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Abstract

We consider a Robin problem driven by the (p, q)-Laplacian plus an indefinite poten-

tial term. The reaction is either resonant with respect to the principal eigenvalue or

(p − 1)-superlinear but without satisfying the Ambrosetti-Rabinowitz condition. For

both cases we show that the problem has at least five nontrivial smooth solutions

ordered and with sign information. When q = 2 (a (p, 2)-equation), we show that we

can slightly improve the conclusions of the two multiplicity theorems.
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper, we study

the following nonlinear, nonhomogeneous Robin problem

⎧
⎪⎨

⎪⎩

−�pu(z) − �qu(z) + ξ(z)|u(z)|p−2u(z) = f (z, u(z)) in �

∂u

∂n pq
+ β(z)|u|p−2u = 0 on ∂�

, (1.1)

with 1 < q < p. For every r ∈ (1,∞), by �r we denote the r -Laplace differential

operator defined by

�r u = div
(
|Du|r−2Du

)
for all u ∈ W 1,r (�).

In problem (1.1) we have the sum of two such operators. So, the differential oper-

ator in (1.1) is not homogeneous and so many of the techniques used in p-Laplacian

equations, can not be employed here. Equations driven by the sum of two opera-

tors of different nature, arise often in the mathematical models of various physical

processes. We mention the works of Bahrouni-Rădulescu-Repovš [3] (transonic flow

problems),Benci-D’Avenia-Fortunato-Pisani [5] (quantumphysics),Cherfils-Il’yasov

[7] (reaction-diffusion systems), Zhikov [34] (nonlinear elasticity theory).

In problem (1.1), in addition to the (p, q)-differential operator there is also a

potential term ξ(z)|u|p−2u, with the potential function ξ ∈ L∞(�) being in gen-

eral indefinite (that is, sign-changing). This means that the left-hand side of (1.1) is

not coercive, an additional difficulty in dealing with problem (1.1).

In the reaction (right-hand side of (1.1)), the function f (z, x) is a Carathéodory

function (that is, z �→ f (z, x) is measurable for all x ∈ R and x �→ f (z, x) is

continuous for a.a. z ∈ �). We consider two different cases concerning the growth of

f (z, ·) as x → ±∞. First we assume that f (z, ·) exhibits (p − 1)-linear growth as

x → ±∞ (that is, f (z, ·) is asymptotically (p − 1)-homogeneous). In this case we

permit resonancewith respect to the principal eigenvalue ofu �→ −�pu+ξ(z)|u|p−2u

with Robin boundary condition. The resonance occurs from the right of the principal

eigenvalue λ̂1(p), in the sense that

pF(z, x) − λ̂1(p)|x |p → +∞

uniformly for a.a. z ∈ �, as x → ±∞, with F(z, x) = ∫ x
0 f (z, s) ds.

This makes the energy (Euler) functional of the problem unbounded from below

(hence noncoercive) and so we can not use the direct method of the calculus of varia-

tions. In the second case we assume that f (z, ·) is (p − 1)-superlinear as x → ±∞
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but without satisfying the usual in such cases Ambrosetti-Rabinowitz condition (the

“AR-condition” for short). In both cases we assume that f (z, ·) is concave near the

origin and also has an oscillatory behavior.

In the boundary condition ∂u
∂n pq

denotes the conormal derivative corresponding to

the (p, q)-Laplacian. This directional derivative is interpreted using the nonlinear

Green’s identity (see Papageorgiou-Rădulescu-Repovš [21], Corollary 1.5.16, p. 34)

and if u ∈ C1(�), then

∂u

∂n pq
=

[
|Du|p−2 + |Du|q−2

] ∂u

∂n
,

with n(·) being the outward unit normal on ∂�.

Using variational tools based on the critical point theory together with truncation

and comparison techniques, we show that in both cases problem (1.1) has at least five

nontrivial smooth solutions which are ordered and we provide sign information for all

of them.

The starting point of our work here is the recent paper of Papageorgiou-Scapellato

[24] where the authors deal with a generalized version of the classical concave-convex

problem, for equations driven only by the p-Laplacian. The reaction there is parametric

and nonnegative and they prove a bifurcation-type theorem describing the changes in

the set of positive solutions as the parameter λ > 0 varies. Here there is no parameter

and for this reason we require that f (z, ·) changes sign. Moreover, in the present work

in addition to constant sign solutions, we also produce nodal (that is, sign-changing)

solutions.

Multiplicity results for (p, q)-equations with resonant or superlinear reaction,

can be found in Candito-Gasiński-Livrea [6], Filippakis-Papageorgiou [8], Gasiński-

Papageorgiou [10], Gasiński-Winkert [12], Li-Rong-Liang [16], Papageorgiou-

Rădulescu [17,18], Papageorgiou-Scapellato [25], Papageorgiou-Vetro-Vetro [26],

Pei-Zhang [29], Sun [31]. Also our work here extends that of Gasiński-Papageorgiou

[11], where the authors permit only nonuniform nonresonance for equations driven

by the Dirichlet p-Laplacian with no potential term. We also mention the very recent

work of Vetro [32], where the author examines perturbations (both sublinear and

superlinear) of the eigenvalue problem for the operator u �→ −�pu + ξ(z)|u|p−2u

with Robin boundary condition. Finally we should also mention the works of Amster

[2], Papageorgiou-Rădulescu-Repovš [22,23] and Papageorgiou-Zhang [28], where

the authors deal with problems involving concave terms.
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2 Mathematical background-hypotheses

In the analysis of problem (1.1), the main spaces are the Sobolev space W 1,p(�) and

the Banach space C1(�). By ‖ · ‖ we denote the norm of W 1,p(�) defined by

‖u‖ = [‖u‖p
p + ‖Du‖p

p
] 1

p for all u ∈ W 1,p(�).

The space C1(�) is an ordered Banach space with positive (order) cone C+ = {u ∈
C1(�) : u(z) ≥ 0 for all z ∈ �}. This cone has a nonempty interior given by

int C+ = {u ∈ C+ : u(z) > 0 for all z ∈ �}.

Let r ∈ (1,∞). By Ar : W 1,r (�) → W 1,r (�)∗ we denote the nonlinear operator

defined by

〈Ar (u), h〉 =
∫

�

|Du|r−2(Du, Dh)RN dz for all u, h ∈ W 1,r (�).

The next proposition summarizes the main properties of this map (see Gasiński-

Papageorgiou [12], p. 279).

Proposition 2.1 The operator Ar : W 1,r (�) → W 1,r (�)∗ is bounded (that is, it maps

bounded sets to bounded sets), continuous, monotone (hence maximal monotone too)

and of type (S)+, that is, it has the following property

“If un
w−→ u in W 1,r (�) and lim

n→∞〈Ar (un), un − u〉 ≤ 0, then un → u in

W 1,r (�)”.

For x ∈ R, we set x± = max{±x, 0}. Then, for u ∈ W 1,p(�), we define u±(z) =
u(z)± for all z ∈ �. We know that

u± ∈ W 1,p(�), |u| = u+ + u−, u = u+ − u−.

If h1, h2 : � → R are two measurable functions such that h1(z) ≤ h2(z) for a.a.

z ∈ �, then we define the order interval [h1, h2] in W 1,p(�) by

[h1, h2] = {u ∈ W 1,p(�) : h1(z) ≤ u(z) ≤ h2(z) for a.a. z ∈ �}.

Also, we define

[h1) = {u ∈ W 1,p(�) : h1(z) ≤ u(z) for a.a. z ∈ �},
(h2] = {v ∈ W 1,p(�) : v(z) ≤ h2(z) for a.a. z ∈ �}.
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Given a set S ⊆ W 1,p(�), we say that S is downward (resp. upward) directed, if

for every u1, u2 ∈ S we can find u ∈ S such that u ≤ u1, u ≤ u2 (resp. u1 ≤ u,

u2 ≤ u).

Let X be a Banach space and ϕ ∈ C1(X). By Kϕ we denote the critical set of ϕ,

that is,

Kϕ = {u ∈ X : ϕ′(u) = 0}.

We say that ϕ(·) satisfies the C-condition, if it has the following property

“Every sequence {un}n∈N ⊆ X such that

{ϕ(un)}n∈N ⊆ R is bounded,

(1 + ‖un‖X )ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.

For c ∈ R, let ϕc = {u ∈ X : ϕ(u) ≤ c}. Let Y2 ⊆ Y1 ⊆ X . For every

k ∈ N0 = N ∪ {0}, by Hk(Y1, Y2) we denote the kth relative singular homology

group with integer coefficients for the pair (Y1, Y2). Suppose that u ∈ Kϕ is isolated

and let c = ϕ(u). Then, the critical groups of ϕ(·) at u, are defined by

Ck(ϕ, u) = Hk(ϕ
c ∩ U , ϕc ∩ U\{u}) for all k ∈ N0,

where U is an open neighborhood of u such that Kϕ ∩ ϕc ∩ U = {u}.
The excision property of singular homology, implies that this definition is indepen-

dent of the choice of the isolating neighborhood U .
In the resonant case we will use the spectrum of the operator u �→ −�pu +

ξ(z)|u|p−2u with the Robin boundary condition. So, for ξ ∈ L∞(�) and β ∈
C0,α(∂�) (0 < α < 1), β ≥ 0, we consider the following nonlinear eigenvalue

problem

⎧
⎨

⎩

−�pu(z) + ξ(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z) in�

∂u
∂n p

+ β(z)|u|p−2u = 0 on ∂�
. (2.1)

We say that λ̂ ∈ R is an eigenvalue, if problem (2.1) admits a nontrivial solution

û ∈ W 1,p(�), known as an eigenfunction corresponding to the eigenvalue λ̂ ∈ R.

The nonlinear regularity theory (see Lieberman [15]) implies that û ∈ C1(�). The

eigenvalue problem (2.1) was studied by Fragnelli-Mugnai-Papageorgiou [9], who



78 Page 6 of 27 N.S. Papageorgiou, A. Scapellato

established the existence of a smallest eigenvalue λ̂1(p) ∈ R, which is simple, isolated

and admits the following variational characterization

λ̂1(p) = inf

[
γp(u)

‖u‖p
p

: u ∈ W 1,p(�), u �= 0

]

. (2.2)

Here γp : W 1,p(�) → R is the C1-functional defined by

γp(u) = ‖Du‖p
p +

∫

�

ξ(z)|u|p dz +
∫

∂�

β(z)|u|p dσ for all u ∈ W 1,p(�),

with σ(·) denoting the (N − 1)-dimensional Hausdorff (surface) measure on ∂�. The

infimum in (2.2) is realized on the corresponding one-dimensional eigenspace, the

elements of which have fixed sign. By û1(p) we denote the positive, L p-normalized

(that is, ‖û1(p)‖p = 1) eigenfunction for λ̂1(p). The nonlinear regularity theory and

the nonlinear maximum principle, imply that û1(p) ∈ int C+. Note that if ξ ≥ 0 and

ξ �≡ 0 or β �≡ 0, then λ̂1(p) > 0 (see [9]).

We mention that λ̂1(p) is the only eigenvalue with eigenfunctions of fixed sign. All

other eigenvalues have nodal (that is, sign-changing) eigenfunctions.

Now we can introduce our hypotheses on the data of problem (1.1).

H0: ξ ∈ L∞(�), β ∈ C0,α(∂�), β(z) ≥ 0 for all z ∈ ∂�.

Remarks We stress thay ξ(·) is in general sign changing. If β ≡ 0, then we have a

Neumann problem.

For the resonant case, the hypotheses on the reaction f (z, x) are the following

(recall that F(z, x) = ∫ x
0 f (z, s) ds).

H1: f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a.

z ∈ � and

(i) | f (z, x)| ≤ a(z)[1 + |x |p−1] for a.a. z ∈ �, all x ∈ R, with a ∈ L∞(�);

(ii) lim
x→±∞

pF(z, x)

|x |p
= λ̂1(p) uniformly for a.a. z ∈ �;

(iii) there exists τ ∈ (q, p) such that

lim sup
x→±∞

f (z, x)x − pF(z, x)

|x |τ ≤ −γ0 < 0 uniformly for a.a. z ∈ �;

(iv) there exist μ ∈ (1, q) and δ > 0 such that

c0|x |μ ≤ f (z, x)x ≤ μF(z, x) for a.a. z ∈ �, all |x | ≤ δ;
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(v) there exist ϑ− < 0 < ϑ+ such that for a.a. z ∈ � we have

f (z, ϑ+) − ξ(z)ϑ p−1
+ ≤ −ĉ+ < 0 < ĉ− ≤ f (z, ϑ−) + ξ(z)|ϑ−|p−1;

(vi) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ �, the function

x �→ f (z, x) + ξ̂ρ |x |p−2x is nondecreasing on [−ρ, ρ].
Remarks If limx→±∞ f (z,x)

|x |p−2x
= λ̂1(p) uniformly for a.a. z ∈ �, then hypothesis

H1(ii) is satisfied. Therefore we see thay hypothesis H1(ii) covers the case of problems

which are resonant as x → ±∞ with respect to the principal eigenvalue λ̂1(p). In the

process of the proof, we will show that

lim inf
x→±∞

pF(z, x) − λ̂1(p)|x |p

|x |τ ≥ γ1 > 0

uniformly for a.a. z ∈ �. This means that the resonance occurs from the right of

λ̂1(p) and this makes the energy functional of the problem noncoercive, hence we

can not employ the direct method of the calculus of variations. Hypothesis H1(iv)

implies the presence of a concave term near zero. When there is no potential term

(that is, ξ ≡ 0), then hypotheses H1(iv), (v) dictate an oscillatory behavior for f (z, ·)
near zero. In the general case the oscillatory behavior concerns the function x �→
f (z, x)−ξ(z)|x |p−2x . Hypothesis H1(vi) is essentially a one-sided Hölder condition.

It is satisfied if f (z, ·) is differentiable for a.a. z ∈ � and for every ρ > 0, we can find

ξ̂ρ > 0 such that f ′
x (z, x)x2 ≥ −ξ̂ρ |x |p for a.a. z ∈ �, all |x | ≤ ρ.

3 Constant sign solutions

In this section we produce multiple constant sign solutions.

We start by producing two nontrivial smooth solutions, one positive and the other

negative, using only the conditions on f (z, ·) near zero.
Proposition 3.1 If hypotheses H0, H1 (iv), (v), (vi) hold, then problem (1.1) has two

constant sign solutions u0 ∈ int C+, v0 ∈ −int C+ and ϑ− < v0(z) < 0 < u0(z) <

ϑ+ for all z ∈ �.

Proof First we produce the positive solution.

Let η > ‖ξ‖∞ (see hypotheses H0) and consider the Carathéodory function k+ :
� × R → R defined by

k+(z, x) =
⎧
⎨

⎩

f (z, x+) + η(x+)p−1 if x ≤ ϑ+
f (z, ϑ+) + ηϑ

p−1
+ ifϑ+ < x

. (3.1)
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We set K+(z, x) = ∫ x
0 k+(z, s) ds and consider the C1-functional w+ :

W 1,p(�) → R defined by

w+(u) = 1

p
γp(u) + η

p
‖u‖p

p + 1

q
‖Du‖q

q −
∫

�

K+(z, u) dz for all u ∈ W 1,p(�).

From (3.1) and since η > ‖ξ‖∞ and β ≥ 0 (see hypotheses H0), we see that

w+(·) is coercive. Also, using the Sobolev embedding theorem, we show that w+(·)
is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem,

we can find u0 ∈ W 1,p(�) such that

w+(u0) = min
[
w+(u) : u ∈ W 1,p(�)

]
. (3.2)

Let u ∈ int C+ and choose t ∈ (0, 1) small such that

0 < tu(z) ≤ min{ϑ+, δ} for all z ∈ �, (3.3)

with δ > 0 as in hypothesis H1(iv). We have

w+(tu) = t p

p
γp(u) + tq

q
‖Du‖q

q −
∫

�

F(x, tu) dz (see (3.1), (3.3))

≤ tq

q

[
γp(u) + ‖Du‖q

q
] − c0

μ
tμ‖u‖μ

μ

(see (3.3), hypothesis H1(iv) and recall that t ∈ (0, 1), q < p)

= c1tq − c2tμ for some c1, c2 > 0.

Since μ < q (see H1(iv)), choosing t ∈ (0, 1) even smaller if necessary, we have

w+(tu) < 0,

⇒ w+(u0) < 0 = w+(0) (see (3.2)),

⇒ u0 �= 0.

From (3.2) we have

w′+(u0) = 0,

⇒ 〈γ ′
p(u0), h〉 +

∫

�

η|u0|p−2u0h dz + 〈Aq(u0), h〉

=
∫

�

k+(z, u0)h dz for all h ∈ W 1,p(�). (3.4)
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Evidently

〈γ ′
p(u0), h〉 = 〈Ap(u0), h〉 +

∫

�

ξ(z)|u0|p−2u0h dz +
∫

∂�

β(z)|u0|p−2u0h dz

for all h ∈ W 1,p(�).

Choosing h = −u−
0 ∈ W 1,p(�) in (3.4), we obtain

γp(u
−
0 ) + η‖u−

0 ‖p
p + ‖Du−

0 ‖q
q = 0 (see (3.1)),

⇒ c3‖u−
0 ‖p ≤ 0 for some c3 > 0 (since η > ‖ξ‖∞),

⇒ u0 ≥ 0, u0 �= 0.

Next in (3.4) we choose h = [u0 − ϑ+]+ ∈ W 1,p(�). We have

〈γ ′
p(u0), (u0 − ϑ+)+〉 +

∫

�

η|u0|p−2u0(u0 − ϑ+)+ dz + 〈Aq(u0), (u0 − ϑ+)+〉

=
∫

�

[
f (z, ϑ+) + ηϑ

p−1
+

]
(u0 − ϑ+)+ dz (see(3.1))

≤
∫

�

[ξ(z) + η]ϑ p−1
+ (u0 − ϑ+)+ dz (see hypothesis H1(v))

≤ 〈γ ′
p(ϑ+), (u0 − ϑ+)+〉

+
∫

�

ηϑ
p−1
+ (u0 − ϑ+)+ dz + 〈Aq(ϑ+), (u0 − ϑ+)+〉 (sinceβ ≥ 0)

⇒ u0 ≤ ϑ+.

So, we have proved that

u0 ∈ [0, ϑ+], u0 �= 0. (3.5)

From (3.5), (3.1) and (3.4) it follows that

u0 ∈ W 1,p(�)is a positive solution of (1.1).

From Proposition 2.10 of Papageorgiou-Rădulescu [18] we have that u0 ∈ L∞(�).

So, we can apply the nonlinear regularity theory of Lieberman [15] and infer that

u0 ∈ C+\{0}. For ρ = ‖u0‖∞, let ξ̂ρ > 0 be as postulated by hypothesis H1(vi). We

have

�pu0 + �qu0 ≤ [‖ξ‖∞ + ξ̂ρ

]
u p−1
0 in�(see hypothesis H1(vi)),

⇒ u0 ∈ int C+ (see Pucci-Serrin [30], pp. 111, 120).
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Clearly we can always assume that ξ̂ρ > ‖ξ‖∞. We have

− �pu0 − �qu0 + [
ξ(z) + ξ̂ρ

]
u p−1
0

= f (z, u0) + ξ̂ρu p−1
0

≤ f (x, ϑ+) + ξ̂ρϑ
p−1
+ (see (3.5) and hypothesis H1(vi))

≤ −�pϑ+ − �qϑ+ + [
ξ(z) + ξ̂ρ

]
ϑ

p−1
+ (see hypothesis H1(v)). (3.6)

On account of hypothesis H1(v) and using Proposition 2.10 of Papageorgiou-

Rădulescu-Repovš [20], from (3.6) we infer that

u0(z) < ϑ+ for all z ∈ �.

Suppose that for some z0 ∈ ∂� we have u0(z0) = ϑ+. Then, from [20] we have
∂u0
∂n (z0) > 0. On the other hand from the Robin boundary condition, we have

∂u0

∂n
(z0) = −β(z0)u0(z0)

p−1 ≤ 0,

a contradiction. Therefore, we conclude that

0 < u0(z) < ϑ+ for all z ∈ �.

For the negative solution, we introduce the Carathéodory function k−(z, x) defined

by

k−(z, x) =
⎧
⎨

⎩

f (z, ϑ−) − η|ϑ−|p−1 if x < ϑ−
f (z,−x−) − η(x−)p−1 if ϑ− ≤ x

. (3.7)

We set K−(z, x) = ∫ x
0 k−(z, s) ds and consider the C1-functional w− : W 1,p(�) →

R defined by

w−(u) = 1

p
γp(u) + η

p
‖u‖p

p + 1

q
‖Du‖q

q −
∫

�

K−(z, u) dz for all u ∈ W 1,p(�).

Using w−(·), (3.7) and the direct method of the calculus of variations, as before, we

produce a negative solution v0 ∈ W 1,p(�) for problem (1.1) such that

v0 ∈ −int C+, ϑ− < v0(z) < 0 for all z ∈ �.

��
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Using these two constant sign solutions and activating the asymptotic hypotheses as

x → ±∞ (see H1(ii), (iii)), we can produce two more constant sign smooth solutions

localized with respect to u0 and v0 respectively.

So, let u0 ∈ int C+ and v0 ∈ −int C+ be the two solutions from Proposition 3.1. As

before, let η > ‖ξ‖∞ and consider the Carathéodory functions ĝ+, ĝ− : � × R → R

defined by

ĝ+(z, x) =
⎧
⎨

⎩

f (z, u0(z)) + ηu0(z)p−1 if x ≤ u0(z)

f (z, x) + ηx p−1 if u0(z) < x
, (3.8)

ĝ−(z, x) =
⎧
⎨

⎩

f (z, x) + η|x |p−2x if x < v0(z)

f (z, v0(z)) + η|v0(z)|p−2v0(z) if v0(z) ≤ x
. (3.9)

We set Ĝ+(z, x) = ∫ x
0 ĝ+(z, s) ds and Ĝ−(z, x) = ∫ x

0 ĝ−(z, s) ds and consider

the C1-functionals ϕ̂+, ϕ̂− : W 1,p(�) → R defined by

ϕ̂+(u) = 1

p
γp(u) + η

p
‖u‖p

p + 1

p
‖Du‖q

q −
∫

�

Ĝ+(z, u) dz

ϕ̂−(u) = 1

p
γp(u) + η

p
‖u‖p

p + 1

p
‖Du‖q

q −
∫

�

Ĝ−(z, u) dz

for all u ∈ W 1,p(�).

Since u0(z) < ϑ+ and ϑ− < v0(z) for all z ∈ � (see Proposition 3.1), we can also

introduce the following truncations of ĝ±(z, ·)

ĝ∗+(z, x) =
⎧
⎨

⎩

ĝ+(z, x) if x ≤ ϑ+
ĝ+(z, ϑ+) if ϑ+ < x

, (3.10)

ĝ∗−(z, x) =
⎧
⎨

⎩

ĝ−(z, ϑ−) if x < ϑ−
ĝ−(z, x) if ϑ− ≤ x

. (3.11)

Both are Carathéodory functions. We set Ĝ∗+(z, x) = ∫ x
0 ĝ∗+(z, s) ds and

Ĝ∗−(z, x) = ∫ x
0 ĝ∗−(z, s) ds and consider the C1-functionals ϕ̂∗+, ϕ̂∗+ : W 1,p(�) → R

defined by

ϕ̂∗+(u) = 1

p
γp(u) + η

p
‖u‖p

p + 1

p
‖Du‖q

q −
∫

�

Ĝ∗+(z, u) dz

ϕ̂∗−(u) = 1

p
γp(u) + η

p
‖u‖p

p + 1

p
‖Du‖q

q −
∫

�

Ĝ∗−(z, u) dz

for all u ∈ W 1,p(�).
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From (3.10) and (3.11) and since η > ‖ξ‖∞, we see that the functionals ϕ̂∗+, ϕ̂∗+
are coercive. Moreover, from (3.8), (3.9), (3.10), (3.11), we have that

ϕ̂+
∣
∣
∣[0,ϑ+] = ϕ̂∗+

∣
∣
∣[0,ϑ+] and ϕ̂′+

∣
∣
∣[0,ϑ+] = (

ϕ̂∗+
)′ ∣∣

∣[0,ϑ+]. (3.12)

Similarly for ϕ̂− and ϕ̂∗− on [ϑ−, 0].

Proposition 3.2 If hypotheses H0, H1 hold, then the functionals ϕ̂+, ϕ̂+ satisfy the

C-condition.

Proof We do the proof for ϕ̂+(·), the proof for ϕ̂−(·) being similar.

So, we consider a sequence {un}n∈N ⊆ W 1,p(�) such that

|ϕ̂+(un)| ≤ c4 for some c4 > 0, all n ∈ N, (3.13)

(1 + ‖un‖)ϕ̂′+(un) → 0 in W 1,p(�)∗ as n → ∞. (3.14)

From (3.14) we have

∣
∣
∣
∣〈γ ′

p(un), h〉 +
∫

�

η|un|p−2unh dz + 〈Aq(un), h〉 −
∫

�

ĝ+(z, un)h dz

∣
∣
∣
∣ ≤ εn‖h‖

1 + ‖un‖
for all h ∈ W 1,p(�), with εn → 0+. (3.15)

In (3.15) we choose h = −u−
n ∈ W 1,p(�). Then, from (3.8) we have

γp(u
−
n ) + η‖u−

n ‖p
p ≤ c5 for some c5 > 0, all n ∈ N,

⇒ ‖u−
n ‖p ≤ c6 for some c6 > 0, all n ∈ N (since η > ‖ξ‖∞),

⇒ {u−
n }n∈N ⊆ W 1,p(�) is bounded. (3.16)

Next we show that {u+
n } ⊆ W 1,p(�) is bounded too. We argue by contradiction.

So, by passing to a subsequence if necessary, we may assume that

‖u+
n ‖ → +∞ as n → ∞. (3.17)

We set yn = u+
n

‖u+
n ‖ , n ∈ N. Then ‖yn‖ = 1, yn ≥ 0 for all n ∈ N. We may assume

that

yn
w−→ y in W 1,p(�) and yn → y in L p(�) and in L p(∂�), y ≥ 0. (3.18)
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From (3.13) and (3.16), we have

ϕ̂+(u+
n )

‖u+
n ‖ ≤ c7

‖u+
n ‖p

for some c7 > 0, alln ∈ N,

⇒ 1

p
γp(yn) + 1

q

1

‖u+
n ‖p−q

‖Dyn‖q −
∫

�

F(z, u+
n )

‖u+
n ‖p

dz

≤ c7
‖u+

n ‖p
for all n ∈ N (see (3.8)). (3.19)

Hypotheses H1(ii), (iii) imply that given ε > 0, we can find c8 > 0 such that

F(z, x) ≤ 1

p

[
λ̂1(p) + ε

]
x p + c8 for a.a. z ∈ �, all x ≥ 0. (3.20)

We return to (3.19) and (3.20). We obtain

1

p
γp(yn) ≤ 1

p

∫

�

[
λ̂1(p) + ε

]
y p

n dz + ε′
n with ε′

n → 0+.

We pass to the limit as n → ∞ and use (3.18) and the weak lower semicontinuity

of γp(·) (since γp(·) is continuous, convex). We obtain

1

p
γp(y) ≤ 1

p

∫

�

[
λ̂1(p) + ε

]
y p dz.

Since ε > 0 is arbitrary, we let ε → 0+ and we have

γp(y) ≤ λ̂1(p)‖y‖p
p,

⇒ γp(y) = λ̂1(p)‖y‖p
p (see (2.2)). (3.21)

From (3.14), (3.16) and (3.8), we have

∣
∣
∣
∣〈γ ′

p(u
+
n ), h〉 + 〈Aq(u+

n ), h〉−
∫

�

f (z, u+
n )h dz

∣
∣
∣
∣≤c9‖h‖ for some c9 > 0, all n ∈N,

⇒
∣
∣
∣
∣〈γ ′

p(u
+
n ), h〉 + 1

‖u+
n ‖p−q

〈Aq(yn), h〉 −
∫

�

f (z, u+
n )

‖u+
n ‖p−1

h dz

∣
∣
∣
∣

≤ c9‖h‖
‖u+

n ‖p−1
for all n ∈ N. (3.22)

Hypothesis H1(i) implies that

{
f (·, u+

n (·))
‖u+

n ‖p−1

}

n∈N
⊆ L p′

(�) is bounded

(

p′ = p

p − 1

)

. (3.23)
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So, if in (3.22) we choose h = yn − y ∈ W 1,p(�), pass to the limit as n → +∞
and use (3.17), (3.18) and (3.23), we obtain

lim
n→∞〈Ap(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p(�) and so ‖y‖ = 1, y ≥ 0. (3.24)

From (3.21) and (3.24), we infer that

y = cû1(p) ∈ int C+ with c > 0.

Then it follows that

u+
n (z) → +∞ for a.a. z ∈ �,

⇒ lim sup
n→∞

f (z, u+
n (z))u+

n (z) − pF(z, u+
n (z))

u+
n (z)τ

≤ −γ0 < 0

for a.a. z ∈ �(see hypothesis H1(iii)),

⇒ lim inf
n→∞

∫

�

pF(z, u+
n ) − f (z, u+

n )u+
n

‖u+
n ‖τ

≥ γ1 > 0

(using Fatou’s lemma and (3.24)). (3.25)

From (3.13), (3.16), (3.8) and (3.17), we have

− γp(yn) − p

q

1

‖u+
n ‖p−q

‖Dyn‖q
q +

∫

�

pF(z, u+
n )

‖u+
n ‖p

dz ≤ c10
‖u+

n ‖p

for some c10 > 0, all n ∈ N. (3.26)

On the other hand, from (3.15) with h = u+
n ∈ W 1,p(�), (3.16) and (3.8), we have

γp(yn) + 1

‖u+
n ‖p−q

‖Dyn‖q
q −

∫

�

f (z, u+
n )u+

n

‖u+
n ‖p

dz ≤ c11
‖u+

n ‖p

for some c11 > 0, all n ∈ N. (3.27)

We add (3.26) and (3.27). Then we have

1

‖u+
n ‖p−τ

∫

�

pF(z, u+
n ) − f (z, u+

n )u+
n

‖u+
n ‖τ

dz ≤
(

p

q
− 1

)
1

‖u+
n ‖p−q

‖Dyn‖q
q + c12

‖u+
n ‖p

for some c12 > 0, all n ∈ N,

⇒
∫

�

pF(z, u+
n ) − f (z, u+

n )u+
n

‖u+
n ‖τ

dz ≤
(

p

q
− 1

)
1

‖u+
n ‖τ−q

‖Dyn‖q
q + ε∗

n
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for all n ∈ N, with ε∗
n → 0+,

⇒ lim sup
n→∞

∫

�

pF(z, u+
n ) − f (z, u+

n )u+
n

‖u+
n ‖τ

dz ≤ 0

(recall that q < τ and see (3.17)). (3.28)

Comparing (3.28) and (3.25), we have a contradiction. Hence

{u+
n }n∈N ⊆ W 1,p(�) is bounded,

⇒ {un}n∈N ⊆ W 1,p(�) is bounded (see (3.16)).

We may assume that

un
w−→ u in W 1,p(�) and un → u in L p(�) and in L p(∂�). (3.29)

In (3.15) we choose h = un − u ∈ W 1,p(�), pass to the limit as n → ∞ and use

(3.29). Then

lim
n→∞

[〈Ap(un), un − u〉 + 〈Aq(un), un − u〉] = 0,

⇒ lim sup
n→∞

[〈Ap(un), un − u〉+〈Aq(u), un − u〉]≤0 (since Aq(·) is monotone),

⇒ lim sup
n→∞

〈Ap(un), un − u〉 ≤ 0 (see (3.29)),

⇒ un → u in W 1,p(�) (see Proposition 2.1).

This proves that ϕ̂+(·) satisfies the C-condition.
In a similar fashion, we show that ϕ̂−(·) satisfies the C-condition. ��

Proposition 3.3 If hypotheses H0, H1 hold, the ϕ̂±(t û1(p)) → −∞ as t → ±∞.

Proof For a.a. z ∈ � and all x > 0, we have

d

dx

(
F(z, x)

x p

)

= f (z, x)x p − pF(z, x)x p−1

x2p

= f (z, x)x − pF(z, x)

x p+1 . (3.30)

On account of hypothesis H1(iii), we can find γ2 ∈ (0, γ0) and M > 0 such that

f (z, x)x − pF(z, x) ≤ −γ2xτ for a.a. z ∈ �, all x ≥ M . (3.31)
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We return to (3.30) and use (3.31). Then

d

dx

(
F(z, x)

x p

)

≤ − γ2xτ

x p+1 = − γ2

x p−τ+1 for a.a. z ∈ �, all x ≥ M,

⇒ F(z, x)

x p
− F(z, y)

y p
≤ γ2

p − τ

(
1

x p−τ
− 1

y p−τ

)

for a.a. z ∈ �, all x ≥ y ≥ M .

We pass to the limit as x → +∞ and use hypothesis H1(ii). Then

λ̂1(p)

p
− F(z, y)

y p
≤ − γ2

p − τ

1

y p−τ
for a.a.z ∈ �, ally ≥ M,

⇒ pF(z, y) − λ̂1(p)y p

yτ
≥ γ2

p − τ
for a.a. z ∈ �, all y ≥ M .

We infer that

lim inf
x→+∞

pF(z, x) − λ̂1(p)x p

xτ
≥ γ3 > 0 uniformly for a.a. z ∈ �. (3.32)

Then we have

ϕ̂+(t û1(p)) = λ̂1(p)

p
‖t û1(p)‖p

p + tq

q
‖Dû1‖q

q −
∫

�

F(z, t û1(p)) dz

⇒ pϕ̂+(t û1(p)) =
∫

�

λ̂1(p)(t û1(p)) − pF(z, t û1(p))

tτ
tτ dz + tq

q
‖Dû1‖q

q .

Using (3.32) and the fact that τ > q (see hypothesis H1(iii)), we infer that

ϕ̂+(t û1(p)) → −∞ as t → +∞.

In a similar fashion we show that

ϕ̂−(t û1(p)) → −∞ as t → −∞. ��
Using (3.8) and (3.9), we can easily check that

Kϕ̂+ ⊆ [u0) ∩ int C+ and Kϕ̂− ⊆ (v0] ∩ (−int C+). (3.33)

We may assume that

Kϕ̂+ ∩ [0, ϑ+] = {u0} and Kϕ̂− ∩ [ϑ−, 0] = {v0}. (3.34)

Otherwise we already have two more constant sign solutions, one positive different

from u0 in [u0, ϑ+] ∩ int C+ and the other negative different from v0 in [ϑ−, v0] ∩
(−int C+). So, we are done.
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Clearly the functionals ϕ̂∗+ and ϕ̂∗− are coercive (see (3.10) and (3.11)) and sequen-

tially weakly lower semicontinuous. Moreover, we can easily check that

Kϕ̂∗+ ⊆ [u0, ϑ+] ∩ int C+ and Kϕ̂∗− ⊆ [ϑ−, v0] ∩ (−int C+). (3.35)

The Weierstrass-Tonelli theorem, together with (3.34), (3.35) and (3.12) and the

fact that u0 ∈ int C1(�)[0, ϑ+] (that is, the interior in C1(�) of [0, ϑ+] ∩ C1(�)),

v0 ∈ int C1(�)[−ϑ−, 0] (that is, the interior in C1(�) of [ϑ−, 0] ∩ C1(�)), imply that

u0 is a local C1(�) − minimizer of ϕ̂+,

and

v0 is a localC1(�) − minimizer of ϕ̂−.

From Papageorgiou-Rădulescu [18] (see also Bai-Gasiński-Winkert-Zeng [4] for a

nonsmooth version), we have

u0 is a local W 1,p(�) − minimizer of ϕ̂+, (3.36)

and

v0 is a local W 1,p(�) − minimizer of ϕ̂−. (3.37)

Note that we may say that the sets

Kϕ̂+ and Kϕ̂− are finite (3.38)

otherwise on account of (3.35), (3.8), (3.9) we already have a sequence of distinct

positive solutions bigger than u0 and a sequence of distinct negative solutions smaller

than v0 and so we are done. From (3.36), (3.37), (3.38) and Theorem 5.7.6, p. 449, of

Papageorgiou-Rădulescu-Repovš, we see that we can find ρ ∈ (0, 1) small such that

ϕ̂+(u0) < inf
[
ϕ̂+(u) : ‖u − u0‖ = ρ

] = m̂+, (3.39)

ϕ̂−(v0) < inf
[
ϕ̂−(v) : ‖v − v0‖ = ρ

] = m̂−. (3.40)

Now we are ready to produce two more constant sign solutions for problem (1.1).

Proposition 3.4 If hypotheses H0, H1 hold, then problem (1.1) has two more constant

sign solutions û ∈ int C+, u0 ≤ û, u0 �= û, v̂ ∈ −int C+, v̂ ≤ v0, v̂ �= v0.



78 Page 18 of 27 N.S. Papageorgiou, A. Scapellato

Proof Propositions 3.2 and 3.3 and (3.39), (3.40) permit the use of the mountain pass

theorem on the functionals ϕ̂+, ϕ̂−. Hence we can find û ∈ Kϕ̂+ ⊆ [u0) ∩ int C+,
v̂ ∈ Kϕ̂− ⊆ (v0] ∩ (−int C+) (see (3.33)) such that

m̂+ ≤ ϕ̂+(̂u) and m̂− ≤ ϕ̂−(̂v). (3.41)

From (3.39), (3.40), (3.41) we infer that

u0 ≤ û, u0 �= û,

v̂ ≤ v0, v̂ �= v0.

��

4 Extremal constant sign solutions

In this section we show that problem (1.1) has extremal constant sign solutions, that

is, there exist a smallest positive solution and a biggest negative solution. Using these

extremal solutions, in the next section, we will be able to produce a nodal (sign-

changing) solution.

Let S+ (resp. S−) be the set of positive (resp. negative) solutions of (1.1). In Sect. 3,
we saw that

∅ �= S+ ⊆ int C+ and ∅ �= S− ⊆ −int C+.

Proposition 4.1 If hypotheses H0, H1 hold, then problem (1.1) admits a smallest pos-

itive solution u∗ ∈ int C+ and a biggest negative solution.

Proof From Papageorgiou-Rădulescu-Repovš [19] (see the proof of Proposition 7),

we know that S+ is downward directed. So, using Lemma 3.10, p. 178, of Hu-

Papageorgiou [14], we can find a decreasing sequence {un}n∈N ⊆ S+ such that

inf
n≥1

un = inf S+.

We have

〈γ ′
p(un), h〉 + 〈Aq(un), h〉 =

∫

�

f (z, un)h dz for all h ∈ W 1,p(�), all n ∈ N,

(4.1)

0 ≤ un ≤ u1 for all n ∈ N. (4.2)
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From (4.1) (with h = un ∈ W 1,p(�)), (4.2) and hypothesis H1(i) it follows that

{un}n≥1 ⊆ W 1,p(�) is bounded. So, we may assume that

un
w−→ u∗ in W 1,p(�) and un → u∗ in L p(�) and in L p(∂�). (4.3)

In (4.1) we choose h = un − u∗ ∈ W 1,p(�), pass to the limit as n → ∞ and use

(4.3). Then, as in the proof of Proposition 3.2, we obtain

lim sup
n→∞

〈Ap(un), un − u∗〉 ≤ 0,

⇒ un → u∗ in W 1,p(�) (see Proposition 2.1). (4.4)

So, passing to the limit as n → ∞ in (4.1) and using (4.4), we have that

〈γ ′
p(u∗), h〉 + 〈Aq(u∗), h〉 =

∫

�

f (z, u∗)h dz for all h ∈ W 1,p(�).

If we show that u∗ �= 0, then u∗ ∈ S+ and so u∗ = inf S+.
On account of hypotheses H1(i), (iv), we have

f (z, x) ≥ c0|x |μ − c13|x |r for a.a. z ∈ �, all x ∈ R, with c13 > 0, r ∈ (p, p∗).
(4.5)

The unilateral growth restriction on f (z, ·) leads to the following auxiliary Robin

problem

⎧
⎨

⎩

−�pu − �qu + |ξ(z)||u|p−2u = c0|u|μ−2u − c13|u|r−2u in�

∂u
∂n pq

+ β(z)|u|p−2u = 0 on ∂�
. (4.6)

From Proposition 12 of Papageorgiou-Vetro-Vetro [27], we know that this problem

has a unique positive solution ũ ∈ int C+ and since the equation is odd, ṽ = −ũ ∈
−int C+ is the unique negative solution of (4.6).

Claim. ũ ≤ u for all u ∈ S+ and v ≤ ṽ for all v ∈ S−.
Let u ∈ S+ and consider the Carathéodory function k+ : � × R → R defined by

k+(z, x) =
⎧
⎨

⎩

c0(x+)μ−1 − c13(x+)r−1 if x ≤ u(z)

c0u(z)μ−1 − c13u(z)r−1 if u(z) < x
. (4.7)
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We set K+(z, x) = ∫ x
0 k+(z, s) ds and consider the C1-functional ψ+ :

W 1,p(�) → R defined by

ψ+(u) = 1

p
γ̂p(u) + 1

q
‖Du‖q

q −
∫

�

K+(z, u) dz for all u ∈ W 1,p(�)

with γ̂p ∈ C1(W 1,p(�)) being defined by

γ̂p(u) = ‖Du‖p
p +

∫

�

|ξ(z)||u|p dz +
∫

∂�

β(z)|u|p dσ for all u ∈ W 1,p(�).

Note that ψ+(·) is coercive (see (4.7)). Indeed, for every v ∈ W 1,p(�) we have

that

∫

�

K+(z, v) dz =
∫

{v≤u}

[
c0
μ

(v+)μ − c13
r

(v+)r
]

dz +
∫

{u<v}
[c0uμ−1 − c13ur−1](v − u) dz

≤ ĉ1 [1 + ‖v‖] for some ĉ1 > 0,

⇒ −
∫

�

K+(z, v) dz ≥ −ĉ1 [1 + ‖v‖] .

From this we infer the coercivity of ψ+(·) since p > 1.

Also ψ+(·) is sequentially weakly lower semicontinuous. So, we can find ũ0 ∈
W 1,p(�) such that

ψ+(̃u0) = inf
[
ψ+(u) : u ∈ W 1,p(�)

]
. (4.8)

Since μ < q < p, it follows that

ψ+(̃u0) < 0 = ψ+(0),

⇒ ũ0 �= 0.

Using (4.7) and the nonlinear regularity theory (see [15]), we obtain

Kψ+ ⊆ [0, u] ∩ C+. (4.9)

From (4.8), (4.9) it follows that

ũ0 ∈ [0, u], ũ0 �= 0,

⇒ ũ0 = ũ ∈ int C+ (see (4.7)),

⇒ ũ ≤ u for all u ∈ S+(see (4.9)).

Similarly we show that v ≤ ṽ for all v ∈ S−. This proves the Claim.
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From (4.4) and the Claim, we have ũ ≤ u∗. Hence u∗ �= 0 and so u∗ ∈ S+,
u∗ = inf S+.

Similarly, we prove the existence of v∗ ∈ S− and v ≤ v∗ for all v ∈ S−. We point

out that now S− is upward directed. ��

5 Nodal solutions

In this section, using the extremal constant sign solutions u∗ ∈ int C+ and v∗ ∈
−int C+ produced in Proposition 4.1,we show the existence of a nodal (sign-changing)

solution. The idea is simple. We focus on the order interval [v∗, u∗] and using a

combination of tools and techniques we show that the problem has a solution in

[v∗, u∗] distinct from 0, u∗, v∗. Then, on account of the extremality of u∗, v∗, such a

solution will be nodal.

To this end, let η > ‖ξ‖∞ and consider the Carathéodory function l : � × R → R

defined by

l(z, x) =

⎧
⎪⎪⎨

⎪⎪⎩

f (z, v∗(z)) + η|v∗(z)|p−2v∗(z) if x < v∗(z)
f (z, x) + η|x |p−2x if v∗(z) ≤ x ≤ u∗(z)
f (z, u∗(z)) + ηu∗(z)p−1 if u∗(z) < x

. (5.1)

Also, we consider the positive and negative truncations of l(z, ·), namely the

Carathéodory functions l± : � × R → R defined by

l±(z, x) = l(z,±x±). (5.2)

We set L(z, x) = ∫ x
0 l(z, s) ds, L±(z, s) = ∫ x

0 l±(z, s) ds and consider the C1-

functionals λ, λ± : W 1,p(�) → R defined by

λ(u) = 1

p

[
γp(u) + η‖u‖p

p
] + 1

q
‖Du‖q

q −
∫

�

L(z, u) dz,

λ±(u) = 1

p

[
γp(u) + η‖u‖p

p
] + 1

q
‖Du‖q

q −
∫

�

L±(z, u) dz,

for all u ∈ W 1,p(�).

Using (5.1), (5.2) and the nonlinear regularity theory (see [15]), we show that

Kλ ⊆ [v∗, u∗] ∩ C1(�), (5.3)

Kλ+ ⊆ [0, u∗] ∩ C+, Kλ− ⊆ [v∗, 0] ∩ (−C+). (5.4)
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From (5.4) and the extremality of u∗ and v∗, we conclude that

Kλ+ = {0, u∗}, Kλ− = {0, v∗}. (5.5)

Proposition 5.1 If hypotheses H0, H1 hold, then problem (1.1) admits a nodal solution

y0 ∈ C1(�) such that v∗ ≤ y0 ≤ u∗.

Proof Clearly λ+ is coercive (see (5.1), (5.2)). Also it is sequentially weakly lower

semicontinuous. So, we can find ũ∗ ∈ W 1,p(�) such that

λ+(̃u∗) = min
[
λ+(u) : u ∈ W 1,p(�)

]
. (5.6)

On account of hypothesis H1 (iv), we have

λ+(̃u∗) < 0 = λ+(0),

⇒ ũ∗ �= 0,

⇒ ũ∗ = u∗ (see (5.6) and (5.5)).

Since λ

∣
∣
∣
C+

= λ+
∣
∣
∣
C+

and u∗ ∈ int C+, it follows that

u∗ is a localC1(�) − minimizer of λ(·),
⇒ u∗ is a local W 1,p(�) − minimizer of λ(·) (see [18], [4]). (5.7)

Similarly, using this time λ−(·) we obtain that

v∗ is a local W 1,p(�) − minimizer of λ(·). (5.8)

Wemay assume that λ(v∗) ≤ λ(u∗), the analysis is similar if the opposite inequality

holds, using (5.8) instead of (5.7). From (5.1) and (5.3) we see that we may assume

that Kλ is finite (otherwise, we already have awhole sequence of distinct smooth nodal

solutions in [v∗, u∗]).
Then from (5.7) and using Theorem 5.7.6, p. 449, of Papageorgiou-Rădulescu-

Repovš [21], we can find ρ ∈ (0, 1) small such that

λ(v∗) ≤ λ(u∗) < inf [λ(u) : ‖u − u∗‖ = ρ] = mρ. (5.9)

Since λ(·) is coercive (see (5.1)), it satisfies the C-condition. This fact and (5.9),

permit the use of the mountain pass theorem. So, we can find y0 ∈ W 1,p(�) such that

y0 ∈ Kλ ⊆ [v∗, u∗] ∩ C1(�) (see (5.3)), mρ ≤ λ(y0) (see (5.9)). (5.10)
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Evidently y0 /∈ {v∗, u∗} (see (5.9), (5.10)). Also from Theorem 6.5.8, p. 527, of

Papageorgiou-Rădulescu-Repovš [21], we have

C1(λ, y0) �= 0. (5.11)

On the other hand, from hypothesis H1(iv) and Proposition 3.7 of Papageorgiou-

Rădulescu [17], we have that

Ck(λ, 0) = 0 for all k ∈ N0. (5.12)

Comparing (5.11) and (5.12), we see that y0 �= 0 and so y0 ∈ C1(�) is a nodal

solution of (1.1) and v∗ ≤ y0 ≤ u∗. ��

So, summarizing the situation for the resonant case, we can state the following

multiplicity theorem for problem (1.1).

Theorem 5.2 If hypotheses H0, H1 hold, then problem (1.1) has at least five nontrivial

solutions u0, û ∈ int C+, u0 ≤ û,u0 �= û, v0, v̂ ∈ −int C+, v̂ ≤ v0, v0 �= v̂,

y0 ∈ C1(�) nodal, v0 ≤ y0 ≤ u0.

6 Superlinear problem

In this section we examine what happens when the reaction f (z, ·) is (p − 1)-

superlinear as x → ±∞. The precise hypotheses on the reaction f (z, x) are the

following:

H′
1: f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a.

z ∈ � and

(i) | f (z, x)| ≤ a(z)[1 + |x |r−1] for a.a. z ∈ �, all x ∈ R, with a ∈ L∞(�),

p < r < p∗;
(ii) lim

x→±∞
F(z, x)

|x |p
= +∞ uniformly for a.a. z ∈ �;

(iii) there exists τ ∈
(
max

{
1, N

p

}
(r − p), p∗

)
, τ > q, such that

0 < γ̂0 ≤ lim inf
x→±∞

f (z, x)x − pF(z, x)

|x |τ uniformly for a.a. z ∈ �;

(iv) there exist μ ∈ (1, q) and δ > 0 such that

c0|x |μ ≤ f (z, x)x ≤ μF(z, x) for a.a. z ∈ �, all |x | ≤ δ;
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(v) there exist ϑ− < 0 < ϑ+ such that for a.a. z ∈ � we have

f (z, ϑ+) − ξ(z)ϑ p−1
+ ≤ −ĉ+ < 0 < ĉ− ≤ f (z, ϑ−) + ξ(z)|ϑ−|p−1;

(vi) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ �, the function

x �→ f (z, x) + ξ̂ρ |x |p−2x is nondecreasing on [−ρ, ρ].
Remarks Sonowcomparedwith hypothesesH1, the conditions determining the behav-

ior of f (z, ·) near zero remain the same (see hypotheses H′
1(iv), (v), (vi)) and change

the asymptotic conditions as x → ±∞ (see hypotheses H′
1(ii), (iii)). Hypotheses

H′
1(ii), (iii) imply that for a.a. z ∈ �, f (z, ·) is (p − 1)−superlinear, but need not

satisfy the usual in superlinear problems Ambrosetti-Rabinowitz condition (the AR-

condition for short). Our framework incorporates also superlinear nonlinearities with

“slower” growth as x → ±∞. For example, if ξ ≡ 0 (no potential term), then the

function

f (x) =
⎧
⎨

⎩

|x |μ−2x − 2|x |ϑ−2x if |x | ≤ 1

|x |p−2x[ln |x | − 1] if 1 < |x |

wth μ < q < p, ϑ > μ, satisfies hypotheses H′
1 but fails to satisfy the AR-condition.

We argue as in the resonant case. In this case, Proposition 3.2 (the C-condition for

the functionals ϕ̂+, ϕ̂−), is proved as in the Claim in the proof of Proposition 2 in

Papageorgiou-Scapellato [24]. Moreover, in this case Proposition 3.3, is an immediate

consequence of hypothesis H′
1(ii). Since the conditions near zero are the same, the rest

of the results (Proposition 3.4 and those in Sect. 4), remain valid and so finally we can

state the following multiplicity theorem for the superlinear problem.

Theorem 6.1 If hypotheses H0, H′
1 hold, then problem (1.1) has at least five nontrivial

solutions u0, û ∈ int C+, u0 ≤ û, u0 �= û, v0, v̂ ∈ −int C+, v̂ ≤ v0, v0 �= v̂,

y0 ∈ C1(�) nodal, v0 ≤ y0 ≤ u0.

Remark We stress that in both Theorems 5.2 and 6.1 the solutions are ordered.

7 The (p, 2)-equation

In this section we show that when q = 2, we can slightly improve the two multiplicity

theorems (Theorem 5.2 and Theorem 6.1). Our work in this section is also related to

the recent paper of Vetro [33] on semilinear equations driven by the Robin Laplacian

plus an indefinite potential. The author proves a multiplicity result using the reduction

technique of Amann [1].
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So, now the problem under consideration is the following

⎧
⎪⎨

⎪⎩

−�pu(z) − �u(z) + ξ(z)|u(z)|p−2u(z) = f (z, u(z)) in �

∂u

∂n p2
+ β(z)|u|p−2u = 0 on ∂�

, (7.1)

with 2 < p.

Let a : R
N → R

N be defined by

a(y) = |y|p−2y + y.

Evidently

div a(Du) = �pu + �u for all u ∈ W 1,p(�).

Note that a ∈ C1(RN , R
N ) and we have

∇a(y) = |y|p−2
[

id + (p − 2)
y ⊗ y

|y|2
]

+ id for all y ∈ R
N . (7.2)

We have

(∇a(y)ϑ, ϑ)RN ≥ |ϑ |2 for all y, ϑ ∈ R
N .

So, invoking the tangency principle of Pucci-Serrin [30] (Theorem 2.5.2, p. 35) and

using Proposition 2.10 of [20], we obtain

u0(z) < û(z) for all z ∈ �.

In a similar fashion we also have

v̂(z) < v0(z) for all z ∈ �,

v0(z) < y0(z) < u0(z) for all z ∈ �.

Therefore for problem (7.1) we can have the following slightly improved version

of Theorems 5.2 and 6.1.

Theorem 7.1 If hypotheses H0, H1 (with q = 2) or hypotheses H0, H′
1 (with q = 2)

hold, then problem (7.1) has at least five nontrivial solutions u0, û ∈ int C+, û −u0 ∈
int C+, v0, v̂ ∈ −int C+, v0 − v̂ ∈ int C+, y0 ∈ C1(�) nodal, y0 ∈ intC1(�)[v0, u0].



78 Page 26 of 27 N.S. Papageorgiou, A. Scapellato

Acknowledgements The authors wish to thank the two anonymous reviewers for their remarks and criti-

cisms which helped them to improve the presentation.

Funding Open access funding provided by Università degli Studi di Catania within the CRUI-CARE

Agreement.

Compliance with ethical standards

Conflict of interest All authors have declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

and indicate if changes were made. The images or other third party material in this article are included

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

material is not included in the article’s Creative Commons licence and your intended use is not permitted

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the

copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Amann, H.: Saddle points and multiple solutions of differential equations. Math. Z. 169, 127–166
(1979)

2. Amster, P.: Multiple solutions for an elliptic system with indefinite Robin boundary conditions. Adv.

Nonlinear Anal. 8(1), 603–614 (2019)
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22. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.: Double-phase problems and a discontinuity property

of the spectrum. Proc. Am. Math. Soc. 147(7), 2899–2910 (2019)
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