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Abstract
In this paper we study global properties of the Wigner caustic of parameterized closed
planar curves.Wefind new results on its geometry and singular points. In particular, we
consider the Wigner caustic of rosettes, i.e. regular closed parameterized curves with
non-vanishing curvature. We present a decomposition of a curve into parallel arcs to
describe smooth branches of the Wigner caustic. By this construction we can find the
number of smooth branches, the rotation number, the number of inflexion points and
the parity of the number of cusp singularities of each branch. We also study the global
properties of the Wigner caustic on shell (the branch of the Wigner caustic connecting
two inflexion points of a curve). We apply our results to whorls—the important object
to study the dynamics of a quantum particle in the optical lattice potential.

Keywords Semiclassical dynamics · Affine equidistants · Wigner caustic ·
Singularities · Planar curves

Mathematics Subject Classification 53A04 · 53A15 · 58K05 · 81Q20

1 Introduction

In 1932 Eugene Wigner introduced the celebrated Wigner function to study quantum
corrections to classical statistical mechanics ([31]).This function relates the wave-
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function that appears in Schrödinger’s equation to a probability distribution in phase
space. The Wigner function of a pure state is defined in the following way

Wψ(p, q) = 1

π�

∫ ∞

−∞
ψ∗(q − ζ )ψ(q + ζ ) exp (2i pζ/�) dζ,

where (p, q) ∈ R
2 are momentum and position, and ψ ∈ L2

C
(R) is the wavefunction.

In [1] Berry studied the semiclassical limit of Wigner’s phase-space representation of
quantum states. He proved that for 1-dimensional systems, that correspond to smooth
(Lagrangian) curves M in the phase space (R2, ω = dp∧ dq), the semiclassical limit
of the Wigner function of the classical correspondence M of a pure quantum state
takes on high values at points in a neighborhood of M and also in a neighborhood
of a singular closed curve, which is called the Wigner caustic of M or the Wigner
catastrophe (see [1,4,10,23] for details). Geometrically the Wigner caustic of a planar
curve M is the locus of midpoints of chords connecting points on M with parallel
tangent lines ([1,10,11,23]). It is also the caustic of a certain Lagrangian map defined
in the following way (see [10,11,23] for details).

For the canonical symplectic form ω = dp ∧ dq on R
2 the map � : TR

2 �
v �→ ω(v, ·) ∈ T ∗

R
2 is an isomorphism between the bundles TR

2 and T ∗
R
2. Then

ω̇ = �∗dα = d ṗ ∧ dq + dp ∧ dq̇ is a symplectic form on TR
2, where α is the

canonical Liouville 1-form on T ∗
R
2. The linear diffeomorphism � 1

2
: R

2 × R
2 →

TR
2 = R

2 × R
2,

� 1
2
(p+, q+, p−, q−) = (p, q, ṗ, q̇) = 1

2

(
p+ + p−, q+ + q−, p+ − p−, q+ − q−)

pulls the symplectic form ω̇ on TR
2 back to the canonical symplectic 1

2 (π
∗+ω−π∗−ω)

on the product R
2 × R

2, where π+, π− : R
2 × R

2 → R
2 are the projections on the

first and on the second component, respectively. If M is a smooth regular planar curve
then M is an immersed Lagrangian submanifold of (R2, ω). Hence � 1

2
(M × M) is an

immersed Lagrangian submanifold of (TR
2, ω̇). Let π1, π2 : TR

2 = R
2 ×R

2 → R
2

be the projections on the first and on the second component, respectively. Then π1 and
π2 define Lagrangian fibre bundles with the symplectic structure ω̇. Then the caustic
of the Lagrangian map (the set of its critical values) π1 ◦ � 1

2

∣∣
M×M is the Wigner

caustic [5,6,10,11,23]. On the other hand the Lagrangian map π2 ◦ � 1
2

∣∣
M×M is the

secant map of M [13]. If M is (locally) described as

M =
{
(p, q) ∈ R

2 | p = dS

dq
(q)

}

then the generating family of the Lagrangian submanifold � 1
2
(M × M) has the fol-

lowing form

F(p, q, β) = 1

2
(S(q + β) − S(q − β)) − pβ.
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Fig. 1 A non-convex curve
together with its Wigner caustic

Fig. 2 An improper affine sphere (with different opacities) generated from a curve in Fig. 1

The front of the Legendrian submanifold of the contact manifold (TR
2 × R, dz +

�∗α) generated by F is a singular 2-dimensional improper affine sphere, where z
is a coordinate on R. The caustic of this front is composed of the curve M and its
Wigner caustic. Hence the geometry of the Wigner caustics provides information on
singularities of improper affine spheres. In Fig. 1we present a non-convex planar curve
with its Wigner caustic and in Fig. 2 we show the improper affine sphere generated
by M in the construction described above (see [5,6] for details).

In [8] (see also [2–4]) the dynamics of a quantum particle in the optical lattice
potential was investigated. The authors analyze the evolution of the Wigner function.
The function undergoes a number of catastrophic changes. For a semiclassical approx-
imation theWigner caustic consists of the rainbow diagram (the original curve M) and
a locus of midpoints of chords joining points on the rainbow diagramwith parallel tan-
gent lines. But the catastrophe set of the exact Wigner function, in addition, contains
a locus of midpoints of chords joining points on neighboring rainbow diagrams with
parallel tangents. Hence the Wigner caustic of the curve M should be investigated not
only locally but globally too. It turns out that its global geometry is very important for
understanding the quantum-classical correspondence breakdown. It allows to extract
important information without using simplifying approximations.
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Fig. 3 i A closed regular curve M , ii M and E 1
2
(M)

Singularities of theWigner caustic for ovals occur exactly from antipodal pairs (the
tangent lines at the two points are parallel and the curvatures are equal). The well-
known Blaschke-Süss theorem states that there are at least three pairs of antipodal
points on anoval ([22,26]). The absolute value of the oriented area of theWigner caustic
gives the exact relation between the perimeter and the area of the region bounded
by closed regular curves of constant width and improves the classical isoperimetric
inequality for convex curves ([34,35,37–39]). Furthermore this oriented area improves
the isoperimetric defect in the reverse isoperimetric inequality ([7]). Recently the
properties of the middle hedgehog, which is a generalization of the Wigner caustic
for non-smooth convex curves, were studied in [29,30]. The Wigner caustic in the
literature regarding hedgehogs is known also as a projective hedgehog (see [27,28]
and the literature cited therein). The Wigner caustic could be generalized to obtain an
affine λ-equidistant, which is the locus of points of the above chords which divide the
chord segments between base points with a fixed ratio λ. The singular points of affine
equidistants create the Centre Symmetry Set, the natural generalization of the center
of symmetry, which is widely studied in [11,16,18,20,24]. The geometry of an affine
extended wave front, i.e. the set

⋃
λ ∈ [0, 1]{λ}× Eλ(M), where Eλ(M) is an affine

λ-equidistant of a manifold M , was studied in [11,15].
Local properties of singularities of the Wigner caustic and affine equidistants were

studied in many papers [5,9–12,19,23,25]. In this paper we study global properties
of the Wigner caustic of a generic planar closed curve. In [1] Berry proved that if M
is a convex curve, then generically the Wigner caustic is a parametrized connected
curve with an odd number of cusp singularities and this number is not smaller than
3. It is not true in general for any closed planar curve. If M is a parametrized closed
curve with self-intersections or inflexion points then the Wigner caustic has at least
two branches (smoothly parametrized components). We present a decomposition of a
curve into parallel arcs and thanks to this decomposition we are able to describe the
geometry of branches of the Wigner caustic. In general the geometry of the Wigner
caustic of a regular closed curve is quite complicated (see Fig. 3).

In Sect. 2 we briefly sketch some of the known results on the Wigner caustic and
affine equidistants.
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Section 3 contains the algorithm to describe branches of the Wigner caustic and
affine equidistants of any generic regular parameterized closed curve. Subsection 3.1
provides an example of an application of this algorithm to a particular curve.

In the beginning of Sect. 4 we present global propositions on the number of cusps
and inflexion points of the Wigner caustic. We show that the procedure based on a
decomposition presented in Sect. 3 can be applied to obtain the number of branches
of the Wigner caustic, the number of inflexion points and the parity of the number of
cusp singularities of each branch. After that we study global properties of the Wigner
caustic on shell, i.e. the branch of the Wigner caustic which connects two inflexion
points of a curve. We present the results on the parity of the number of cusp points
of the branches of the Wigner caustic on shell. We also prove that each such branch
has even number of inflexion points and there are even number of inflexion points on
a path of the original curve between the endpoints of this branch.

In Sect. 5 we use the decomposition introduced in Sect. 3 to study the geometry of
theWigner caustic of generic regular closed parameterized curves with non-vanishing
curvature and of some generic regular closed parameterized curves with two inflexion
points. Finally, in Sect. 6 we study the Wigner caustic of whorls.

All the pictures of theWigner caustic in thismanuscriptweremade in the application
created by the second author [36] and in Mathematica [32].

2 Preliminaries

Let M be a smooth parameterized curve in the affine plane R
2, i.e. the image of the

C∞ smooth map from an interval to R
2. A smooth curve is closed if it is the image of

a C∞ smooth map from S1 to R
2. A smooth curve is regular if its velocity does not

vanish. A regular curve is simple if it has no self-intersection points. A regular simple
closed curve is convex if its signed curvature has a constant sign. Let (s1, s2) � s �→
f (s) ∈ R

2 be a parameterization of M . A point f (s0) is a Ck regular point of M for
k = 1, 2, . . . or k = ∞ if there exists ε > 0 such that f

(
(s0−ε, s0+ε)

)
is aCk smooth

1-dimensional manifold. A point f (s0) is a singular point if it is not Ck regular for
any k > 0. A curve is singular if it has at least one singular point. A singular point p is
called a cusp ifM is locally diffeomorphic at p to a curve (−1, 1) � t �→ (t2, t3) ∈ R

2

at 0. A point f (s0) is a cusp of M if and only if f ′(s0) = 0 and the vectors f ′′(s0) and
f ′′′(s0) are linearly independent. A point f (s0) is an inflexion point of M if its signed
curvature changes sign. An inflexion point f (s0) is non-degenerate (or ordinary) if
det

(
f ′(s0), f ′′′(s0)

) �= 0 which means that the order of contact of M with the tangent
line to M at f (s0) is equal to 2. If the curvature vanishes at f (s0) but does not change
sign, then this point is called an undulation point.

Remark 2.1 Let (a, b) � s �→ f (s) ∈ R
2 be a parameterization of M , then the order

of contact of M with the tangent line to M at p = f (t) is k if and only if

det

[
di f

dsi
(t),

d f

ds
(t)

]
= 0 for i = 1, 2, . . . , k and det

[
dk+1 f

dsk+1 (t),
d f

ds
(t)

]
�= 0.

(2.1)
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Definition 2.2 Apair of points a, b ∈ M (a �= b) is called a parallel pair if the tangent
lines to M at a and b are parallel.

Definition 2.3 A chord passing through a pair a, b ∈ M , is the line:

l(a, b) = {
λa + (1 − λ)b

∣∣ λ ∈ R
}
.

Let A be a subset of R
2, then clA denotes the closure of A.

Definition 2.4 The Wigner caustic of M is the following set

E 1
2
(M) = cl

{
a + b

2

∣∣ a, b is a parallel pair of M

}
.

Remark 2.5 The Wigner caustic of M is an example of an affine λ-equidistant set of
M ,

Eλ(M) = cl
{
λa + (1 − λ)b

∣∣ a, b is a parallel pair of M
}
,

where λ = 1
2 . Definition 2.4 is different from definitions in papers [5,10–12,18,19,25,

33,37,38]. The closure in the definition is needed to include inflexion points of M in
Eλ(M). For details see Remark 2.18.

Note that, for any given λ ∈ R, we have Eλ(M) = E1−λ(M). Thus, the case λ = 1
2

is special. In particular we have E0(M) = E1(M) = M if M is closed.

Definition 2.6 The Centre Symmetry Set of M , denoted by CSS(M), is the envelope
of all chords passing through parallel pairs of M .

Bitangent lines of M are parts of CSS(M) ([11,16]). If M is a generic convex curve,
then CSS(M), theWigner caustic and Eλ(M) for a generic λ are smooth closed curves
with at most cusp singularities ([1,16,20,24]), cusp singularities of all Eλ(M) are on
regular parts of CSS(M) ([20]), the number of cusps of CSS(M) and E1

2
(M) is odd

and not smaller than 3 ([1,16], see also [22]), the number of cusps of CSS(M) is not
smaller than the number of cusps of E 1

2
(M) ([11]).

Let us denote by κM (p) the signed curvature of a smooth regular curve M at
p. Let a, b be a parallel pair of M . Assume that κM (b) �= 0. Let us fix local arc
length parameterizations of M nearby the points a, b by f : (s0, s1) → R

2 and by
g : (t0, t1) → R

2, respectively. Let us assume that the parameterizations at a and b
are in opposite directions, i.e. the velocities at a, b are opposite. Then there exists a
function t : (s0, s1) → (t0, t1) such that

f ′(s) = −g′(t(s)). (2.2)

It is easy to see that by the implicit function theorem the function t is smooth and

t ′(s) = κM ( f (s))

κM (g(t(s)))
. (2.3)
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Then by

γE 1
2
(s) = 1

2

(
f (s) + g(t(s))

)
(2.4)

we will denote a local natural parameterization of the Wigner caustic. Whenever we
will write about singular points of the Wigner caustic we will denote these points as
the singular points of the parameterization given by (2.4).

By direct calculations we get the following lemma.

Lemma 2.7 Let M be a regular curve. Let a, b be a parallel pair of M, such that M
is parameterized at a and b in opposite directions and κM (b) �= 0. Let p = a+b

2 be a
regular point of E 1

2
(M). Then

(i) the tangent line to E 1
2
(M) at p is parallel to the tangent lines to M at a and b.

(ii) the curvature of E 1
2
(M) at p is equal to

κE 1
2
(M)(p) = 2κM (a)|κM (b)|

|κM (b) − κM (a)| .

Lemma 2.7(ii) implies the following propositions.

Proposition 2.8 [20] Let a, b be a parallel pair of a regular curve M, such that M is
parameterized at a and b in opposite directions and one of a and b is not an inflexion
point. Then the point a+b

2 is a singular point of E 1
2
(M) if and only if κM (a) = κM (b).

Proposition 2.9 Let a, b be a parallel pair of a regular closed curve M. Then a+b
2 is

an inflexion point of E 1
2
(M) if and only if one of the points a, b is an inflexion point

of M.

Let τp denote the translation by a vector p ∈ R
2.

Definition 2.10 A curve M is curved to the same side at a and b (resp. curved to
different sides), where a, b is a parallel pair of M , if the center of curvature of M at a
and the center of curvature of τa−b(M) at a = τa−b(b) lie on the same side (resp. on
the different sides) of the tangent line to M at a.

We illustrate above definition in Fig. 4.

Corollary 2.11 If M is curved to the same side at a parallel pair a, b, then a+b
2 is a

regular point of the Wigner caustic of M.

Proof Let us locally parameterize M at a and b in opposite directions. Then by Propo-
sition 2.8 a point a+b

2 is a singular point of E 1
2
(M) if and only if

κM (a)

κM (b)
= 1. (2.5)

The right hand side of (2.5) is positive, then κM (a) and κM (b) have the same sign,
therefore M is curved to different sides at a and b. �



7 Page 8 of 35 W. Domitrz, M. Zwierzyński

Fig. 4 i A curve curved to the same side at a parallel pair a, b, ii a curve curved to different sides at a
parallel pair a, b

We denote by C∞(S1, R
2) the set of C∞ mappings from S1 to R

2, i.e. the set of
smooth closed parameterized planar curves, and by · the dot product in R

2.

Remark 2.12 Let f (s1), f (s2) be a parallel pair of f ∈ C∞(S1, R
2). A singular point

f (s1)+ f (s2)
2 of the Wigner caustic of f (that is a point for which κ f (s1) = κ f (s2) and

f ′(s1) · f ′(s2) < 0) is a cusp if and only if κ ′
f (s1) �= κ ′

f (s2), where κ f denotes the
signed curvature of f with respect to the parameterization of f , and κ ′

f denotes the
derivative of the curvature with the respect to the arc length parameter ([10]).

Theorem 2.13 Let G be the subset of C∞(S1, R
2) such that each curve f in G satisfies

the following conditions:

(i) f is a regular curve with only non-degenerate inflexion points and no undulation
points,

(ii) f has only transverse self-crossings,
(iii) if f (s1), f (s2) is a parallel pair of f , then f (s1) or f (s2) is not an inflexion point,
(iv) if f (s1), f (s2) is a parallel pair of f , the points f (s1), f (s2) are not inflexion

points of f , the dot product f ′(s1) · f ′(s2) is negative (respectively positive), and
κ f (s1) = κ f (s2) (respectively κ f (s1) = −κ f (s2)), then κ ′

f (s1) �= κ ′
f (s2), where

κ ′ denote the derivative of the curvature with respect to the arc length parameter.
Then G is a generic subset of C∞(S1, R

2) with Whitney C∞ topology and the Wigner
caustic of f ∈ G is the finite union of smooth curves with at most cusp singularities.

Proof Since the intersection of two generic subsets is still a generic subset, it is enough
to show that properties from each point are generic. The set of smooth regular closed
curves is an open and dense subset of C∞(S1, R

2) because the set of 1-jets of smooth
non-regular closed curves is a smooth submanifold of J 1(S1, R

2) of codimension 2.
Let f : S1 → R

2 be smooth and regular. Having only non-degenerate inflexion points
and no undulation points is equivalent to the following property:

det( f ′(s), f ′′(s)) = 0 ⇒ det( f ′(s), f ′′′(s)) �= 0. (2.6)

Condition (2.6) means that the map j3 f : S1 → J 3(S1, R
2) is transversal to the

following submanifold of J 3(S1, R
2):

{
j3g(s) ∈ J 3(S1, R

2)
∣∣ g′(s) �= 0, det

(
g′(s), g′′(s)

) = 0
}

.
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By the Thom Transversality Theorem (e.g. see Theorem 4.9 in [21]) Property (i) is
generic.

To prove genericity of the conditions (ii–iv) we will use the Thom Transversal-
ity Theorem for multijets (e.g. see Theorem 4.13 in [21] for details). We denote by
J ks (S1, R

2) the s-fold k-jet bundle and by (S1)(2) the set
(
S1 × S1

) \ {(s, s) | s ∈ S1}.
Genericity of (ii) follows from transversality of j12 f : (S1)(2) → J 12 (S1, R

2) to the
following submanifold of J 12 (S1, R

2):

{
( j1g(s1), j

1h(s2)) ∈ J 12 (S1, R
2)

∣∣ g(s1) = h(s2), g
′(s1) �= 0, h′(s2) �= 0

}
.

Transversality means that if f (s1) = f (s2) for s1 �= s2, then det( f ′(s1), f ′(s2)) �= 0.
Therefore, Condition (ii) is generic.

Genericity of Property (iii) follows from transversality of the second multijet j22 f :
(S1)(2) → J 22 (S1, R

2) to the submanifold

{
( j2g, j2h) ∈ J 22 (S1, R

2)
∣∣ det (g′(s1), h′(s2)

) = 0, g′(s1) �= 0, h′(s2) �= 0
}

.

This means that if det
(
f ′(s1), f ′(s2)

) = 0 for s1 �= s2, then κ2
f (s1) + κ2

f (s2) �= 0.
Hence, Property (iii) is generic.

Nowwe assume that f satisfies (iii). Genericity of Property (iv) for f ′(s1)· f ′(s2) <

0 follows from the transversality of j32 f : (S1)(2) → J 32 (S1, R
2) to the submanifold

W := {
( j3g, j3h) ∈ J 32 (S1, R

2)
∣∣ g′(s1) �= 0, h′(s2) �= 0, det(g′(s1), h′(s2)) = 0,

g′(s1) · h′(s2) < 0, κg(s1) = κh(s2)
}
.

By direct calculations one can show that this means that if j32 f (s1, s2) ∈ W , then
κ ′
f (s1) �= κ ′

f (s2), which is equivalent to the condition for a cusp singularity in a
singular point of the Wigner caustic (see Remark 2.12). The proof for the case f ′(s1) ·
f ′(s2) > 0 is similar. �
From now one, when we will talk about generic curves, we will mean a curve from

the set G. Furthermore, genericity of f implies the following geometric properties of
f .

Proposition 2.14 [13] If f ∈ C∞(S1, R
2) has only non-degenerate inflexion points

and has no undulation points, then the number of inflexion points of f and the rotation
number of f are finite.

Definition 2.15 The tangent line of E1
2
(M) at a cusp point p is the limit of a sequence

of 1-dimensional vector spaces Tqn M in RP1 for any sequence qn of regular points
of E 1

2
(M) converging to p.

This definition does not depend on the choice of a converging sequence of regular
points. By Lemma 2.7(i) we can see that the tangent line to E1

2
(M) at the cusp point

a+b
2 is parallel to tangent lines to M at a and b.
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Remark 2.16 If M is an oval, then we have well defined the continuous normal vector
field on the double covering M of E1

2
(M), M � a �→ a+b

2 ∈ E1
2
(M) by taking the

normal vector to M compatible with the parameterization of M at the point a, and
defining this vector as a normal vector to the Wigner caustic at a+b

2 .

Let us notice that the continuous normal vector field to E 1
2
(M) at regular and cusp

points is perpendicular to the tangent line to E1
2
(M). Using this fact and the above

definition we define the rotation number in the following way.

Definition 2.17 The rotation number of the Wigner caustic of a generic curve M is
the rotation number of the continuous normal vector field of the Wigner caustic.

Remark 2.18 Let p be an inflexion point of M . Then the CSS(M) is tangent to this
inflexion point and has an endpoint there. The set Eλ(M) for λ �= 1

2 has an inflexion
point at p (as the limit point) and is tangent to M at p. TheWigner caustic is tangent to
M at p too and it has an endpoint there. The Wigner caustic and the Centre Symmetry
Set approach p from opposite sides ([1,10,16,19]). This branch of the Wigner caustic
is studied in Sect. 4.

IfM is a generic regular closed curve thenE1
2
(M) is a union of smooth parametrized

curves. Each of these curves we will call a smooth branch of the Wigner caustic of M .
In Fig. 5 we illustrate a non-convex curve M , E 1

2
(M), and different smooth branches

of E 1
2
(M).

3 A decomposition of a curve into parallel arcs

In this section we assume that M is a generic regular closed curve. We will present a
decomposition of M into parallel arcs which will help us to study the geometry of the
smooth branches of the Wigner caustic of M .

Definition 3.1 Let S1 � s �→ f (s) ∈ R
2 be a parameterization of a smooth closed

curve M , such that f (0) is not an inflexion point. A function ϕM : S1 → [0, π ] is
called an angle function of M if ϕM (s) is the oriented angle between f ′(s) and f ′(0)
modulo π . We identify the set [0, π ] modulo π with S1.

Definition 3.2 A point ϕ in S1 is a local extremum of ϕM if there exists s in S1 such
that ϕM (s) = ϕ, ϕ′

M (s) = 0, ϕ′′
M (s) �= 0. The local extremum ϕ of ϕM is a local

maximum (resp. minimum) if ϕ′′
M (s) < 0 (resp. ϕ′′

M > 0). We denote by M(ϕM ) the
set of local extrema of ϕM .

The angle function has the following properties.

Proposition 3.3 Let M be a generic regular closed curve. Let f be the arc length
parameterization of M and let ϕM be the angle function of M. Then

(i) f (s1), f (s2) is a parallel pair of M if and only if ϕM (s1) = ϕM (s2),
(ii) ϕ′

M (s) is equal to the signed curvature of M with respect to the parameterization
of M,
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Fig. 5 iAnon-convex curveM with two inflexion points (the dashed line) and E 1
2
(M), ii–viM and different

smooth branches of E 1
2
(M)

(iii) M has an inflexion point at f (s0) if and only if ϕM (s0) is a local extremum.
(iv) if ϕM (s1), ϕM (s2) are local extrema and there is no extremum on ϕM

(
(s1, s2)

)
,

then one of extrema ϕM (s1), ϕM (s2) is a local maximum and the other one is a
local minimum.

Lemma 3.4 Let ϕM be the angle function of a generic regular closed curve M. Then
the function ϕM has an even number of local extrema, i.e. M has an even number of
inflexion points .

Proof It is a consequence of the fact that the number of local extrema of a generic
smooth function from S1 to S1 is even. �

Let ϕM be the angle function of M .

Definition 3.5 The sequence of local extrema is the following sequence (ϕ0, ϕ1, . . . ,

ϕ2n−1) where {ϕ0, ϕ1, . . . , ϕ2n−1} = M(ϕM ) and the order is compatible with the
orientation of S1 = ϕM (S1).
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Fig. 6 i A closed regular curve M with points pi = f (si ) tangent lines to M at these points, ii a graph of
the angle function ϕM with ϕi and si values

Definition 3.6 The sequence of division points SM is the following sequence
(s0, s1, . . . , sk−1), where {s0, s1, . . . , sk−1} = ϕ−1

M (M(ϕM )) ifM(ϕM ) is not empty,
otherwise {s0, s1, . . . , sk−1} = ϕ−1

M (ϕM (0)), and the order of SM is compatible with
the orientation of M .

Let M have inflexion points. If sk belongs to the sequence of division points, then
f (sk) is an inflexion point or a point which is parallel to an inflexion point.
In the case when M has no inflexion points the sequence of division points consists

of 0 and points sk such that f (0), f (sk) are parallel pairs.
In Fig. 6 we illustrate an example of a closed regular curve M , the angle function

ϕM and the sequence of division points. Let us notice that the images of points in the
sequence of division points divide the curve M into arcs. Some of these arcs (say A1
and A2) have the property that for any point ai ∈ Ai there exists a point a j ∈ A j

such that ai , a j is a parallel pair for i �= j ∈ {1, 2}. Such arcs we will call parallel
arcs. The set of arcs splits into subsets such that any two arcs in the same subset are
parallel (see Definition 3.9).

Proposition 3.7 If M is a generic regular closed curve and a ∈ M is an inflexion point
then the number of points b ∈ M, such that b �= a and a, b is a parallel pair, is even.

Proof There are no inflexion points b ∈ M such that a, b is a parallel pair and the point
a is not a self-intersection point of M , since the curve M is generic. The inflexion
points of M correspond to local extrema of the angle function ϕM . We divide the graph
of the angle function ϕM into continuous paths of the form

{
(t, ϕM (t)) | t ∈ [t1, t2], ϕM (t1), ϕM (t2) ∈ {0, π},∀t ∈ (t1, t2) ϕM (t) /∈ {0, π}}.
Let α belong to (0, π). First we assume that α is not equal to a local extremum of

a path P . Then a line ϕ = α intersects the path P an even number of times if P is a
path from 0 to 0 or from π to π , since both the beginning and the end of P are on the
same side of the line (see Fig. 7i). This line intersects P an odd number of times if
P is a path from 0 to π or from π to 0, since the beginning and the end of P are on
different sides of the line (see Fig. 7ii).

Nowwe assume that α is equal to a local extremum ofP . In this case the line ϕ = α

intersects a path P an odd number of times if P is a path from 0 to 0 or from π to π
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Fig. 7 Continuous paths

Fig. 8 Vertical perturbation
nearby a local maximum

(see Fig. 7iii) and this line intersectsP an even number of times ifP is a path from 0 to
π or from π to 0 (see Fig. 7iv), since by a small local vertical perturbation around the
extremum point we obtain the previous cases and the numbers of intersection points
have a difference ±1 (see Fig. 8).

Let us note that a path from 0 to 0 or from π to π corresponds to an arc of a curve
with the rotation number equalling 0 and a path from 0 to π or from π to 0 corresponds
to an arc of a curve with the rotation number equalling ± 1

2 . Since the rotation number
of M is an integer, the number of paths from 0 to π or from π to 0 in the graph of
ϕM is even. Each path of this type intersects every horizontal line ϕ = α at least once.
Thus the number of intersections of ϕM and the line ϕ = ϕM ( f −1(a)) is odd. But the
number of points b �= a such that a, b is a parallel pair is one less than the number of
intersection points of the graph of ϕM and the line ϕ = ϕM ( f −1(a)). �

The number of inflexion points of a generic regular closed curve is even. Thus by
Proposition 3.7 we have the following corollary.

Corollary 3.8 If M is a generic regular closed curve then #SM is even.

We recall that in this section we assume that M is a generic regular closed curve
and let #SM = 2m.

The functionsm2m, M2m : {0, 1, . . . , 2m − 1}2 → {0, 1, . . . , 2m − 1} are analogs
of the minimum and the maximum functions modulo 2m, respectively. Namely,

m2m(k, l) : =
{
2m − 1, if {k, l} = {0, 2m − 1},
min(k, l), otherwise,
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M2m(k, l) : =
{
0, if {k, l} = {0, 2m − 1},
max(k, l), otherwise.

We denote by (s2m−1, s0) an interval (s2m−1, LM + s0), where LM is the length of
M .

In the following definition indexes i in ϕi are computedmodulo 2n, indexes j, j+1
in p j � p j+1 and p j+1 � p j are computed modulo 2m.

Definition 3.9 If M(ϕM ) = {ϕ0, ϕ1, . . . , ϕ2n−1}, then for every i ∈ {0, 1, . . . , 2n −
1}, a set of parallel arcs �i is the following set

�i =
{
pk � pl

∣∣ k − l = ±1 mod(2m), ϕM (sk) = ϕi , ϕM (sl) = ϕi+1,

ϕM
(
(sm2m (k,l), sM2m (k,l))

) = (ϕi , ϕi+1)
}
,

where pk = f (sk) and pk � pl = f
([
sm2m (k,l), sM2m (k,l)

])
.

IfM(ϕM ) is empty then we define only one set of parallel arcs as follows:

�0 = {
p0 � p1, p1 � p2, . . . , p2m−2 � p2m−1, p2m−1 � p0

}
.

The set of parallel arcs has the following property.

Proposition 3.10 Let f : S1 → R
2 be the arc length parameterization of M. For

every two arcs pk � pl , pk′ � pl ′ in �i the well defined map

pk � pl � p �→ P(p) ∈ pk′ � pl ′ ,

where the pair p, P(p) is a parallel pair of M, is a diffeomorphism.

Definition 3.11 Let pk1 � pk2 , pl1 � pl2 belong to the same set of parallel arcs, then

pk1 � pk2
pl1 � pl2

denotes the following set (the arc)

cl
{
(a, b) ∈ M × M

∣∣∣ a ∈ pk1 � pk2 , b ∈ pl1 � pl2 , a, b is a parallel pair of M
}
.

In addition
pk1 � . . . � pkn
pl1 � . . . � pln

denotes
⋃

i = 1n − 1
pki � pki+1

pli � pli+1

. We will call

this set a glueing scheme.

Remark 3.12 If pk � pl belongs to a set of parallel arcs, then there are neither inflexion
points nor points with tangent lines parallel to tangent lines at inflexion points of M
in pk � pl \ {pk, pl}.
Definition 3.13 The 1

2 -point map ([11]) is the map

π 1
2

: M × M → R
2, (a, b) �→ a + b

2
.
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Fig. 9 Two arcs A1 andA2 of
M belonging to the same set of
parallel arcs and E 1

2
(A1 ∪ A2)

Let A1 = pk1 � pk2 and A2 = pl1 � pl2 be two arcs of M which belong to

the same set of parallel arcs. It is easy to see that E 1
2

(
A1 ∪ A2

)
consists of one

arc
pk1 � pk2
pl1 � pl2

under π 1
2
(see Fig. 9). From this observation we get the following

proposition.

Proposition 3.14 The Wigner caustic E 1
2
(M) is the image of the union of

∑
i

(
#�i

2

)

different arcs under the 1
2 -point map π 1

2
.

Proposition 3.15 Let M be a generic regular closed curve which is not convex. If a

glueing scheme is of the form
pk1 � pk2
pl1 � pl2

, then this scheme can be prolonged in a

unique way to
pk1 � pk2 � pk3
pl1 � pl2 � pl3

such that (k1, l1) �= (k3, l3).

Proof Let us consider

pk1 � pk2
pl1 � pl2

. (3.1)

Let A1 = pk1 � pk2 \ {pk1, pk2}, A2 = pl1 � pl2 \ {pl1, pl2}. By Remark 3.12 A1
andA2 must be curved to the same side or in the opposite sides at any parallel pair in
A1 ∪A2 (see Fig. 10i–ii). Let us consider the case in Fig. 10i, the other case is similar.
Then (3.1) can be prolonged in the following two ways.

(1) Neither pk2 nor pl2 is an inflexion point of M . Then (3.1) can be prolonged to
pk1 � pk2 � pk3
pl1 � pl2 � pl3

, where k1 �= k3 and l1 �= l3 (see Fig. 10iii).

(2) One of points pk2 , pl2 is an inflexion point of M . Let us assume that this is pk2 .

Then (3.1) can be prolonged to
pk1 � pk2 � pk3
pl1 � pl2 � pl1

, where k1 �= k3 (see Fig. 10iv).
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Fig. 10 Possible prolongations of an arc of a curve

Since M is generic, at least one of the points pk2 , pl2 is not an inflexion point of M . �

Remark 3.16 To avoid repetition in the union in Definition 3.11 we assume that no

pair
pk
pl

except the beginning and the end can appear twice in the glueing scheme.

Furthermore, if the pair
pk
pl

is in the glueing scheme than the pair
pl
pk

does not appear

unless they are the beginning and the end of the scheme.

The image of a glueing scheme under the 1
2 -point map π 1

2
represents parts of

branches of the Wigner caustic. If we equip the set of all possible glueing schemes
with the inclusion relation, then this set is partially ordered.

There is only finite number of arcs fromwhichwe can construct branches of E 1
2
(M).

Therefore we can define a maximal glueing scheme.

Definition 3.17 A maximal glueing scheme is a glueing scheme which is a maximal
element of the set of all glueing schemes equipped with the inclusion relation.

Remark 3.18 IfM is a generic regular convex curve, then the set of parallel arcs is equal

to �0 = {p0 � p1, p1 � p0}. Then the only maximal glueing scheme is
p0 � p1
p1 � p0

Proposition 3.19 The set of all glueing schemes equipped with the inclusion relation
is the disjoint union of totally ordered sets.

Proof It follows from uniqueness of the prolongation of the glueing scheme (see
Proposition 3.15). �
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Lemma 3.20 Let f : S1 �→ R
2 be the arc length parameterization of M. Then

(i) for every two different arcs pk1 � pk2 , pl1 � pl2 in �i there exists exactly one

maximal glueing scheme containing
pk1 � pk2
pl1 � pl2

or
pk2 � pk1
pl2 � pl1

or
pl1 � pl2
pk1 � pk2

or

pl2 � pl1
pk2 � pk1

.

(ii) every maximal glueing scheme is in the following form
pk � . . . � pk′
pl � . . . � pl ′

, where

{pk, pl} = {pk′ , pl ′ } whenever pk �= pl and pk′ �= pl ′ .
(iii) if pk is an inflexion point of M, then there exists a maximal glueing scheme which

is in the form

pk � pk1 � . . . � pkn � pl
pk � pl1 � . . . � pln � pl

,

where pl is a different inflexion point of M and pki �= pli for i = 1, 2, . . . , n.

Proof (i) is a consequence of the uniqueness of the prolongation of a glueing scheme
(see Proposition 3.15).

The proof of (ii) follows from (i) and the fact that the following equalities hold:
pk1 � pk2
pl1 � pl2

= pk2 � pk1
pl2 � pl1

and
pk1 � pk2
pl1 � pl2

= pl1 � pl2
pk1 � pk2

.

To prove (iii) let us prolong
pk � pk1
pk � pl1

to the maximal glueing scheme G. Any
point pl in the sequence of division points SM belongs to exactly two arcs in all sets
of parallel arcs. Then by (ii) this maximal glueing scheme is in the following form

pk � pk1 � . . . � pkn � pl
pk � pl1 � . . . � pln � pl

, (3.2)

If (3.2) would contain some other inflexion point pr in the middle, then (3.2) would
contain the following part:

pr ′ � pr � pr ′′
pr ′′ � pr � pr ′

which is impossible by (i). �
Theorem 3.21 The image of every maximal glueing scheme of M under the 1

2 -point
map π 1

2
is a branch of the Wigner caustic of M and all branches of the Wigner caustic

can be obtained in this way.

Proof Let f : S1 → R
2 be the arc length parameterization of M .

It is easy to see that

S1 =
⊔
s∈SM

{s} 
⋃
i

⊔
(k,l)∈�i

(sm2m (k,l), sM2m (k,l))
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and then

M =
⋃
s∈SM

{ f (s)} ∪
⋃
i

⋃
(k,l)∈�i

f
(
(sm2m (k,l), sM2m (k,l))

)
,

where  denotes the disjoint union. Then by Proposition 3.10 we obtain that

E 1
2
(M) =

⋃
i

⋃
pk�pl ,pk′�pl′ ∈�i

pk�pl �=pk′�pl′

E1
2

(
pk � pl ∪ pk′ � pl ′

)
. (3.3)

Since E1
2

(
pk � pl ∪ pk′ � pl ′

)
= π 1

2

(
pk � pl
pk′ � pl ′

)
= π 1

2

(
pk′ � pl ′
pk � pl

)
and

every arc
pk � pl
pk′ � pl ′

is in exactly one maximal glueing scheme, then every branch of

the Wigner caustic is the image of a maximal glueing scheme under the 1
2 -point map

π 1
2
. �
As a summary of this section we present an algorithm to find all maximal glueing

schemes.

Algorithm 1 (Finding all maximal glueing schemes of a generic regular closed curve
M parametrized by f : S1 → R

2)

(1) Find the set of local extrema of the angle function ϕM of M (see Definition 3.1
and Definition 3.2).

(2) Find the sequence of local extrema (see Definition 3.5).
(3) Find the sequence of division points (see Definition 3.6).
(4) Find the sets of parallel arcs �i (see Definition 3.9).
(5) Create the following set

� :=
{{

pk1 � pl1 , pk2 � pl2
} : pk1 � pl1 �= pk2 � pl2 ,

∃i
(
pk1 � pl1 ∈ �i ∧ pk2 � pl2 ∈ �i

) ∨ (
pl1 � pk1 ∈ �i ∧ pl2 � pk2 ∈ �i

)}
.

(6) If there exists a number k such that pk is an inflexion point of M and there exists

the set of arcs
{
pk � pl1 , pk � pl2

}
or

{
pl1 � pk, pl2 � pk

}
in �, create a

glueing scheme
pk � pl1
pk � pl2

, remove the used set of arcs from � and go to step (7).

Otherwise go to step (8).

(7) If the created glueing scheme is of the form
. . . � pk1
. . . � pl1

and there exists the set of

arcs
{
pk1 � pk2 , pl1 � pl2

}
or

{
pk2 � pk1 , pl2 � pl1

}
in �, then prolong the

scheme to the following scheme
. . . � pk1 � pk2
. . . � pl1 � pl2

, remove the used set of arcs
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Fig. 11 A curve M as in Fig. 6 and different branches of E 1
2
(M)

from � and go to step (7), otherwise the considered glueing scheme is a maximal
glueing scheme and then go to step (6).

(8) If � is empty, then all maximal glueing schemes for E 1
2
(M) were created, other-

wise find any set of arcs
{
pk1 � pl1, pk2 � pl2

}
in �, create a glueing scheme

pk1 � pl1
pk2 � pl2

, remove the used set of arcs from � and go to step (7).

3.1 An example of construction of branches of theWigner caustic

Let M be a curve illustrated in Fig. 6. Then the sets of parallel arcs are as follows

�0 =
{
p0 � p1, p4 � p5

}
,

�1 =
{
p1 � p2, p3 � p2, p3 � p4, p5 � p0

}
.

Then there exist two maximal glueing schemes of M :

p0 � p1 � p2 � p3 � p4
p4 � p5 � p0 � p5 � p0

, (3.4)

p2 � p1 � p2 � p3
p2 � p3 � p4 � p3

. (3.5)

By Proposition 4.3 the number of cusps of the branch which correspond to (3.4) is
odd.ByCorollary 4.4 in the glueing scheme (3.4) there are twoparallel pairs containing
an inflexion point of M – the pairs:

. . . � p2 � p3 � . . .

. . . � p0 � p5 � . . .
.

Therefore this branch of the Wigner caustic has exactly two inflexion points—see
Fig. 11ii. The same conclusion holds for the glueing scheme (3.5) and the branch in
Fig. 11i. In this case we exclude the first and the last parallel pair.
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Fig. 12 A continuous normal
vector field at a cusp singularity

4 The geometry of theWigner caustic of regular curves

In this section we start with propositions on numbers of inflexion points and cusp
singularities of the Wigner caustic which follows from properties of maximal glueing
schemes introduced in Sect. 3.

Proposition 4.1 Let M be a generic regular closed curve. If M has 2n inflexion points
then there exist exactly n smooth branches of E 1

2
(M) connecting pairs of inflexion

points on M and every inflexion point of M is the end of exactly one branch of E 1
2
(M).

Other branches of E 1
2
(M) are closed curves.

Proof It is a consequence of Lemma 3.20 and Theorem 3.21. �
Lemma 4.2 Let C be a closed smooth curve with at most cusp singularities. If the
rotation number of C is an integer, then the number of cusps of C is even and if the
rotation number of C is a half-integer, then the number of C is odd.

Proof Acontinuous normal vector field to the germ of a curvewith a cusp singularity is
directed outside the cusp on one of two connected regular components and is directed
inside the cusp on the other component as it is illustrated in Fig. 12. That observation
ends the proof. �

Proposition 4.3 Let M be a generic regular closed curve. LetnM be a unit continuous
normal vector field to M. Let C be a smooth branch of E 1

2
(M) which does not connect

inflexion points. Then the number of cusps of C is odd if and only if themaximal glueing

scheme of C is in the following form
pk � . . . � pl
pl � . . . � pk

and nM (pl) = −nM (pk).

Proof If the normal vectors to M at pk and pl are opposite, then the rotation number
of C is equal to r

2 , where r is an odd integer. By Lemma 4.2 the number of cusps in
C is odd. Otherwise the rotation number of C is an integer, therefore the number of
cusps of C is even.

By Proposition 2.9, Corollary 3.8 and Proposition 4.1 we get the following corol-
laries on inflexion points of branches of the Wigner caustic of M .

Corollary 4.4 Let M be a generic regular closed curve. Let C be a smooth branch
of the Wigner caustic of M. Then the number of inflexion points of C is equal to the
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number of parallel pairs containing an inflexion point of M in the maximal glueing
scheme for C unless they are the beginning or the end of the maximal glueing scheme
which connects the inflexion points of M.

Corollary 4.5 Let M be a generic regular closed curve. Let 2n > 0 be the number of
inflexion points of M and let #SM = 2m. Then E 1

2
(M) has 2m − 2n inflexion points.

Now we study the properties of the Wigner caustic on shell, i.e. the branch of the
Wigner caustic connecting two inflexion points, see Fig. 11i. We are interested in the
parity of the number of cusps and the parity of the number of inflexion points on this
branch.

Theorem 4.6 Let M be a generic regular closed curve. Let S1 � s �→ f (s) ∈ R
2 be a

parameterization of M, let f (t1), f (t2) be inflexion points of M and let C be a branch
of the Wigner caustic of M which connects f (t1) and f (t2). Then the number of cusps
of C is odd if and only if exactly one of the inflexion points f (t1), f (t2) is a singular
point of the curve C ∪ f

([t1, t2]).
Proof By genericity of M the points f (t1) and f (t2) are ordinary inflexion points of
M .

ByCorollary 4.8. in [10]we know that the germ of theWigner caustic at an inflexion
point of a generic curve M together with M are locally diffeomorphic to the following
germ at (0, 0):

{
(p, q) ∈ R

2 : p = 0
}

∪
{
(p, q) ∈ R

2 : p = −q2, q ≤ 0
}

.

Let N = C ∪ f
([t1, t2]). Then N is a closed curve. The germ of N at f (ti ) for

i = 1, 2 is locally diffeomorphic to one of the following germs at (0, 0):

{
(p, q) ∈ R

2 : p = 0, q ≤ 0
}

∪
{
(p, q) ∈ R

2 : p = −q2, q ≤ 0
}

, (4.1){
(p, q) ∈ R

2 : p = 0, q > 0
}

∪
{
(p, q) ∈ R

2 : p = −q2, q ≤ 0
}

. (4.2)

In other points N has at most cusp singularities.
Note that the point (0, 0) is a singular point of the germ of type (4.1) and the point

(0, 0) is a C1-regular point of the germ of type (4.2) (see Fig. 13).
Let M � p �→ nM (p) ∈ S2 be a continuous normal vector field to M . Let us

assume that the maximal glueing scheme for C has the following form

pk1 � pk2 � . . . � pkn−1 � pkn
pl1 � pl2 � . . . � pln−1 � pln

,

where k1 = l1, kn = ln . Without loss of generality we can assume that k1 < kn . Let
us define a normal vector field nN to N as follows:

• nN (p) = nM (p) for p ∈ f
([t1, t2]),
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Fig. 13 A continuous normal vector field to the germs of type (4.1) and (4.2)

• nN (p) = nM (a) for p ∈ C , where p = a+b
2 , a, b is a parallel pair of M such that

there exists i ∈ {1, 2, . . . , n − 1} such that

a ∈ pki � pki+1 , b ∈ pli � pli+1 .

The vector field nN is a continuous unit normal field to N . The normal vector field
around the points of type (4.1) and (4.2) is described in Fig. 13. Thus by the same
argument as in the proof of Lemma 4.2 we can get that the total number of cusps and
singularities of type (4.1) in N is even, so the number of cusps of C is odd if and only
if exactly one of the inflexion points f (t1), f (t2) is of type (4.1). �

In Fig. 5iii there is exactly one point of type (4.1), in Fig. 11i there is an even
number of points of type (4.1).

Proposition 4.7 Let M be a regular curve. Let (a, b) � s �→ f (s) ∈ R
2 be a param-

eterization of M and let f (s0) be an ordinary inflexion point of M. Let t be a smooth
function-germ on R at s0 such that f (s), f (t(s)) is a parallel pair and lim

s→s0
t(s) = s0.

Let κM (s) be the curvature of M at a point f (s). Then

lim
s→s0

κM (s)

κM (t(s))
= −1. (4.3)

Furthermore let C be a branch of the Wigner caustic which ends in f (s0). If

det

[
d4 f

ds4
(s0),

d f

ds
(s0)

]
�= 0, (4.4)

then C ∪ f
([s0, b)) at f (s0) is of type (4.1) if

lim
s→s0

d

ds

(
κM (s)

κM (t(s))

)
> 0 (4.5)
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and C ∪ f
([s0, b)) at f (s0) is of type (4.2) if

lim
s→s0

d

ds

(
κM (s)

κM (t(s))

)
< 0. (4.6)

Proof Without loss of generality we may assume that locally

f (s) = (s, F(s)), (4.7)

where F(s) = as3 + G(s), a �= 0 and s0 = 0, where G(s) ∈ m4
1, where mn is the

maximal ideal of smooth function-germs R
n → R vanishing at 0. Let us notice that

(s, F(s)), (t, F(t)) is a parallel pair of M nearby f (0) if and only if s �= t and

F ′(s) − F ′(t) = 0.

This is equivalent to

(s − t)(3as + 3at + H(s, t)) = 0,

where H ∈ m2
2 and let P(s, t) = 3as + 3at + H(s, t). Let t : (R, 0) → (R, 0) be a

function-germ at 0 such that

P(s, t(s)) = 0. (4.8)

By the implicit function theorem the function-germ t is well defined, because
∂P

∂t
(0, 0) = 3a �= 0. By (4.8) we get that

t ′(s) = −
∂P

∂s
(s, t)

∂P

∂t
(s, t)

. (4.9)

It implies that

t ′(0) = −1. (4.10)

Since F ′(s) = F ′(t(s)), then for s �= 0

t ′(s) = F ′′(s)
F ′′(t(s))

= κM (s)

κM (t(s))
. (4.11)

Thus (4.3) holds (Fig. 14).
The condition (4.4)means that F (4)(0) �= 0. It implies thatM is not locally centrally

symmetric around f (s0) = (0, 0).
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Fig. 14 A curve M with an
inflexion point and the Wigner
caustic of M (the dashed line)

The branch of the Wigner caustic which contains f (0) has the following parame-
terization

x 1
2
(s) = 1

2

(
s + t(s), F(s) + F(t(s))

)
. (4.12)

Therefore

x ′
1
2
(s) = 1

2
(1 + t ′(s))

(
1, F ′(s)

)
. (4.13)

Since C ∪ f
([t1, t2]) at f (t1) can be only of type (4.1) or (4.2), then C ∪ f

([t1, t2])
at f (t1) is of type (4.1) if and only if x ′

1
2
(s) f ′(s) < 0 whenever s → t−1 , therefore by

(4.13) we get that 1 + t ′(s) < 0. By (4.10) we get that t ′′(s) > 0 and by (4.11) we
finish the proof. �

Remark 4.8 Under the assumptions of Theorem 4.7 if locally f (s) = (s, F(s)) then

lim
s→s0

d

ds

(
κM (s)

κM (t(s))

)
= −2F (4)(s0)

3F (3)(s0)
. (4.14)

Theorem 4.9 Let M be a generic regular closed curve. Let S1 � s �→ f (s) ∈ R
2

be a parameterization of M, let f (s1), f (s2) be inflexion points of M and let C be a
branch of the Wigner caustic of M which connects f (s1) and f (s2). Then the number
of cusps of C is odd if and only if

lim
s→s±1

d

ds

(
κM (s)

κM (t1(s))

)
· lim
s→s∓2

d

ds

(
κM (s)

κM (t2(s))

)
> 0, (4.15)

where κM (s) denotes the curvature of M at f (s), the pairs f (s), f (t1(s)) and
f (s), f (t2(s)) are parallel pairs such that ti (s) → si whenever s → si and s < ti (s)
for the left-hand side neighborhood of si for i = 1, 2.
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Proof By genericity of M we get that f (s1) and f (s2) are ordinary inflexion points.
Then the theorem is a consequence of Theorem 4.6 and Proposition 4.7. �

Now we study inflexion points on the Wigner caustic on shell.

Theorem 4.10 Let M be a generic regular closed curve. Let S1 � s �→ f (s) ∈ R
2 be

a parameterization of M and let C be a branch of the Wigner caustic which connects
two inflexion points f (t1) and f (t2) of M. Then the number of inflexion points of C
and the number of inflexion points of the arc f

(
(t1, t2)

)
are even.

Proof Let ϕM : S1 → S1 be the angle function of M . By the genericity of M all local
extrema of ϕM are different. Let

ψ1, ψ2 : [0, T ] → graph
(
ϕM

) ⊂ S1 × S1

be the following continuous functions:

ψ1(0) = ψ2(0) = (
t1, ϕM (t1)

)
, ψ1(T ) = ψ2(T ) = (

t2, ϕM (t2)
)
,

ψi (t) = (
si (t), ϕM (si (t))

)
for i = 1, 2,

where continuous functions s1, s2 : [0, T ] → S1 satisfy ϕM
(
s1(t)

) = ϕM
(
s2(t)

)
and

s1(t) �= s2(t) for t ∈ (0, T ).
Since f (t1) is an inflexion point then ϕM (t1) is a local extremum. Without loss

of generality we assume that ϕM (t1) is a local minimum. To prove that the number
of inflexion points in f

(
(t1, t2)

)
is even it is enough to show that ϕM (t2) is a local

maximum.
The numbers of localmaxima and localminima ofϕM are equal. Thus the difference

between the number of local maxima and local minima of ϕM

∣∣∣
S1−{t1}

is one. For small

ε > 0 the arcs ψ1
∣∣[0,ε] and ψ2

∣∣[0,ε] define the opposite orientations of the graph of ϕM

and ϕM ◦ si
∣∣[0,ε] increases. Let ϕM

(
si (t̃)

)
for i = 1 or i = 2 be a local extremum of

ϕM such that there are no extrema on ϕM
(
s1(0, t̃)

)
and ϕM

(
s2(0, t̃)

)
. Since ϕM (t1) is

a local minimum then ϕM (si (t̃)) is a local maximum and ψ j (t̃ − ε, t̃ + ε) for j �= i
changes the orientation in t̃ (see Fig. 15).

The numbers of localmaxima and localminima ofϕM

∣∣∣
S1−[t1,t̃]

are equal but the arcs

ψ1

∣∣∣[t̃,t̃+ε] and ψ2

∣∣∣[t̃,t̃+ε] define the same orientation of graph
(
ϕM

)
. Since the function

ϕM

∣∣∣[t̃,t̃+ε] increases then the next extremum is a local minimum. The number of local

minima decreases by 1 and the orientations are opposite after crossing the minimum.
Thus the defined orientations are opposite if and only if the difference between the
number of local maxima and local minima to cross is one. Since for small ε > 0 the
arcs ψ1

∣∣[T−ε,T ] and ψ2
∣∣[T−ε,T ] define the opposite orientations of the graph of ϕM ,

then ϕM (t2) must be a local maximum.
A point 1

2 (a + b) is an inflexion point of C if and only if one of the points of
the parallel pair a, b is an inflexion point of M . The number of inflexion points of
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Fig. 15 A change of the angle function ϕM

Fig. 16 A curve M with 8 inflexion points (the dashed line) and branches of the Wigner caustic between
inflexion points of M

C is equal to the sum of the number of changes of the orientations of ψ1 and ψ2
because ψi (t̃ − ε, t̃ + ε) changes the orientation in t̃ if and only if ϕM (si (t̃)) is a
local extremum. Since ϕM (t1) is a minimum and ϕM (t2) is a maximum, then the total
number of changes of the orientations is even.

In Fig. 16we illustrate a closed curveM and branches of theWigner caustic between
inflexion points of M . In Fig. 17 we illustrate a closed curve M such that the branch of
the Wigner caustic which connects two inflexion points of M has no inflexion points.

Lemma 4.11 Let C be a smooth closed curve with at most cusp singularities. Then the
number of inflexion points of C is even.

Proof If C is regular, i.e. has no cusp singularities, then by Lemma 3.4 we get that C
has an even number of inflexion points. If C has cusp singularities, then we change C
nearby each cusp in the way illustrated in Fig. 18 creating two more inflexion points.
After this transformation of C we obtain a regular closed curve C̃ such that the parity
of the numbers of inflexion points of C̃ and C are equal. Therefore the number of
inflexion points of C is even.
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Fig. 17 A curve M (the dashed line) and E 1
2
(M)

Fig. 18 A curve C with the cusp singularity at x and a curve C̃ with inflexion points at p and q

Proposition 4.12 Let M be a generic regular closed curve. Then the number of inflex-
ion points of each smooth branch of the Wigner caustic of M is even.

Proof Let us notice that all branches of E 1
2
(M) except the branches of the Wigner

caustic which connect two inflexion points of M are closed curves. So the result for
these branches follows from Lemma 4.11. Otherwise it follows from Theorem 4.10.

5 TheWigner caustic of closed curves with at most 2 inflexion points

In this section we study the geometry of the Wigner caustic of closed regular curves
with non-vanishing curvature (rosettes) and of closed regular curves with exactly two
inflexion points.

Definition 5.1 A smooth curve γ : (s1, s2) → R
2 is called a loop if it is a simple

curve with non-vanishing curvature such that lim s → s+
1 γ (s) = lim s → s−

2 γ (s). A
loop γ is called convex if the absolute value of its rotation number is not greater than
1, otherwise it is called non-convex.

We illustrate examples of loops in Fig. 19.

Theorem 5.2 ([14]) The Wigner caustic of a loop has a singular point.

Theorem 5.3 Let Cn be a generic regular closed parameterized curve with non-
vanishing curvature with rotation number equal to n. Then
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Fig. 19 iA convex loop L (the dashed line) and E 1
2
(L), ii a non-convex loop L (the dashed line) and E 1

2
(L)

(i) the number of smooth branches of E 1
2
(Cn) is equal to n,

(ii) at least
⌊n
2

⌋
branches of E 1

2
(Cn) are regular closed parameterized curves with

non-vanishing curvature,
(iii) n − 1 branches of E 1

2
(Cn) have a rotation number equal to n and one branch has

a rotation number equal to n
2 ,

(iv) every smooth branch of E 1
2
(Cn) has an even number of cusps if n is even,

(v) exactly one branch of E 1
2
(Cn) has an odd number of cusps if n is odd,

(vi) cusps of E 1
2
(Cn) created from loops of Cn are in the same smooth branch of

E 1
2
(Cn),

(vii) the total number of cusps of E 1
2
(Cn) is not smaller than 2,

Proof Since the rotation number of Cn is n, for any point a in Cn there exist exactly
2n − 1 points b �= a such that a, b is a parallel pair of Cn . Thus the set of parallel arcs
has the following form

�0 =
{
p0 � p1, p1 � p2, . . . , p2n−2 � p2n−1, p2n−1 � p0

}
.

Let E 1
2 ,k(Cn) be a smooth branch of E 1

2
(Cn). We can create the following maximal

glueing schemes.

• A maximal glueing scheme of E1
2 ,k(Cn) for k ∈ {1, 2, . . . , n − 1}:

p0 � p1 � p2 � . . . � p2n−2 � p2n−1 � p0
pk � pk+1 � pk+2 � . . . � pk−2 � pk−1 � pk

.

• A maximal glueing scheme of E1
2 ,n(Cn):

p0 � p1 � p2 � . . . � pn−1 � pn
pn � pn+1 � pn+2 � . . . � p2n−1 � p0

.

The total number of arcs of the glueing schemes for the Wigner caustic presented
above is n(2n−1). By Proposition 3.14 the total number of different arcs of theWigner
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caustic is equal to the same number. Thus there are no more maximal glueing schemes
for the Wigner caustic of Cn .

If (a0, a1, . . . , a2n−1) is a sequence of points in Cn with the order compat-
ible with the orientation of Cn such that ai , a j is a parallel pair, then Cn is
curved to the same side at ai and a j if and only if i − j is even. Thus branches
E1

2 ,2(Cn),E1
2 ,4(Cn), . . . ,E1

2 ,2·� n
2 �(Cn) are created from parallel pairs a, b in Cn

such that Cn is curved to the same side at a and b and all the other branches
of the Wigner caustic of Cn are created from parallel pairs a, b in Cn such that
Cn is curved to different sides at a and b. By Corollaries 2.11 and 4.5 branches
E1

2 ,2(Cn),E1
2 ,4(Cn), . . . ,E1

2 ,2·� n
2 �(Cn) are regular closed parameterized curves with

non-vanishing curvature.
By Proposition 4.3 the branch E1

2 ,n(Cn) is the only branch of the Wigner caustic
of Cn which has an odd number of cusps if n is odd.

We can see that the part of the Wigner caustic created from loops of Cn are all in
E 1

2 ,1(Cn). Every Cn for n > 1 has at least one loop, so E1
2 ,1(Cn) has at least one cusp,

but because E1
2 ,1(Cn) has an even number of cusps, then E1

2 ,1(Cn) has at least two
cusps. �

In Fig. 20i we illustrate a curve of the type C4 and E1
2
(C4). In Fig. 20iii–vi we

illustrate different smooth branches of E 1
2
(C4).

Theorem 5.4 Let Wn be a generic closed curve with the rotation number n. Let Wn

have exactly two inflexion points such that one of the arcs of Wn connecting inflexion
points is an embedded curve with the absolute value of the rotation number smaller
than 1

2 . Then

(i) the number of smooth branches of E 1
2
(Wn) is equal to n + 1,

(ii) n − 1 branches of E 1
2
(Wn) have a rotation number equal to n and one branch has

a rotation number equal to n
2 ,

(iii) n − 1 branches of E 1
2
(Wn) have four inflexion points and two branches have two

inflexion points,
(iv) every smooth branch of E 1

2
(Wn), except a branch connecting inflexion points of

Wn, has an even number of cusps if n is even,
(v) exactly one smooth branch of E 1

2
(Wn), except a branch connecting inflexion points

of Wn, has an odd number of cusps if n is odd,
(vi) cusps of E 1

2
(Wn) created from convex loops of Wn are in the same smooth branch

of E 1
2
(Wn).

Proof One can notice that the graph of the angle functionϕWn has the form presented in
Fig. 21. For that parameterization we get that f (s0) and f (s1) corresponds to inflexion
points of Wn and the sets of the parallel arcs are as follows:

�0 =
{
p2 � p3, p4 � p5, p6 � p7, p8 � p9, . . . , p4n−2 � p4n−1, p4n � p4n+1

}
,

�1 =
{
p0 � p1, p1 � p2, p3 � p4, p5 � p6, . . . , p4n−1 � p4n, p4n+1 � p0

}
.
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Fig. 20 i A curve C4, ii E 1
2
(C4), (iii-vi) C4 and different smooth branches of E 1

2
(C4)

We proceed in the same way like in the proof of Theorem 5.3. �

An example of a curve W1 and its Wigner caustic are illustrated in Fig. 11.

6 TheWigner caustic of whorls

In [3] waves with vacuum wavenumber k, travelling in the ξ direction, incident nor-
mally on a medium that varies periodically and weakly in the η direction were studied.
This problem describes the diffraction of light by ultrasound and diffraction of beams
of atoms by beams of light and dynamics of a quantum particle in an optical lattice
potential ([8]).
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Fig. 21 An angle function of Wn

Fig. 22 The surface parameterized by (6.1) with different opacities

In natural dimensionless variables y = 1
2qη, x = q

√
n1
n0

ξ (for details see [3]) the

rays regarded as curves η(ξ) are described in the following way:

y(x, t) = sin−1
[
sin t sn

(
x + K (sin2 t)| sin2 t

)]
,

p(x, t) = dy(x, t)

dx
= sin t cn

(
x + K (sin2 t)| sin2 t

)
,

where 0 ≤ x < ∞ and −π
2 ≤ t ≤ π

2 , K (m) is the elliptic function, sn(n|m) and
cn(n|m) are Jacobi’s elliptic sine and Jacobi’s cosine functions, respectively. In Fig. 22
we illustrate a surface parameterized by

[
0,

3π

2

]
×

[
−π

2
,
π

2

]
� (x, t) �→ (

x, y(x, t), p(x, t)
) ∈ R

3. (6.1)

For fixed values of x in (6.1) we obtain so-called whorls ([3]) or rainbow diagrams
([8])—see Fig. 23.

Catastrophic manifolds of the semiclassical Wigner catastrophes are formed by the
Wigner caustic of a fixed whorl and by the whorl by itself ([8]). It is worth mentioning
that by its construction ([3]), whorls are π -periodic in the y-value (see Fig. 24).

We illustrate the Wigner caustic of the periodic whorl from Fig. 24 in Fig. 25.
Notice that every center of symmetry of the π -whorl belongs to the Wigner caustic.

Now, we explain why theWigner caustic of the whorl for x = π has singular points.
We apply a result on existence of singular points of the Wigner caustic ([14]).
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Fig. 23 Whorls/Rainbow diagrams

Fig. 24 The periodic whorl for x = π

Fig. 25 The periodic whorl for x = π and its Wigner caustic
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Fig. 26 The whorl for x = π with tangent lines and parallel arcs

Fig. 27 Translated parallel arcs from Fig. 26

Proposition 6.1 (Proposition 3.7 in [14]) Let F0 and F1 be embedded regular curves
with endpoints p, q0 and p, q1, respectively. Let �0 be the line through q1 parallel to
TpF0 and let �1 be the line throughq0 parallel to TpF1. Let c = �0∩�1, b0 = �0∩TpF1,
b1 = �1 ∩ TpF0. Let us assume that

(i) the line TpF0 is parallel to Tq1F1, and the line Tq0F0 is parallel to TpF1,
(ii) the curvature of Fi for i = 0, 1 does not vanish at any point,
(iii) absolute values of rotation numbers of F0 and F1 are the same and smaller than

1
2 ,

(iv) for every point ai in Fi there is exactly one point a j in F j such that ai , a j is a
parallel pair for i �= j ,

(v) F0, F1 are curved to different sides at every parallel pair a0, a1 such that ai ∈ Fi

for i = 0, 1.

Let ρmax (respectively ρmin) be the maximum (respectively the minimum) of the set{
c − b1
q1 − b1

,
c − b0
q0 − b0

}
. If ρmax < 1 or ρmin > 1, then the Wigner caustic of F0 ∪ F1

has a singular point.

In Fig. 26 we present a π -whorl with tangent lines for parameters: t = −0.125,
t ≈ −1.40562, t = −0.4, t ≈ −1.4511, together with parallel arcs with endpoints at
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these points. In Fig. 27 we illustrate translated parallel arcs from Fig. 26, which fulfil
assumptions of Proposition 6.1. Therefore, the Wigner caustic created from parallel
arcs in Fig. 26 has a singular point. This method can be applied for other whorls, too.

Furthermore, notice that the tangent lines to the π -whorl at the points a0 = (0, 0),
a = (0, 1), b = (0,−1) are horizontal, and a0 is an inflexion point of the π -whorl.
Hence, by Proposition 2.9 the points a0+a

2 = (0, 0.5) and a0+b
2 = (0,−0.5) are

inflexion points of theWigner caustic of the π -whorl. These points are nearby singular
points of the Wigner caustic of the π -whorl.

For more figures of the whorls and its Wigner caustics see [8].
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37. Zwierzyński, M.: The improved isoperimetric inequality and the Wigner caustic of planar ovals. J.

Math. Anal. Appl 442(2), 726–739 (2016)
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