorphism l : R

2n −→ H(π(l)) =
H(q) which is given by

l(r) = r ivi . (2.5)

As usual, by a connection on OH ,g(M) we mean a distribution � ⊂ T OH ,g(M) such
that T OH ,g(M) = � ⊕ V and which is O(2n)-invariant, i.e., dl Ra(�l) = �l.a for
every a ∈ O(2n) and l ∈ OH ,g(M). Here V stands for the vertical distribution on
OH ,g(M): Vl = ker dlπ , and Ra : OH ,g(M) −→ OH ,g(M) is the right action of
O(2n). Note that if � is a connection on OH ,g(M) then we have a natural splitting

� = �H ⊕ �ξ , (2.6)

where �H = (dπ)−1(H) ∩ � and �ξ = (dπ)−1(Span{ξ}) ∩ �; as above ξ stands for
the Reeb vector field.

Given a connection � on OH ,g(M) we want to define its torsion. First of all we
need to specify the counter part of the canonical 1-form from the theory of linear frame
bundles. We do it as follows. For every l ∈ OH ,g(M) we define

θ(l) = l−1 ◦ P ◦ dlπ : Tl OH ,g(M) −→ R
2n, (2.7)

where P is defined in (2.2). The object θ is a 1-form on OH ,g(M) with values in R
2n

and will be called the canonical 1-form on OH ,g(M). Now by the torsion form of �

we mean the 2-form � which is given by

� = dθ ◦ (pr, pr), (2.8)

where pr : T OH ,g(M) = � ⊕ V −→ � stands for the projection. Due to the splitting
(2.6), the torsion can be decomposed into the horizontal torsion and vertical torsion
(see [13]). It can be proved [13] that there always exist connections on OH ,g(M)

with vanishing horizontal torsion. The class of connections with vanishing horizontal
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torsion is determined by a canonical choice of �H . To be more precise, various con-
nections with vanishing horizontal torsion have the same component �H , while the
component �ξ may be different.

Suppose further that the Reeb field is an infinitesimal isometry. Under such assump-
tions one can prove [13] that there exist a unique connection on OH ,g(M) which is
torsion-free. In other words, under the mentioned assumptions, there exists a unique
torsion-free and metric connection associated with the structure (H , g). Such a con-
nection induces the covariant derivation ∇ : Sec(T M)×Sec(H) −→ Sec(H). Being
metric means that

Z(g(X ,Y )) = g(∇Z X ,Y ) + g(X ,∇ZY ),

moreover, the vanishing of the horizontal torsion means that

∇XY − ∇Y X = P([X ,Y ]), (2.9)

whereas the vanishing of the vertical torsion is expressed by

∇ξ X = [ξ, X ], (2.10)

whenever Z ∈ Sec(T M), X ,Y ∈ Sec(H)—cf. [13].
At the end of this section let us note that if� is thementioned torsion-free connection

on OH ,g(M), then the component �ξ in the splitting (2.6) is given by �ξ = Span{ξ∗},
where the vector field ξ∗ (being the �-horizontal lift of ξ ) is defined as follows. Take
q ∈ M and let ϕt : U −→ M be the (local) flow of ξ , whereU is a neighborhood of q.
Thenwe can liftϕt to themapping�t : π−1(U ) −→ OH ,g(M),�t (q; v1, . . . , v2n) =
(ϕt (q); dqϕt (v1), . . . , dqϕt (v2n)), and for l ∈ π−1(q) we set

ξ∗(l) = d

dt

∣

∣

∣

t=0
�t (l).

2.4 Holonomy

Given a connection � on OH ,g(M), we can define parallel displacement along curves
on M and the holonomy group in the standard manner (see [15]). Consider a piecewise
smooth curve γ : [a, b] −→ M . The curve γ induces the parallel displacement of
fibers

τγ : π−1(γ (a)) −→ π−1(γ (b))

which is defined as follows. Take l ∈ π−1(γ (a)) and let γ ∗ : [a, b] −→ OH ,g(M) be
the�-horizontal lift of γ initiating at l, i.e.,π ◦γ ∗ = γ , d

dt γ
∗(t) ∈ �γ ∗(t) whenever the

derivative exists, and γ ∗(a) = l. Then τγ (l) = γ ∗(b). Moreover, if we are given two
piecewise smooth curves γi : [ai , bi ] −→ M , i = 1, 2, such that γ1(b1) = γ2(a2), we
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have τγ2·γ1 = τγ2 ◦ τγ1 , where γ2 · γ1 is the concatenation of γ1 and γ2. In particular,
if C(q) denotes the set of all piecewise smooth loops at a point q ∈ M , then

�(q) = {τγ : γ ∈ C(q)}

is a Lie group which is called the holonomy group at q and is denoted by�(q). Such a
group can be realized as a subgroup �(l), l ∈ π−1(q), of the structure group O(2n):
if γ ∈ C(q) then l and τγ (l) belong to the same fiber of π : OH ,g(M) −→ M ,
hence γ determines a unique element aγ ∈ O(2n) such that τγ (l) = l.aγ . In this way
�(l) = {aγ : γ ∈ C(q)} is a subgroup of O(2n). It is proved that if M is connected
then holonomy groups at any two points are isomorphic.

The connection � induces also the parallel displacement in every vector bundle
associated with OH ,g(M), so in particular in H . More precisely, if γ : [a, b] −→ M
is a curve then we can define the parallel displacement or translation along γ (we use
the same notation as above)

τγ : H(γ (a)) −→ H(γ (b))

as τ(v) = γ ∗(b)(r), where γ ∗ : [a, b] −→ OH ,g(M) is a �-horizontal lift of γ ,
π(γ ∗(a)) = γ (a), and r ∈ R

2n is such that γ ∗(a)(r) = v. Notice that for every γ the
map τγ is a linear isometry. In particular, the holonomy group �(q) acts on H(q).

Suppose that �(q) acts reducibly on H(q), and let

H(q) = H1(q) ⊕ · · · ⊕ Hm(q) (2.11)

be the decomposition of H(q) into �(q)-irreducible and �(q)-invariant mutually
orthogonal subspaces. It is a standard observation that the decomposition (2.11) can
be extended by the parallel displacement to the decomposition

H = H1 ⊕ · · · ⊕ Hm (2.12)

of the distribution H . Indeed, if γ is a curve starting at q then τγ (Hi (q)) does not
depend on γ but only on its endpoints. To end this subsection, we note that, by the
definition of the covariant derivation induced by �,

∇Z (Sec(Hi )) ⊂ Sec(Hi ) (2.13)

for every Z ∈ Sec(T M) and i = 1, . . . ,m.

3 Proof of Theorems 1.1 and 1.2

In this section we assume that (M, H , g) is a fixed contact oriented and connected
sub-Riemannian manifold, dim M = 2n + 1. Suppose that the Reeb vector field ξ

is an infinitesimal isometry and denote its (local) flow by ϕt . Moreover, let � be the
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unique torsion-free connection on OH ,g(M). Suppose that the holonomy group acts
reducibly on H and the corresponding decomposition is

H = H1 ⊕ · · · ⊕ Hm .

As above Hi are constant rank distributionswhich are pairwise orthogonal with respect
to g, rank Hi > 0, i = 1, . . .m. By ∇ we will denote the covariant derivation induced
by �.

3.1 Distributions ˜Hi

Distributions Hi need not be integrable, however their extensions are. For every i =
1, . . . ,m let us define

˜Hi = Hi ⊕ Span{ξ}.

Proposition 3.1 The distribution ˜Hi is integrable, i = 1, . . . ,m.

Proof Indeed by (2.13) it follows that

∇XY ∈ Sec(Hi ) and ∇ξ X = [ξ, X ] ∈ Sec(Hi )

for every X ,Y ∈ Sec(Hi ). Consequently,

P([X ,Y ]) = ∇XY − ∇Y X ∈ Sec(Hi )

which in turn implies [X ,Y ] ∈ Sec( ˜Hi ). ��
In particular we see that the distributions Hi , as well as ˜Hi , are invariant by the flow
of ξ .

3.2 The submanifold B: construction of the bundle over B

Fix a point q0 ∈ M . Let q0 ∈ U where U ⊂ M is an open set that will be specified
below. We construct a regular submanifold B of M , q0 ∈ B, which can be canonically
identified with U/ξ .

We start by choosing a coordinate system around q0 which will be convenient for
our purposes. Denote by δ : (−ε, ε) −→ M the trajectory of the Reeb field ξ such
that δ(0) = q0. Select a local basis X1, . . . , X2n of section of H defined near q0 and
let gti stand for the (local) flow of Xi , i = 1, . . . , 2n. We can assume that each gti is
defined on a neighborhood of q0 and for |t | < ε. By shrinking U we can suppose that
the mapping

(x̃1, . . . , x̃2n, z) −→ gx̃
1

1 ◦ · · · ◦ gx̃
2n

2n ◦ δ(z)
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defines coordinates (x̃1, . . . , x̃2n, z) on U such that x̃ i (q0) = z(q0) = 0,

H|δ = Span
{ ∂

∂ x̃1
, . . . ,

∂

∂ x̃2n

}

,

and ξ|δ = ∂
∂z . Let (x̃1, . . . , x̃2n, z, p̃1, . . . , p̃2n, r) be the Darboux coordinates on

T ∗M|U and let us set

A = {(0, . . . , 0, z, p̃1, . . . , p̃2n, 0) : |z|, | p̃1|, . . . , | p̃2n| < ε} ⊂ T ∗M|U .

The set A can be regarded as the set of initial conditions for sub-Riemannian geodesics
satisfying the Pontryagin transversality conditions with respect to δ (cf. [1]). Now, the
assignment

(x1, . . . , x2n, z) −→ exp(0,...,0,z)(x
1, . . . , x2n, 0) (3.1)

defines the desired coordinates (x1, . . . , x2n, z) around q0. We can suppose that they
are defined on U (shrinking U again if necessary). Let us notice that

H|δ = Span
{ ∂

∂x1
, . . . ,

∂

∂x2n

}

,

ξ|δ = ∂
∂z , and straight lines t −→ (tv, z) in these coordinates, where v ∈ R

2n and
∑n

i=1 v2i = 1, are sub-Riemannian geodesics parameterized by arc length, which
satisfy the transversality conditions with respect to δ. We define the following family
of hypersurfaces

Sw = {q ∈ U : z(q) = w}

transverse to δ. We will identify U with an open subset of R
2n+1 with coordinates

(x, z), so we will also write Sw = {(x, z) : z = w}.
Proposition 3.2 ϕt (Sw) = Sw+t .

Proof Sw is the union of geodesics which in our coordinates have the form σ(s) =
(sv,w), |v| = 1. As we said above these are are exactly the geodesics that start
from δ and satisfy the Pontryagin transversality conditions with respect to δ. Fix
such a geodesic σ(s) = (sv,w). Since ϕt is an isometry preserving δ, the curve
s −→ ϕt (σ (s)) is again a geodesic that starts from δ and satisfies the transversality
condition with respect to δ. Thus it must be of the form s −→ (sṽ, w̃). Because
ϕt (σ (0)) = (0, w + t) in (x, z)-coordinates, w̃ = w + t which ends the proof. ��

Now, let us set B = S0. Remark that B (or more precisely, its germ at q0) is defined
canonically and does not depend on coordinates. We define the projection

p : U −→ B
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as the projection onto B in the direction of ξ :

p(q) = ϕt(q)(q),

where t(q) is such that ϕt(q)(q) ∈ B. By construction, ξ is transverse to B, and t(q)

depends smoothly on q by the implicit function theorem. Obviously t(q) = 0 for
q ∈ B and, moreover,

p ◦ ϕt = p. (3.2)

We see that p : U −→ B is a fiber bundle with fibers being trajectories of ξ .

3.3 Inducedmetric and connection on B

Our next aim is to endow B with a suitably induced Riemannian metric and a connec-
tion. Suppose that X ∈ Sec(T B). First we construct the canonical ’lift’ of X to the
field ˜X ∈ Sec(H) on U by formula

˜X(ϕt (q)) = dqϕ
t (X(q) − αq(X)ξ(q)) (3.3)

for every q ∈ B and every t for which the above expression is defined. Recall that α

stands for the normalized conatct form.

Proposition 3.3 Suppose that X ∈ Sec(T B) and let ˜X ∈ Sec(H) be the horizontal
lift defined above. For every q ∈ U

dq p(˜X(q)) = X(p(q)).

Proof Let q = ϕt (q̄), where q̄ ∈ B. Then using (3.3) and (3.2) we have

dq p(˜X(q)) = dϕt (q̄) p ◦ dq̄ϕ
t (X(q̄) − αq̄(X)ξ(q̄)) = dq̄ p(X(q̄) − αq̄(X)ξ(q̄))

and it suffices to notice that dq̄ p(X(q̄)) = X(q̄) and dq̄ p(ξ) = 0. The first equality
follows from p|B = id and the other from the definition of p. ��

Now we define the announced Riemannian metric on B. For q ∈ B and X ,Y ∈
Sec(T B) we set

gB(X(q),Y (q)) = g
(

X(q) − αq(X)ξ(q),Y (q) − αq(Y )ξ(q)
)

. (3.4)

The last equation can be rewritten as

gB(X(q),Y (q)) = gB(dq p(˜X(q)), dq p(˜Y (q))) = g(˜X(q), ˜X(q)). (3.5)

Note that if X1, . . . , X2n is a basis of Tq B, then ˜X1 = X1 − α(X1)ξ(q), . . . , ˜X2n =
X2n −α(X2n)ξ(q) is a basis of Hq and dq p(˜Xi ) = Xi for every i . Remembering (3.5)
we obtain the following statement.
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Corollary 3.1 For every q ∈ B

dq p|Hq : Hq −→ Tq B

is a linear isometry.

Notice that B carries a natural orientation determined by the orientation of H .

Remark 3.1 Let us remark that ifwe apply the sameprocedure to define theRiemannian
metric on Sw, w �= 0, then the resulting Riemannian manifold will be isometric to
(B, gB).

We proceed to define a connection on B. Denote by O(B) the bundle of orthonormal
frames of B. Let πB : O(B) −→ B be the corresponding projection and VB =
ker dπB be the vertical distribution. By Corollary 3.1 we have the natural mapping
p̂ : OH ,g(U ) −→ O(B), p̂(q; v1, . . . , v2n) = (p(q); dq p(v1), . . . , dq p(v2n)). Of
course the diagram

OH ,g(U ) O(B)

U B

p̂

π πB

p

(3.6)

is commutative. Recall that we have the decomposition � = �H ⊕ �ξ , where �ξ =
Span{ξ∗}. Note that p̂ ◦ �t = p̂ (where �t is the local flow of ξ∗). Indeed,

p̂ ◦ �t (q; v1, . . . , v2n) = (p(ϕt (q)); dq(p ◦ ϕt )(v1), . . . , dq(p ◦ ϕt )(v2n))

= (p(q); dq p(v1), . . . , dq p(v2n)).

Proposition 3.4 The mapping p̂ defined above is a surjective submersion.

Proof Evidently p̂ is onto B. Fix l = (q; v1, . . . , v2n) ∈ OH ,g(U ), q ∈ B, and
take w ∈ Tp̂(l)O(B). Then w = σ̄ �(0), where σ̄ : [−ε, ε] −→ O(B) is a suit-
able smooth curve. Clearly, σ̄ (t) = (σ (t);w1(t), . . . , w2n(t)), σ̄ (0) = p̂(l), so in
particular wi (0) = dq p(vi ). For the curve σ : [−ε, ε] −→ B, σ(0) = q, let us
construct its lift to a horizontal curve σ̃ : [−ε, ε] −→ U , σ̃ (0) = σ(0), as follows.
Supposing that ε > 0 is sufficiently small and σ is contained in a coordinate chart
V , extend the field σ̇ (t) to a vector field Z ∈ Sec(T B|V ). Using (3.3), we obtain the
field ˜Z ∈ Sec(H|p−1(V )) and as σ̃ : [−ε, ε] −→ U we simply take the trajectory of ˜Z
starting from σ(0). By construction, p ◦ σ̃ = σ . Now define

vi (t) = (dσ̃ (t) p|H (̃σ (t)))
−1wi (t), i = 1, . . . , 2n,

and set

c(t) = (̃σ (t); v1(t), . . . , v2n(t)).
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It is easy to check that dl p̂(ċ(0)) = w.
��

Proposition 3.5 (a) d p̂(�ξ ) = 0;

(b) d p̂(V ) = VB;

(c) The distribution �B = d p̂(�H ) is a connection on O(B).

Proof Part (a) and the inclusion d p̂(V ) ⊂ VB follow from the equation before Propo-
sition 3.4, diagram (3.6) and Proposition 3.4. Now take w ∈ VB . Then w = d p̂(v),
v ∈ T OH ,g(M), and since dp(dπ(v)) = dπB(w) = 0, it must be v = λξ∗ + v′,
λ ∈ R, v′ ∈ V . Consequently w = d p̂(v′) ∈ d p̂(V ).

We will prove (c). First notice that

p̂ ◦ Ra = Ra ◦ p̂. (3.7)

Next, since dl Ra(�
H
l ) = �H

l.a ,

dp̂(l)Ra(�
B
p̂(l))=dp̂(l)Ra ◦ dl p̂(�

H
l )=dl.a p̂ ◦ dl Ra(�

H
l ) = dl.a p̂ ◦ (�H

l.a) = �B
p̂(l).a .

Moreover, dπB(�B) = dπB ◦ d p̂(�H ) = dp ◦ dπ(�H ) = dp(H) = T B, so

T O(B) = �B ⊕ VB . (3.8)

��
Next we will compute the torsion of �B . To this end denote by prB : T O(B) −→

�B the projection corresponding to the decomposition (3.8).

Corollary 3.2 prB ◦ d p̂ = d p̂ ◦ pr.

Denote by θB the canonical 1-form on O(B).

Lemma 3.1 Let θ be the canonical 1-form on OH ,g(M) defined in Sect. 2.3. Then

p̂∗θB = θ. (3.9)

Proof Take l ∈ OH ,g(M). We have

( p̂∗θB)(l) = θB( p̂(l)) ◦ dl p̂ = p̂(l)−1 ◦ dp̂(l)πB ◦ dl p̂ = p̂(l)−1 ◦ dπ(l) p ◦ dlπ

and recalling (2.7) it is enough to prove that

p̂(l)−1 ◦ dπ(l) p = l−1 ◦ P. (3.10)

Let l = (q; v1, . . . , v2n) and v ∈ T M . Then p̂(l)−1 ◦ dq p(v) = r if and only if
dq p(v) = dq p(r ivi ), which in turn is equivalent to v = r ivi + λξ(q) for a certain
λ ∈ R. Now l−1 ◦ P(v) = r and (3.10) is proved. ��
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The torsion of�B is equal to�B = dθB◦(prB, prB). Take two vectors v,w ∈ T O(B).
Then v = d p̂(v̂), w = d p̂(ŵ) for v̂, ŵ ∈ �H ⊂ T OH ,g(M), and

�B(v,w) = dθB(prB ◦ d p̂(v̂), prB ◦ d p̂(ŵ)) = dθB(d p̂ ◦ pr(v̂), d p̂ ◦ pr(ŵ))

= p̂∗(dθB)(pr(v̂), pr(ŵ)) = �(v̂, ŵ) = 0,

where � is the torsion form of � (see (2.8)). We proved the following proposition.

Proposition 3.6 �B is the Levi-Civita connection with respect to the metric gB.

Denote by ∇B : Sec(T B)×Sec(T B) −→ Sec(T B) the covariant derivation induced
by �B . We have an explicit formula for ∇B .

Proposition 3.7 For every X ,Y ∈ Sec(T B) and q ∈ B

(∇B
X Y )(q) = dq p(∇˜X

˜Y )(q), (3.11)

where ˜X, ˜Y are defined according to formula (3.3).

We postpone the proof of this proposition until the appendix.

3.4 Distributions1i and decomposition of TB

The decomposition of H induces the decomposition of T B into the distributions on
B which are defined as

�i = dp(Hi ) = dp( ˜Hi ), (3.12)

i = 1, . . . ,m. By Proposition 3.3 such a definition is correct.
For a curve γ : [a, b] −→ B denote by τ B

γ : H(γ (a)) −→ H(γ (b)) the parallel

translation along γ determined by the connection �B . We prove the following lemma.

Lemma 3.2 Suppose that γ : [a, b] −→ B and γ̃ : [a, b] −→ M are piecewise
smooth curves such that γ̃ is horizontal and p ◦ γ̃ = γ . Then the diagram

H(γ̃ (a)) H(γ̃ (b))

Tγ (a)B Tγ (b)B

τγ̃

dγ̃ (a) p dγ̃ (b) p
τ B
γ

is commutative.

Proof Take v ∈ Tγ (a)B and ṽ ∈ H(γ̃ (a)) such that dp(̃v) = v. Suppose that γ̃ ∗ :
[a, b] −→ OH ,g(M) is a�-horizontal lift of γ̃ . Choose r ∈ R

2n such that γ̃ ∗(a)(r) =
ṽ. Then, by definition of the parallel transport, τγ (̃v) = γ̃ ∗(b)(r). Now the curve

t −→ p̂(γ̃ ∗(t))(r) = dγ (t) p
(

γ̃ ∗(t)(r)
)
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(again by definition) is parallel in T B, projects onto γ and initiates at v, therefore

τ B
γ (v) = dγ (b) p

(

γ̃ ∗(b)(r)
)

.

This proves the commutativity of the above diagram. ��

Proposition 3.8 The distributions �i are parallel with respect to the connection �B,
i.e., for every point q ∈ B, each �i can be obtained from �i (q) by parallel transport.
Moreover, �i are irreducible with respect to the holonomy group of �B.

Proof Fix an index i and take a piecewise smooth curve γ : [a, b] −→ B. Pick
numbers a = a0 < a1 < · · · < am = b such that each γ j = γ|[a j−1,a j ] admits a lift to
a horizontal curve γ̃ j : [a j−1, a j ] −→ U , γ̃ j (a j−1) = γ (a j−1), as it is described in
the proof of Proposition 3.4. Obviously τ B

γ = τ B
γm

◦ · · · ◦ τ B
γ1

and by Lemma 3.2 each

τ B
γ j

preserves the distribution �i . It follows that τ B
γ (�i (γ (a)) = �i (γ (b)) as desired.

Fix now a point q0 ∈ B and suppose that we have a decomposition

�i (q0) = �
(1)
i (q0) ⊕ �

(2)
i (q0) (3.13)

into nontrivial components. Let H ( j)
i (q0) = (dq0 p)

−1
(

�
( j)
i (q0)

) ∩ Hi (q0), j = 1, 2.

Clearly, Hi (q0) = H (1)
i (q0)⊕ H (2)

i (q0) and H ( j)
i (q0) are not �(q0)-invariant. There-

fore there exists a nonzero v̂ ∈ H (1)
i (q0) and a horizontal curve γ̃ : [0, 1] −→ M such

that γ̃ (0) = γ̃ (1) = q0 and τγ̃ (v̂) ∈ H (2)
i (q0). Let γ = p ◦ γ̃ . Now dp(v̂) ∈ �

(1)
i (q0)

and by Lemma 3.2 τ B
γ (dp(v̂)) ∈ �

(2)
i (q0)which proves that�

( j)
i (q0) are not invariant

with respect to the holonomy group of �B . ��

In particular it follows that ∇B
X (Sec(�i )) ⊂ Sec(�i ) for every X ∈ Sec(T B) and,

consequently, �i are integrable. Indeed, if X ,Y ∈ Sec(�i ) then ∇B
X Y − ∇B

Y X =
[X ,Y ] ∈ Sec(�i ). Now, to finish the prove of Theorem 1.1 we just use de Rham
decomposition theorem [15]. Let us note that the integrability of the distributions �i

can be also proved in the following way. For a point q ∈ B denote by Mi the maximal
integral manifold of ˜Hi passing through q. Using, e.g., Corollary 3.1 we deduce that
p|Mi : Mi −→ B is of constant rank and hence p(Mi ) is an integral manifold of �i

passing through q.
In the sub-pseudo-Riemannian case the proof goes along the same lines. The only

difference is that the structure group of the bundle OH ,g(M) is now O(k, 2n − k)
where k is the index of a metric g, and by an orthonormal frame we mean every
frame X1, . . . , X2n such that g(Xi , X j ) = 0, i �= j , g(Xi , Xi ) = −1, 1 ≤ i ≤ k,
g(X j , X j ) = 1, k + 1 ≤ j ≤ 2n . Moreover, a few words more about Hamiltonian
geodesics in the indefinite case should be added, and we do it in the appendix. At the
end we use the version of de Rham Theorem proved in [16].
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4 Proof of Theorem 1.3

Replacing M with an open subset, if needed, we can suppose that our structure is
strongly nondegenerate onM . Then the eigenvalues±ib j of J are smooth functions on
M . For any point q ∈ M there exists a neighborhoodU of q and an orthonormal frame
X1, . . . , X2n ∈ Sec(H|U ) such that J (X2 j−1) = −b j X2 j and J (X2 j ) = b j X2 j−1 on
U , j = 1, . . . , n. Let us define

Hj |U = Span{X2 j−1, X2 j }. (4.1)

Of course Hj |U glue together to globally defined distributions on M and we obtain
the decomposition of H

H = H1 ⊕ · · · ⊕ Hn (4.2)

into the Whitney sum of pairwise orthogonal rank 2 sub-distributions.
Let l = (q; v1, . . . , v2n) ∈ OH ,g(M). Denote by e1, . . . , e2n the standard basis of

R
2n and by f 1, . . . , f 2n the dual basis of (R2n)∗. Let us recall that since H , H∗ and

Hom(H , H) are vector bundles associated with OH ,g(M) with typical fiber equal to
R
2n , (R2n)∗, (R2n)∗ ⊗ R

2n , respectively, then l acts as linear isomorphisms (cf. [15])
l : R

2n −→ H(q), l : (R2n)∗ −→ H(q)∗, l : (R2n)∗ ⊗ R
2n −→ Hom(H(q), H(q))

which are respectively defined by l(e j ) = v j , l( f j ) = v∗ j , l( f j ⊗ ek) = v∗ j ⊗ vk ;
here v∗ j ∈ H∗

q is the covector dual to v j ∈ Hq .
Now fix a point q ∈ M . Choose an orthonormal basis v1, . . . , v2n of H(q) such

that

Jq(v2 j−1) = −b j (q)v2 j , Jq(v2 j ) = b j (q)v2 j−1, j = 1, . . . , n.

Let us define a 2n × 2n-matrix (Ai
j ) by

Ai
j f

j ⊗ ei =
n

∑

j=1

[ − b j (q) f 2 j−1 ⊗ e2 j + b j (q) f 2 j ⊗ e2 j−1
]

.

If l = (q; v1, . . . , v2n) then clearly l(Ai
j f

j ⊗ ei ) = Jq . Further take an arbitrary
smooth horizontal curve σ : [0, 1] −→ M such that σ(0) = q. Denote by σ ∗ :
[0, 1] −→ OH ,g(M) the �-horizontal lift of σ which satisfies σ ∗(0) = l. Then
σ ∗(0)(Ai

j f
j ⊗ ei ) = Jq . By assumption the operator J is parallel, therefore

σ ∗(t)(Ai
j f

j ⊗ ei ) = Jσ(t) (4.3)
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for t ∈ [0, 1].1 Equation (4.3) means that if σ ∗(t) = (σ (t); v1(t), . . . , v2n(t)) then
for every t

Jσ(t)(v2 j−1(t)) = −b j (q)v2 j (t), Jq(v2 j (t)) = b j (q)v2 j−1(t), j = 1, . . . , n.

Since σ is an arbitrary horizontal curve, and any two points of M can be joined by a
horizontal curve, this ends the proof of the following proposition.

Proposition 4.1 Under the assumptions of Theorem 1.3, b j = const, j = 1, . . . , n, in
a neighborhood of every point at which the structure is strongly nondegenerate. More-
over, the distributions H1, . . . , Hn from (4.2) are parallel on such a neighborhood.

To end the proof we proceed exactly as above which results in a decomposition
(B1, g1)×· · ·×(Bn, gn)of B into the product of 2-dimensionalRiemannianmanifolds.
It remains to recall the classical result saying that any two Riemannian manifolds of
dimension 2 are locally conformally equivalent.
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Appendix A: Hamiltonian geodesics in sub-pseudo-Riemannian case

Since sub-pseudo-Riemannian geometry is very little known as compared to the sub-
Riemannian one,we give here some facts concerningHamiltonian geodesics and prove
that they are preserved by isometries. Suppose that (M, H , g) is a contact sub-pseudo-
Riemannian manifold and suppose that g has index k. By a local orthonormal frame
for (H , g) we mean a frame X1, . . . , X2n defined on an open set U ⊂ M such that
g(Xi , X j ) = εiδi j , where

εi =
{

−1 : i = 1, . . . , k

+1 : i = k + 1, . . . , 2n
.

1 Note [15] that parallel curves in Hom(H , H) covering σ are exactly of the form t −→ σ∗(t)(A) with
A ∈ (R2n)∗ ⊗ R

2n .

http://creativecommons.org/licenses/by/4.0/
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We define the geodesic HamiltonianH : T ∗M −→ R. First we do so locally. Suppose
thatU ⊂ M is an open subset such that there exists an orthonormal frame X1, . . . , X2n
for H|U . Then we set

H(q, λ) = 1

2

2n
∑

i=1

εi 〈λ, Xi (q)〉2

on T ∗M|U . Next we notice that such a definition is independent of the choice of an
orthonormal frame. Indeed, if X ′

1, . . . , X
′
2n is any other orthonormal frame for H|U ,

then X ′
i = a j

i X j , where (aij ) ∈ O(k, 2n − k). By the definition of O(k, 2n − k) we
obtain that

2n
∑

i=1

εi 〈λ, X ′
i (q)〉2 =

2n
∑

i, j=1

εi (a
j
i )2〈λ, X j 〉2

=
2n
∑

j=1

(

2n
∑

i=1

εi (a
j
i )2

)〈λ, X j 〉2 =
2n
∑

j=1

ε j 〈λ, X j 〉2

as claimed. It follows that H is well defined on the whole T ∗M . Recall that we have
the canonical symplectic structure on T ∗M which we will denote by ϒ (ϒ is the
exterior differential of the Liouville 1-form on T ∗M). Thus the geodesic Hamiltonian

determines the Hamiltonian vector field
−→H on T ∗M . Now by aHamiltonian geodesic

on the given sub-pseudo-Riemannian manifold we mean every curve on M which is

a projection of a trajectory of the field
−→H . Once we have the notion of Hamiltonian

geodesics, we can define the exponential mapping with pole at a given point q0 ∈ M
exactly as it is done in the sub-Riemannian case.

Suppose f : M1 −→ M2 is a diffeomorphism. Then we have the induced diffeo-
morphism f̂ : T ∗M1 −→ T ∗M2 which acts by f̂ (q, λ) = ( f (q), ((dq f )−1)∗λ). It is
well-known that f̂ is a symplectomorphism with respect to the canonical symplectic
structures on T ∗Mi .

A diffeomorphism f : (M1, H1, g1) −→ (M2, H2, g2) of two sub-pseudo-
Riemannian manifolds is called an isometry if dq f (H1(q)) ⊂ H2( f (q)) and dq f :
H1(q) −→ H2( f (q)) is a linear isometry for every q ∈ M . In particular the two
metrics g1, g2 have the same index.

Lemma A.1 Suppose that (Mi , Hi , gi ) is a sub-pseudo-Riemannian manifold and
denote by Hi the geodesic Hamiltonian on (Mi , Hi , gi ), i = 1, 2. If f : M1 −→ M2
is an isometry then

H2 ◦ f̂ = H1 (A.1)

and, moreover,

d f̂ (
−→H1) = −→H2. (A.2)
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Proof Fix (q, λ) ∈ T ∗M1 and let X1, . . . , X2n be an orthonormal frame for H2 defined
in a neighborhood of f (q). Then

H2 ◦ f̂ (q, λ) = 1

2

2n
∑

j=1

〈((dq f )−1)∗λ, X j ( f (q))〉

= 1

2

2n
∑

j=1

〈λ, (dq f )
−1X j ( f (q))〉 = H1(q, λ),

since (dq f )−1X1, . . . , (dq f )−1X2n is an orthonormal frame for H1 around q.
In order to prove (A.2) we note that in addition to (A.1) we also have f̂ ∗ϒ2 = ϒ1.

��

Consequently, we have finished the proof of the following proposition.

Proposition A.1 Isometries preserve Hamiltonian geodesics.

Appendix B: Proof of Proposition 3.7

In this section we prove that the operator

(DXY )(q) = dq p(∇˜X
˜Y )(q),

where X ,Y ∈ Sec(T B) and q ∈ B, is a Levi-Civita connection for the metric gB . As
above ˜X , ˜Y are defined according to formula (3.3).

For a function f ∈ C∞(B) let us define ˜f ∈ C∞(U ) by ˜f (q) = f (p(q)) and
observe that

˜f X = ˜f ˜X (B.1)

whenever X ∈ Sec(T B). Further, we have

Lemma B.1 Under the above notation, for X ∈ Sec(T B), f ∈ C∞(B), q ∈ B

˜X( ˜f ) = X̃( f );

in particular, ˜X( ˜f )(q) = X( f )(q). Moreover,

ξ( ˜f ) = 0.

Proof The second formula is obvious since ˜f is constant along the trajectories of ξ .
To prove the first part, fix an arbitrary point belonging to U . Such a point is of the
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form ϕs(q) where q ∈ B and s ∈ R. We have

˜X( ˜f )(ϕs(q)) = dqϕ
s(X(q) − αq(X)ξ(q)

)

( f ◦ p)

= dϕs (q) p ◦ dqϕ
s(X(q) − αq(X)ξ(q)

)

( f ) = dq p
(

X(q) − αq(X)ξ(q)
)

( f )

= X( f )(q) = X̃( f )(ϕs(q)).

��
We make sure that D defined above is indeed a connection. To this end take X ,Y ∈
Sec(T B), f ∈ C∞(B) and q ∈ B. Then

(D f XY )(q) = dq p((∇˜f X Ỹ )(q)) = f̃ (q)dq p((∇X̃ Ỹ )(q)) = ( f DXY )(q),

and

(

DX ( f Y )
)

(q) = dq p((∇X̃
˜f Y )(q)) = dq p((∇X̃ f̃ Ỹ )(q))

= dq p
(

X̃( f̃ )(q)Ỹ (q) + f̃ (q)∇X̃ Ỹ (q)
) = (X( f )Y + f DXY )(q).

Fix X ,Y , Z ∈ Sec(T B) and q ∈ B. At first we will compute the torsion of D.

(DXY − DY X)(q) = dq p(∇˜X
˜Y − ∇

˜Y
˜X)(q) = dq p

(

P([˜X , ˜Y ])(q)
)

= dq p
([˜X , ˜Y ](q)

)

,

where the last equality follows from the fact that dp(ξ) = 0. Now, for any f ∈ C∞(B)

dq p
([˜X , ˜Y ](q)

)

( f ) = [˜X , ˜Y ]( f ◦ p)(q) = [˜X , ˜Y ]( ˜f )(q) = (

˜X(˜Y ( ˜f )) − ˜Y (˜X( ˜f ))
)

(q)

= (

˜X(Y ( f )
�

) − ˜Y (X( f )
�

)
)

(q) = (

X(Y ( f ))
� − Y (X( f ))

�)

(q) = (

X(Y ( f )) − Y (X( f ))
)

(q)

= [X , Y ]( f )(q).

It follows that

DXY − DY X = [X ,Y ]

and D is torsion-free. Next we prove that D is a metric connection. Recall that

˜Z(g(˜X , ˜Y )) = g(∇
˜Z
˜X , ˜Y ) + g(˜X ,∇

˜Z
˜Y ). (B.2)

In order to evaluate the left-hand side of (B.2) let us notice that for every s (for which
it makes sense)

g(˜X , ˜Y )(ϕs(q)) = g
(

dqϕ
s(X(q) − αq(X)ξ(q)

)

, dqϕ
s(Y (q) − αq(Y )ξ(q)

)
)

= g
(

X(q) − αq(X)ξ(q),Y (q) − αq(Y )ξ(q)
) = gB(X(q),Y (q))

= gB(X ,Y )(p ◦ ϕs(q)) = gB(X ,Y )
�

(ϕs(q)).
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Therefore, according to Lemma B.1, we have

˜Z(g(˜X , ˜Y ))(q) = Z(gB(X ,Y ))(q).

Now the first summand on the right-hand side of (B.2) evaluated at q is

g(∇
˜Z
˜X , ˜Y )(q) = gB

(

dq p
(∇

˜Z
˜X

)

, dq p(˜Y )
)

= gB(DZ X ,Y )(q)

(we use (3.5) here) and similarly for the second summand. Hence

Z(gB(X ,Y )) = gB(DZ X ,Y ) + gB(X , DZY )

which ends the proof of Proposition 3.7.
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