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Abstract
We apply the theory of de Branges–Rovnyak spaces to describe kernels of some
Toeplitz operators on the classical Hardy space H2. In particular, we discuss the
kernels of the operators T f̄ / f and TĪ f̄ / f , where f is an outer function in H2 and I
is inner such that I (0) = 0. We also obtain a result on the structure of de Branges–
Rovnyak spaces generated by nonextreme functions.

Keywords Toeplitz operators · de Branges–Rovnyak spaces · Nearly invariant
subspaces · Rigid functions · Nonextreme functions · Kernel functions

Mathematics Subject Classification 47B32 · 46E22 · 30H10

1 Introduction

Let H2 denote the standard Hardy space on the unit disk D. For ϕ ∈ L∞(∂D) the
Toeplitz operator on H2 is given by Tϕ f = P+(ϕ f ), where P+ is the orthogonal
projection of L2(∂D) onto H2. We will denote by M(ϕ) the range of Tϕ equipped
with the range norm, that is, the norm that makes the operator Tϕ a coisometry of
H2 ontoM(ϕ). For a nonconstant function b in the unit ball of H∞ the de Branges–
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Rovnyak space H(b) is the image of H2 under the operator (1 − TbTb̄)
1/2 with the

corresponding range norm. The norm and the inner product in H(b) will be denoted
by ‖ · ‖b and 〈·, ·〉b. The space H(b) is a Hilbert space with the reproducing kernel

kb
w(z) = 1 − b(w)b(z)

1 − wz
(z, w ∈ D).

In the case when b is an inner function the spaceH(b) is the well-known model space
Kb = H2 � bH2.

If the function b fails to be an extreme point of the unit ball in H∞, that is, when
log(1 − |b|) ∈ L1(∂D), we will say simply that b is nonextreme. In this case one can
define an outer function a whose modulus on ∂D equals

(
1 − |b|2)1/2. Then we say

that the functions b and a form a pair (b, a). By the Herglotz representation theorem
there exists a positive measure μ on ∂D such that

1 + b(z)

1 − b(z)
=

∫

∂D

1 + e−iθ z

1 − e−iθ z
dμ(eiθ ) + i Im

1 + b(0)

1 − b(0)
, z ∈ D. (1)

Moreover the function
∣∣∣ a
1−b

∣∣∣
2
is the Radon-Nikodym derivative of the absolutely

continuous component of μ with respect to the normalized Lebesgue measure. If the
measure μ is absolutely continuous the pair (b, a) is called special.

Recall that a function f ∈ H1 is called rigid if and only if no other functions in
H1, except for positive scalar multiples of f have the same argument as f a.e. on ∂D.

If (b, a) is a pair, then M(a) is contained contractively in H(b). If a pair (b, a) is
special and f = a

1−b , then M(a) is dense in H(b) if and only if f 2 is rigid ( [20]).
Spaces H(b) for nonextreme b have been studied in [2,3,5,15,16,22], and [23].

The kernels of Toeplitz operators have been studied since the late 80’s. We mention
that two recent survey articles [1,8] and the book [4] contain a number of results on
this topic.

TheHayashi theorem [12] (see also [21]) states that the kernel of a Toeplitz operator
Tϕ is a subspace of H2 of the form ker Tϕ = f K I , where K I = H2 � I H2 is the
model space corresponding to the inner function I such that I (0) = 0 and f is an
outer function of unit H2 norm that acts as an isometric multiplier from K I onto
f K I . Moreover, f can be expressed as f = a

1−I b0
, where (b0, a) is a special pair and

( a
1−b0

)2 is a rigid function in H1. Then we also have ker T Ī f̄
f

= f K I . In the recent

paper [6] the authors considered the Toeplitz operator Tḡ
g
where g ∈ H∞ is outer.

Among other results, they described all outer functions g such that ker Tḡ
g

= K I . In

Sect. 2 we describe all such functions g for which ker Tḡ
g

= f K I .

If (b, a) is a special pair, f = a
1−b and b = I b0, where I as above, then f K I ⊂

ker T Ī f̄
f
. In the next two sections we study the space ker T Ī f̄

f
� f K I and show that it is

isometrically isomorphic to the orthogonal complement of M(a) in the de Branges–
Rovnyak space H(b0). We also give an example of a function f for which the space
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ker T Ī f̄
f

� f K I is one dimensional. In the last section we discuss the orthogonal

complement ofM(a) inH(b) and get a generalization of results obtained in [15] and
[5] for the case when pairs are rational.

2 The kernel of T ḡ
g

It is known that if g is an outer function in H2, then the kernel of Tḡ
g
is trivial if and

only if g2 is rigid (see e.g. [18]).
The finite dimensional kernels of Toeplitz operators were described by Nakazi [17].

Nakazi’s theorem says that dim ker Tϕ = n if and only if there exists an outer function
f ∈ H2 such that f 2 is rigid and ker Tϕ = { f p : p ∈ Pn−1}, where Pn−1 denotes
the set of all polynomials of degree at most n − 1.

Consider the following example.

Example For α > − 1
2 set g(z) = (1− z)α , z ∈ D. Then the kernel of Tḡ

g
is trivial for

α ∈ (− 1
2 ,

1
2 ] anddimensionof the kernel ofTg

g
isn forα ∈ (n− 1

2 , n+ 1
2 ], n = 1, 2, . . .,

and

ker T (1−z)α
(1−z)α

= (1 − z)α−n Kzn .

In the general case the kernels of Toeplitz operators are characterized by Hayashi’s
theorem. To state this theorem we need some notation. We note that an outer function
f having unit norm in H2 (‖ f ‖2 = 1) can be written as

f = a

1 − b
,

where a is an outer function, b is a function from the unit ball of H∞ such that
|a|2 + |b|2 = 1 a.e. on ∂D. Following Sarason [20, p. 156] we call (b, a) the pair
associated with f . Note also that b is a nonextreme point of the closed unit ball of
H∞ and is given by

1 + b(z)

1 − b(z)
= 1

2π

∫ 2π

0

1 + e−iθ z

1 − e−iθ z
| f (eiθ )|2dθ, z ∈ D. (2)

Let S denote the unilateral shift operator on H2, i.e., S = Tz . A closed subspace M
of H2 is said to be nearly S∗-invariant if for every f ∈ M vanishing at 0, we also have
S∗ f ∈ M . It is known that the kernels of Toeplitz operators are nearly S∗-invariant.

Nearly S∗-invariant spaces are characterized by Hitt’s theorem [14].

Hitt’s Theorem The closed subspace M of H2 is nearly S∗-invariant if and only if
there exists a function f of unit norm and a model space K I = H2 � I H2 such
that M = T f K I , where I is an inner function vanishing at the origin, and T f acts
isometrically on K I .
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It has been proved by D. Sarason [18] that T f acts isometrically on K I if and only if
I divides b (the first function in the pair associated with f ). Consequently, the function
f in Hitt’s theorem can be written as

f = a

1 − I b0
.

The function 1+b0(z)
1−b0(z)

has a positive real part and is the Herglotz integral of a positive
measure on ∂D up to an additive imaginary constant,

1 + b0(z)

1 − b0(z)
=

∫

∂D

1 + e−iθ z

1 − e−iθ z
dμ(eiθ ) + ic. (3)

Clearly b0 is also a nonextreme point of the closed unit ball of H∞ and |a|2+|b0|2 = 1
a.e. on ∂D. We remark that in view of (2) the pair (b, a) associated with an outer
function f ∈ H2 is special, while the pair (b0, a) need not to be special. We also put

f0 = a

1 − b0

and note that f0 ∈ H2 (see, e.g. [4, Theorem 23.1]).
Under the above notations Hayashi’s theorem reads as follows:

Hayashi’s Theorem The nearly S∗-invariant space M = T f K I is the kernel of a
Toeplitz operator if and only if the pair (b0, a) is special and f 20 is a rigid function.

Moreover, it follows from Sarason’s proof of Hayashi’s theorem that if M = T f K I

is the kernel of a Toeplitz operator then it is the kernel of T Ī f̄
f
.

Recently E. Fricain, A. Hartmann and W. T. Ross [6] considered the Toeplitz oper-
ators Tḡ

g
where g ∈ H∞ is outer. If ker Tḡ

g
is non-trivial, then by Hayashi’s theorem

there exist the outer function f and the inner function I , I (0) = 0, such that

ker Tḡ
g

= f K I .

In the above mentioned paper [6] the authors described all outer functions g ∈ H∞
for which

ker Tḡ
g

= K I ,

where I is an inner function not necessarily satisfying I (0) = 0.
We prove the following

Theorem 1 Assume that g ∈ H2 is outer and M = T f K I is the nearly S∗-invariant
space, where I is an inner function such that I (0) = 0, (b0 I , a) is the pair associated
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with the outer function f , (b0, a) is special, and f 20 is rigid. Then ker Tḡ
g

= M if and

only if

g = i
I1 + I2
I1 − I2

(1 + I ) f ,

where I1 and I2 are inner and I1 − I2 is outer.

Recall that the Smirnov class N+ consists of those holomorphic functions inD that
are quotients of functions in H∞ in which the denominators are outer functions.

In the proof of Theorem 1, similarly to [6], we use the following result due to H.
Helson [13].

Helson’s Theorem The functions f ∈ N+ that are real almost everywhere on ∂D can
be written as

f = i
I1 + I2
I1 − I2

,

where I1 and I2 are inner and I1 − I2 is outer.

We also apply a description of kernels in terms of S∗-invariant subspaces K p
I (| f |p)

of weighted Hardy spaces (in the case when p = 2) considered by A. Hartmann and
K. Seip in their paper [10] (see also [7]). For an outer function f in H2 the weighted
Hardy space is defined as follows

H2(| f |2) = {g ∈ N+ : ‖g‖22, f = 1

2π

∫ 2π

0
|g(eit )|2| f (eit )|2dt < ∞}

and, for an inner function I , K 2
I (| f |2) = K I (| f |2) is given by

K I (| f |2) = {g = Iψ ∈ H2(| f |2) : ψ ∈ H2
0 (| f |2)},

where H2
0 (| f |2) = zH2(| f |2).

Then K I (| f |2) is S∗-invariant and f K I (| f |2) = ker T Ī f̄
f
(see [10]).

Proof of Theorem 1. Assume that ker Tḡ
g

= f K I . Then

f K I = ker T Ī f̄
f

= ker Tḡ
g
.

Since f ∈ ker T Ī f̄
f
, the last equalities imply that

g f

g
= I 0h̄,
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where I0 is an inner function such that I0(0) = 0, and h ∈ H2 is outer. This means
that | f (z)| = |h(z)| a.e. on |z| = 1 and consequently h(z) = c f (z), where c is a
unimodular constant. Replacing cI0 by I0, we get

g

g
= I 0

f

f
. (4)

It then follows

f K I = ker Tḡ
g

= ker T I0 f
f

= f K I0(| f |2),

which implies I = I0 up to a unimodular constant. Indeed, these equalities imply that
an analytic function h can be written in the form h = f I0ψ0, whereψ0 ∈ H2

0 (| f |2), if
and only if h = f Iψ , whereψ ∈ H2

0 . Since |ψ0| = |ψ | a.e. on |z| = 1 andψ0 ∈ N+,
we see that also ψ0 ∈ H2

0 . Hence K I = K I0 .
Consequently, equality (4) can be written as

ḡ

g
= f (1 + I )

f (1 + I )
a.e. on ∂D,

which means that the function g
f (1+I ) is real a.e. on ∂D. Since this function is in

the Smirnov class N+, our claim follows from Helson’s theorem. To prove the other
implication it is enough to observe that if

g = i
I1 + I2
I1 − I2

(1 + I ) f ,

then

ḡ

g
= I f̄

f
.


�

3 The complement of fKI in ker T Īf̄
f

It was noticed in [4, Corollary 30.21] that if f is an outer function of the unit norm,
(b, a) is the pair associated with f , and I is an inner function vanishing at the origin
that divides b, then

f K I ⊂ ker T Ī f̄
f

and, according to Hayashi’s theorem, the equality holds if and only if the pair (b0, a)

is special and f 20 is rigid.
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Recall thatM(a) is dense inH(b0) if and only if the pair (b0, a) is special and f 20
is a rigid function.

Theorem 2 Assume that (I b0, a), where I is inner, and I (0) = 0, is the pair associated
with an outer function f . If the pair (b0, a) is not special or the function f 20 is not
rigid, then for a positive integer k,

dim
(
ker T Ī f̄

f
� f K I

) = k

if and only if the codimension of M(a) in the de Branges–Rovnyak space H(b0) is k.

In the proof of this theorem we use some ideas from Sarason’s proof of Hayashi’s
theorem. If a positive measure μ on the unit circle ∂D is as in (1) and H2(μ) is the
closure of the polynomials in L2(μ), then an operator Vb given by

(Vbq)(z) = (1 − b(z))
∫

∂D

q(eiθ )

1 − e−iθ z
dμ(eiθ ) (5)

is an isometry of H2(μ) ontoH(b). Furthermore, if (b, a) is a pair and f = a
1−b , then

the operator T1−bT f̄ is an isometry of H2 into H(b). Its range is all of H(b) if and
only if the pair (b, a) is special ( [21, III-6,7] and [4, Theorem 24.26]). We note that
in the last case dμ(eiθ ) = 1

2π | f (eiθ )|2dθ .

Proof of Theorem 2. Since the pair (b, a) is special, the operator T1−bT f̄ is an isometry

of H2 onto H(b). Moreover, since I divides b, T f acts as an isometry on K I and
T1−bT f̄ ( f K I ) = K I ( [20]). Hence

H(b) = T1−bT f̄ (H2) = T1−bT f̄

(
T I f

f̄
(H2) ⊕ (

T I f
f̄
(H2)

)⊥)

= IM(a)
b ⊕ T1−bT f̄ (ker T Ī f̄

f
)

= IM(a)
b ⊕ T1−bT f̄ ( f K I ) ⊕ T1−bT f̄ (ker T Ī f̄

f
� f K I )

= IM(a)
b ⊕ K I ⊕ T1−bT f̄ (ker T Ī f̄

f
� f K I ),

where T I f
f̄
(H2) denotes the closure of T I f

f̄
(H2) in H2 and IM(a)

b
denotes the closure

of IM(a) inH(b). On the other hand,

H(b) = H(b0 I ) = K I ⊕ IH(b0) = K I ⊕ I (H(b0) � M(a)
b0

) ⊕ IM(a)
b0

.

Since TI : H(b0) → H(I b0) is an isometry ( [20, Proposition 4]), I (M(a))
b0 =

IM(a)
b
. It then follows,

T1−bT f̄ (ker T Ī f̄
f

� f K I ) = I (H(b0) � M(a)
b0

). (6)


�
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We remark that the orthogonal complement ofM(a) inH(b) is discussed in Sect. 5.

4 The example

Let, as in the previous sections, f be an outer function in H2 and let (b, a) be the pair
associated with f . Let b = I b0, where I is an inner function such that I (0) = 0 and
f0 = a

1−b0
. Then f K I ⊂ ker T Ī f̄

f
and equality holds if and only if the pair (b0, a) is

special and f 20 is rigid. Moreover, if the pair (b0, a) is special and f 20 is rigid, then
(b, a) is special and f 2 is rigid but the converse implication fails ( [18, p. 158]).

In [4, vol. 2, pp. 541–542] the authors constructed a function h in ker T Ī f̄
f
which is

not in f K I under the assumption that f 2 is not rigid. Here we consider the function
f such that f 2 is rigid, the pair (b0, a) is special but f 20 is not rigid, and describe the
space ker T Ī f̄

f
� f K I .

Our example is a slight modification of the one given in [19, p. 491], see also [4, vol.
2, p. 494]. The corresponding functions f and f0 are defined by taking a(z) = 1

2 (1+z),
b0(z) = 1

2 z(1 − z), and I (z) = zB(z), where B(z) is a Blaschke product with zero
sequence {rn}∞n=1 lying in (−1, 0) and converging to −1. It has been proved in [19,
pp. 491–492] (see also [4, vol. 2, pp. 494–496] that f 2 is rigid while f 20 is not. Notice
that the pair (b0, a) is rational and the point −1 is the only zero of the function a. It
then follows from [15, Theorem 4.1] (see also [5]) thatM(a) is a closed subspace of
H(b0) and

H(b0) = M(a) ⊕ Ckb0−1,

where

kb0−1(z) = 1 − b0(−1)b0(z)

1 + z
= 2 − z

2
.

Thus we see that

H(b0) � M(a) = Ckb0−1.

Moreover (6) implies that

T1−bT f̄ (ker T Ī f̄
f

� f K I ) = CI kb0−1.

Our aim is to prove that
ker T Ī f̄

f
� f K I = Cg, (7)

where the function g ∈ H2 is given by g = f k−1(I + 1), with k−1(z) = (1 + z)−1,
z ∈ D.
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For λ in D let kλ denote the kernel function in H2 for the functional of evaluation
at λ, kλ(z) = (1 − λ̄z)−1. In the proof of (7) we will apply the following

Lemma [9, Lemma 2]

(i) P+
(| f |2 I kλ

) = I kλ

1 − b
+ b0(λ)kλ

1 − b(λ)
.

(ii) P+
(| f |2kλ

) = kλ

1 − b
+ b(λ)kλ

1 − b(λ)
.

Since I (rn) = 0, (i) and (ii) in the Lemma yield

T1−bT f̄ ( f I krn ) = I krn (1 − b0(rn)b0) + b0(rn)krn ,

T1−bT f̄ ( f krn ) = krn .

Hence
T1−bT f̄ ( f krn (I − b0(rn))) = I krn (1 − b0(rn)b0) = I kb0

rn
. (8)

It follows from [4, Theorem 21.1] that

‖kb0
rn

− kb0−1‖b0 −→
n→∞ 0.

Next, since TI : H(b0) → H(I b0) = H(b) is an isometry and T1−bT f̄ is an

isometry of H2 ontoH(b), we see that { f krn (I − b0(rn))}n∈N is a bounded sequence
in H2. So it contains a subsequence that converges weakly, say, to a function g ∈ H2.
Without loss of generality, we may assume that the sequence { f krn (I −b0(rn))} itself
converges weakly to g. Then for any point z ∈ D,

g(z) = 〈g, kz〉 = lim
n→∞〈 f krn (I − b0(rn)), kz〉

= lim
n→∞

f (z)(I (z) − b0(rn))

1 − rnz
= f (z)(I (z) + 1)

1 + z
.

Now observe that since

‖ f krn (I − b0(rn))‖2 = ‖kb0
rn

‖b0 and ‖ f k−1(I + 1)‖2 = ‖kb0−1‖b0 ,

f krn (I − b0(rn)) → f k−1(I + 1) in H2 strongly. Finally, passing to the limit in (8)
gives

T1−bT f̄ ( f k−1(I + 1)) = I k−1(1 + b0) = I kb0−1,

which proves (7).

Remark One can check directly that the function g = f k−1(I +1) is in ker T Ī f̄
f
� f K I .
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Indeed, we have

T Ī f̄
f

( f k−1(I + 1)) = P+
(

f̄ Ī
I + 1

1 + z

)

= P+
(

f̄
z̄( Ī + 1)

z̄ + 1

)
= P+

(
z̄ f̄ k−1( Ī + 1)

) = 0.

To see that the functions ( f krn I − b0(rn) f krn ) are orthogonal to f K I note that a
function h ∈ H2 is in K I if and only if h = h − I P+( Ī h). So, we have to check that
for any h ∈ H2,

〈 f krn I − b0(rn) f krn , f (h − I P+( Ī h))〉 = 0.

Since the functions {kλ, λ ∈ D} are dense in H2, it is enough to show that for any
λ ∈ D,

〈 f krn I − b0(rn) f krn , f (kλ − I P+( Ī kλ))〉
= 〈 f krn I − b0(rn) f krn , f (kλ − I (λ)I kλ)〉 = 0.

Finally, the last equality follows from

〈 f krn I , f kλ〉 = I (λ)krn (λ)

1 − b(λ)
+ b0(rn)krn (λ),

〈 f krn I ,−I (λ) f I kλ〉 = − I (λ)krn (λ)

1 − b(λ)
,

〈−b0(rn) f krn , f kλ〉 = −b0(rn)krn (λ)

1 − b(λ)
,

and

〈−b0(rn) f krn ,−I (λ) f I kλ〉 = b0(rn)I (λ)
b0(λ)krn (λ)

1 − b(λ)
= b0(rn)b(λ)krn (λ)

1 − b(λ)
.

5 A remark on orthogonal complement ofM(a) inH(b)

In this section we continue to assume that b is nonextreme. Recall that if the pair (b, a)

is special and f 2 =
(

a
1−b

)2
is not rigid or the pair (b, a) is not special, then the space

M(a) is not dense in H(b) ( [20]). In such a case let H0(b) denote the orthogonal
complement ofM(a) inH(b). Let Y be the restriction of the shift operator S toH(b)

and let Y0 be the compression of Y to the subspace H0(b). Then the spectrum of Y0
is contained in the unit circle. Moreover, if z0 ∈ ∂D and k is a positive integer, then
ker(Y ∗ − z̄0)k , which actually equals ker(Y ∗

0 − z̄0)k , lies inH0(b). The necessary and
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sufficient conditions forH0(b) to have finite dimension are given in Chapter X of [21]
(see also [4, Theorem 29.11]). In particular, the dimension ofH0(b) is N if and only if
the operator Y0 has distinct eigenvalues z1, z2,…, zs with their algebraic multiplicities
n1, …, ns , N = n1 + n2 + · · ·+ ns . Then z̄1, z̄2, …, z̄s are the eigenvalues of Y ∗

0 with
the same multiplicities, i.e., dim ker(Y0 − z j )

n j = dim ker(Y ∗
0 − z̄ j )

n j and H0(b) is
the direct sum of the subspaces ker(Y ∗

0 − z̄ j )
n j , j = 1, 2, . . . , s.

On the other hand, if z0 is a point of ∂D and b has an angular derivative in the sense
of Carathéodory at z0, then the function given by

kb
z0(z) = 1 − b(z0)b(z)

1 − z̄0z
, (9)

where b(z0) is the nontangential limit of b at z0, is in H(b) (see [21, VI-4,5], [4,
Theorem 21.1]). In this section we actually show that kb

z0 is inH0(b).
Here we consider the case when the eigenspaces corresponding to eigenvalues z1,

z2, …, zs are one dimensional and show that then the space H0(b) is spanned by the
functions kb

z1 , kb
z2 , …, kb

zs
.

For |λ| = 1 let μλ denote the measure for which equality in (1) holds when b is
replaced by λ̄b. If we put Fλ(z) = a

1−λb
, then the Radon-Nikodym derivative of the

absolutely continuous component of μλ is |Fλ|2. Note also that H(b) = H(λ̄b).
In the proof of our main result in this section we use the following theorem proved

in [21, X-13].

Sarason’s Theorem Let z0 be a point of ∂D and λ a point of ∂D such that the measure
μλ is absolutely continuous. The following conditions are equivalent.

(i) z̄0 is an eigenvalue of Y ∗.

(ii) The function
Fλ(z)

1 − z̄0z
is in H2.

(iii) The function b has an angular derivative in the sense of Carathéodory at z0.

In viewof remark in Sect. 3 under the assumption of Sarason’s Theorem the operator
T1−λ̄bTFλ

is an isometry of H2 ontoH(b). Let Aλ be an operator on H2 that intertwines
T1−λ̄bTFλ

with the operator Y ∗, i.e.,

T1−λ̄bTFλ
Aλ = Y ∗T1−λ̄bTFλ

. (10)

The operator Aλ is given by

Aλ = S∗ − Fλ(0)
−1(S∗Fλ ⊗ 1).

It follows from the proof of Sarason’s theorem that if one of conditions (i)–(iii)
holds true, then the space ker(Aλ − z̄0) is one dimensional and is spanned by the
function

g(z) = Fλ(z)

1 − z̄0z
= Fλ(z)kz0(z). (11)

We also note that condition (iii) in Sarason’s Theorem is equivalent to the fact that the
function kb

z0 given by (9) is inH(b).
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Theorem 3 If the assumptions of Sarason’s theorem are satisfied and z̄0 is an eigen-
value of Y ∗

0 , then ker(Y ∗
0 − z̄0) is spanned by kb

z0 .

Proof According to the remark at the beginning of this section ker(Y ∗
0 − z̄0) is equal

to ker(Y ∗ − z̄0). Since the operator T1−λ̄bTFλ
is an isometry of H2 onto H(b), (11)

and (10) imply that the space ker(Y ∗ − z̄0) is spanned by

h = T1−λbTFλ
g = T1−λbTFλ

(Fλkz0).

We will show that h = Ckb
z0 . To this end we use the operator Vb given by (5). We

know that for w ∈ D,

Vb((1 − b(w))kw) = kb
w

(see [21, III-7], [4, Theorem 20.5]). Since H(b) = H(λ̄b), we have

Vλ̄b((1 − λb(w))kw)(z) = (1 − λ̄b(z))(1 − λb(w))

∫

∂D

|Fλ(eiθ )|2dθ

(1 − w̄eiθ )(1 − ze−iθ )

= (1 − λ̄b(z))TFλ
((1 − λb(w))Fλkw)(z) = kb

w(z).

Let {zn} be a sequence in D converging nontangentially to z0. Then

T1−λbTFλ
((1 − λb(zn))Fλkzn ) = kb

zn
.

Observe also that since μλ is absolutely continuous, b(z0) �= λ ( [21, VI-7, VI-9]).
Moreover, kb

z tends to kb
z0 in norm as z tends to z0 nontagentially (see [21, VI-4,5], [4,

Theorem 21.1]). It then follows that the sequence {(1 − λb(zn))Fλkzn } converges in
H2, which in turn implies compact and pointwise convergence. Hence passing to the
limit in the last equality yields

T1−λbTFλ
(Fλkz0) = Ckb

z0 ,

where C = (1 − λb(z0))−1. 
�

Our last theorem is an immediate consequence of Theorem 3.

Theorem 4 If z1, z2, …, zs are the only eigenvalues of Y0 and each of them is of
multiplicity one, then H0(b) is spanned by the functions kb

z1 , kb
z2 , …, kb

zs
.

Finally, we remark that this theorem generalizes results obtained in [5] and in [15]
for the case when pairs (b, a) are rational.
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