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Abstract
We consider a parametric nonlinear Robin problem driven by the negative p-Laplacian
plus an indefinite potential. The equation can be thought as a perturbation of the usual
eigenvalue problem. We consider the case where the perturbation f (z, ·) is (p − 1)-
sublinear and then the case where it is (p − 1)-superlinear but without satisfying the
Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multi-
plicity of positive solutions for certain admissible range for the parameter λ ∈ Rwhich
we specify exactly in terms of principal eigenvalue of the differential operator.

Keywords Positive solutions · Sublinear and superlinear perturbation · Nonlinear
Picone’s identity · Nonlinear maximum principle · Nonlinear regularity · Indefinite
potential · Minimal positive solution · Uniqueness
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1 Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω . In this paper we study

the following nonlinear parametric Robin problem

⎧
⎨

⎩

−Δpu(z) + ξ(z)|u(z)|p−2u(z) = λ|u(z)|p−2u(z) + f (z, u(z)) in Ω,

∂u

∂n p
+ β(z)|u|p−2u = 0 on ∂Ω, u ≥ 0, λ ∈ R.

(Pλ)

In this problem Δp denotes the p-Laplace differential operator defined by

Δpu = div (|∇u|p−2∇u) for all u ∈ W 1,p(Ω) (1 < p < +∞).
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Also ξ(·) ∈ L∞(Ω) is an indefinite (that is, sign changing) potential function,
λ ∈ R is a parameter and f (z, x) is a Carathéodory perturbation function (that is, for
all x ∈ R, z → f (z, x) is measurable and for a.a. z ∈ Ω , x → f (z, x) is continuous).

In the boundary condition
∂u

∂n p
denotes the generalized normal derivative defined by

∂u

∂n p
= |∇u|p−2(∇u, n)RN = |∇u|p−2 ∂u

∂n
for all u ∈ W 1,p(Ω),

with n(·) being the outward unit normal on ∂Ω . This kind of generalized normal
derivative is dictated by the nonlinear Green’s identity (see, for example, Gasiński–
Papageorgiou [8] (p. 211)). The boundary weight term β ∈ C0,α(∂Ω) (0 < α < 1)
and β(z) ≥ 0 for all z ∈ ∂Ω .

Problem (Pλ) can be viewed as a perturbation of the usual eigenvalue problem for
the Robin p-Laplacian plus an indefinite potential. We look for positive solutions and
we consider two distinct cases depending on the growth of the perturbation f (z, ·)
near +∞:

• f (z, ·) is (p − 1)-sublinear.
• f (z, ·) is (p − 1)-superlinear.

Let λ̂1 ∈ R be the principal eigenvalue of the differential operator u → −Δpu +
ξ(z)|u|p−2u with Robin boundary condition. In the first case ((p−1)-sublinear pertur-
bation), we show that for all λ ≥ λ̂1, problem (Pλ) has no positive solution, while for
λ < λ̂1, problem (Pλ) has at least one positive solution. Moreover, this positive solu-

tion is unique, if we impose amonotonicity condition on the quotient x → f (z, x)

x p−1 for

x > 0. In the second case ((p−1)-superlinear perturbation), the situation changes and
uniqueness of the positive solution fails. In fact the problem exhibits a kind of bifur-
cation phenomenon. Namely, for λ ≥ λ̂1 problem (Pλ) has no positive solution, while
for λ < λ̂1 problem (Pλ) has at least two positive solutions. Finally for both situations,
we establish the existence of minimal positive solutions. Our work here extends to the
p-Laplacian that of Papageorgiou–Rǎdulescu–Repovš [20]. Eigenvalue problems for
the p-Laplacian plus an indefinite potential were studied by Papageorgiou–Rǎdulescu
[18] (semilinear problems (that is, p = 2) with Robin boundary condition) and by
Mugnai–Papageorgiou [16] (nonlinear problems with Neumann boundary condition
(that is, β ≡ 0)). Both works deal with nonparametric problems and prove existence
and multiplicity results under resonance conditions. We also mention the works of
Hu–Papageorgiou [10–12]. In [11] the authors treat superdiffusive logistic equation
with Robin boundary condition, while in [10,12], they deal with equations driven by
a nonhomogeneous differential operator.

2 Auxiliary results

In this section we present some auxiliary results and notions which we will need in
the sequel.
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First we deal with the following eigenvalue problem:

⎧
⎨

⎩

−Δpu(z) + ξ(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z) in Ω,
∂u

∂n p
+ β(z)|u|p−2u = 0 on ∂Ω.

(1)

Our hypotheses on the functions ξ(·) and β(·) are the following:
H(ξ): ξ ∈ L∞(Ω).

H(β)1: β ∈ C0,α(∂Ω) with α ∈ (0, 1) and β(z) ≥ 0 for all z ∈ ∂Ω .

In addition to the Sobolev space W 1,p(Ω), we will also use the Banach space
C1(Ω) which is an ordered Banach space with positive cone C+ = {u ∈ C1(Ω) :
u(z) ≥ 0 for all z ∈ Ω}. This cone has a nonempty interior given by

D+ = {
u ∈ C+ : u(z) > 0 for all z ∈ Ω

}
.

Also on ∂Ω we consider the (N−1)-dimensionalHausdorff (surface)measureσ(·).
With this measure on ∂Ω , we can define the Lebesgue spaces Lτ (∂Ω) 1 ≤ τ ≤ +∞.
We know that there exists a unique continuous linear map γ0 : W 1,p(Ω) → L p(∂Ω)

known as the “trace map” s.t. γ0(u) = u|∂Ω for all u ∈ W 1,p(Ω) ∩ C(Ω). So, we
understand the trace map as representing the “boundary values” of a Sobolev function

u ∈ W 1,p(Ω). We know that γ0 is compact into Lτ (∂Ω) for all τ ∈
[

1,
(N − 1)p

N − p

)

when p < N and into Lτ (∂Ω) for all τ ∈ [1,+∞) when p ≥ N . Moreover, we have

im γ0 = W
1
p′ ,p(∂Ω)

(
1

p
+ 1

p′ = 1

)

and ker γ0 = W 1,p
0 (Ω).

In the sequel for the sake of notational simplicity we drop the use of the trace map
γ0. It is understood that all restrictions of Sobolev functions on ∂Ω are taken in the
sense of traces.

In what follows by ϑ : W 1,p(Ω) → R we denote the C1-functional defined by

ϑ(u) = ‖∇u‖p
p +

∫

Ω

ξ(z)|u|pdz +
∫

∂Ω

β(z)|u|pdσ for all u ∈ W 1,p(Ω).

From Fragnelli–Mugnai–Papageorgiou [7], we have the following proposition
concerning problem (1) (see also Mugnai–Papageorgiou [16] and Papageorgiou–
Rǎdulescu [18] where special cases of (1) are investigated).

Proposition 1 If hypotheses H(ξ), H(β)1 hold, then problem (1) admits a smallest
eigenvalue λ̂1 ∈ R s.t.

•

λ̂1 = inf

[
ϑ(u)

‖u‖p
p

: u ∈ W 1,p(Ω), u = 0

]

. (2)
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• λ̂1 is isolated and simple.
• The infimum in (2) is realized on the one-dimensional eigenspace of λ̂1; the
elements of this eigenspace do not change sign and if û1 denotes the positive,
L p-normalized (that is, ‖û1‖p = 1) eigenfunction, then û1 ∈ D+.

– If λ̂ > λ̂1 is another eigenvalue and û ∈ W 1,p(Ω) a corresponding eigenfunc-
tion, then û ∈ C1(Ω) is nodal (that is, sign changing).

As a consequence of these properties, we have the following useful lemma.

Lemma 1 If hypotheses H(ξ), H(β)1 hold, η ∈ L∞(Ω), η(z) ≤ λ̂1 for a.a. z ∈ Ω

and the inequality is strict on a set of positive measure, then there exists ĉ > 0 s.t.

ĉ‖u‖p ≤ ϑ(u) −
∫

Ω

η(z)|u|pdz for all u ∈ W 1,p(Ω).

Proof Let ζ : W 1,p(Ω) → R be the C1-functional defined by

ζ(u) = ϑ(u) −
∫

Ω

η(z)|u|pdz for all u ∈ W 1,p(Ω).

From (2) we have ζ ≥ 0. Suppose that the claim of the lemma is not true. Then we
can find {un}n≥1 ⊆ W 1,p(Ω) s.t.

ζ(un) ↓ 0 as n → +∞. (3)

The p-homogeneity of ζ(·) implies that we may assume that ‖un‖p = 1 for all n ∈ N.
Then clearly {un}n≥1 ⊆ W 1,p(Ω) is bounded (see hypotheses H(ξ), H(β)1) and so
we may assume that

un
w−→ u in W 1,p(Ω) and un → u in L p(Ω) and in L p(∂Ω), ‖u‖p = 1. (4)

From (3) and (4), we obtain

ϑ(u) ≤
∫

Ω

η(z)|u|pdz ≤ λ̂1‖u‖p
p = λ̂1,

⇒ ϑ(u) = λ̂1 (see (2)),

⇒ u = μû1 with μ = 0 (see Proposition 1). (5)

To fix things we assume that μ > 0 (the reasoning is the same if μ < 0). Then
from (5) and since u = μû1 ∈ D+, we have

ϑ(u) < λ̂1

wich contradicts (2). ��
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Let A : W 1,p(Ω) → W 1,p(Ω)∗ be the nonlinear map defined by

〈A(u), h〉 =
∫

Ω

|∇u|p−2(∇u,∇h)RN dz for all u, h ∈ W 1,p(Ω).

FromMotreanu–Motreanu–Papageorgiou [14] (p. 40), we have the following result
concerning this map.

Proposition 2 The map A(·) is bounded (that is, maps bounded sets to bounded sets),
monotone, continuous (hence maximal monotone too) and of type (S)+, that is, if
un

w−→ u in W 1,p(Ω) and lim supn→+∞〈A(un), un − u〉 ≤ 0, then un → u in
W 1,p(Ω).

Recall that if X is a Banach space and ϕ ∈ C1(X ,R), then we say that ϕ satisfies the
Cerami condition (the C-condition for short), if the following is true:

“Every sequence {un}n≥1 ⊆ X s.t. {ϕ(un)}n≥1 ⊆ R is bounded and (1 +
‖un‖)ϕ′(un) → 0 in X∗ as n → +∞, admits a strongly convergent subsequence”.

Let f0 : Ω × R → R be a Carathéodory function s.t.

| f0(z, x)| ≤ a(z)(1 + |x |p∗−1) for a.a. z ∈ Ω, all x ∈ R,

with a ∈ L∞(Ω)+ and p∗ =
{

Np
N−p if p < N

+∞ if N ≤ p
(the critical Sobolev exponent). Let

F0(z, x) = ∫ x
0 f0(z, s)ds and consider theC1-functional ϕ0 : W 1,p(Ω) → R defined

by

ϕ0(u) = 1

p
ϑ(u) −

∫

Ω

F0(z, u)dz for all u ∈ W 1,p(Ω).

From Papageorgiou–Rǎdulescu [17], we have the following result relating local min-
imizers of ϕ0 and which is an outgrowth of the nonlinear regularity theory. The first
such result was proved by Brezis-Nirenberg [4] for p = 2 and the space H1

0 (Ω).

Proposition 3 If u0 ∈ W 1,p(Ω) is a local C1(Ω)-minimizer of ϕ0, that is, there exists
δ1 > 0 s.t.

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω), ‖h‖C1(Ω) ≤ δ1,

then u0 ∈ C1,τ (Ω) with τ ∈ (0, 1) and it is also a local W 1,p(Ω)-minimizer of ϕ0,
that is, there exists δ2 > 0 s.t.

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ W 1,p(Ω), ‖h‖ ≤ δ2.

To make good use of this result, we need a strong comparison principle. In this
direction we have the following proposition which is a special case of a more general
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result due to Fragnelli–Mugnai–Papageorgiou [6]. Given h1, h2 ∈ L∞(Ω), we say
that h1 ≺ h2 if and only if for every K ⊆ Ω compact, there exists ε = ε(K ) > 0 s.t.

h1(z) + ε ≤ h2(z) for a.a. z ∈ K .

Note that if h1, h2 ∈ C(Ω) and h1(z) < h2(z) for all z ∈ Ω , then h1 ≺ h2.

Proposition 4 If ξ, h1, h2 ∈ L∞(Ω), h1 ≺ h2, u ∈ C1(Ω)\{0}, v ∈ D+ and they
satisfy

− Δpu(z) + ξ(z)|u(z)|p−2u(z) = h1(z) for a.a. z ∈ Ω,

− Δpv(z) + ξ(z)v(z)p−1 = h2(z) for a.a. z ∈ Ω,
∂v

∂n
< 0 on ∂Ω,

then (v − u)(z) > 0, for all z ∈ Ω and
∂(v − u)

∂n

∣
∣
∣
D0

< 0 where D0 = {z ∈ ∂Ω :
v(z) = u(z)}.
Remark 1 If in C1(Ω) we introduce the order cone

Ĉ+ =
{

y ∈ C1(Ω) : y(z) ≥ 0 for all z ∈ Ω,
∂ y

∂n
≤ 0 on D0

}

then the above proposition says that v − u ∈ int Ĉ+. If D0 = ∅, then Ĉ+ = C+.

For problem (Pλ), we introduce the following two sets:

L = {λ ∈ R : problem (Pλ) admits a positive solution},
S(λ) = {set of positive solutions for problem (Pλ)}.

For the set S(λ) we have the following general result.

Proposition 5 If hypotheses H(ξ), H(β)1 hold and f : Ω×R → R is aCarathéodory
function s.t. for a.a. z ∈ Ω , f (z, 0) = 0, f (z, x) ≥ 0 for all x > 0, f (z, x) = 0 for all
x < 0 and f (z, x) ≤ a(z)(1 + x p∗−1) for a.a. z ∈ Ω , all x ≥ 0, with a ∈ L∞(Ω)+,
then S(λ) ⊆ D+ (possibly empty).

Proof Suppose that u ∈ S(λ). Then

⎧
⎨

⎩

−Δpu(z) + ξ(z)u(z)p−1 = λu(z)p−1 + f (z, u(z)) for a.a. z ∈ Ω,
∂u

∂n p
+ β(z)u p−1 = 0 on ∂Ω

(6)

(see Papageorgiou–Rǎdulescu [17]). From (6) and Papageorgiou–Rǎdulescu [19] we
have u ∈ L∞(Ω). Then Theorem 2 of Lieberman [13] implies that u ∈ C+\{0}. From
(6) and since f ≥ 0, we have

Δpu(z) ≤ (‖ξ‖∞ + |λ|)u(z)p−1 for a.a. z ∈ Ω,
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⇒ u ∈ D+ (by the nonlinear strong maximum principle (see [8] (p. 738)).

��
Proposition 6 If hypotheses H(ξ), H(β)1 hold, f : Ω × R → R is a Carathéodory
function s.t. for a.a. z ∈ Ω f (z, 0) = 0, f (z, x) > 0 for all x > 0, f (z, x) ≤
a(z)(1 + x p∗−1) for a.a. z ∈ Ω , all x ≥ 0, with a ∈ L∞(Ω)+ and λ ≥ λ̂1, then
S(λ) = ∅.
Proof Arguing by contradiction, suppose that S(λ) = ∅ and let u ∈ S(λ). From
Proposition 5 we know that u ∈ D+. Also, let û1 ∈ D+ be the principal eigenfunction
from Proposition 5. Consider the function

R(̂u1, u)(z) = |∇û1(z)|p − |∇u(z)|p−2

(

∇u(z),∇
(

û p
1

u p−1

)

(z)

)

RN

.

From the nonlinear Picone’s identity of Allegretto-Huang [2] (see also Motreanu–
Motreanu–Papageorgiou [14] (p. 255)), we have

0 ≤ R(̂u1, u)(z) for a.a. z ∈ Ω.

Then we have

0 ≤
∫

Ω

R(̂u1, u)dz

= ‖∇û1‖p
p −

∫

Ω

|∇u|p−2

(

∇u,∇
(

û p
1

u p−1

))

RN

dz

= ‖∇û1‖p
p −

∫

Ω

(−Δpu)
û p
1

u p−1 dz +
∫

∂Ω

β(z)̂u p
1 dσ

(by the nonlinear Green’s identity, see Gasiński–Papageorgiou [8] (p. 211))

= ‖∇û1‖p
p −

∫

Ω

(λ − ξ(z))̂u p
1 dz −

∫

Ω

f (z, u)
û p
1

u p−1 dz +
∫

∂Ω

β(z)̂u p
1 dσ

< ϑ(̂u1) − λ (since f (z, u(z))
û p
1

u p−1 (z) > 0 for a.a. z ∈ Ω and ‖û1‖p = 1)

= λ̂1 − λ ≤ 0,

a contradiction. Therefore S(λ) = ∅ for all λ ≥ λ̂1. ��

3 (p− 1)-sublinear perturbation

In this section, we deal with the case of a (p − 1)-sublinear perturbation f (z, ·).
H1: f : Ω × R → R is a Carathéodory function s.t. for a.a. z ∈ Ω , f (z, 0) = 0,
f (z, x) > 0 for all x > 0 and
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(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ s.t. f (z, x) ≤ aρ(z) for a.a. z ∈ Ω ,
all x ∈ [0, ρ];

(ii) limx→+∞
f (z, x)

x p−1 = 0 uniformly for a.a. z ∈ Ω;

(iii) there exist δ > 0, q ∈ (1, p) and c1 > 0 s.t.

c1x
q−1 ≤ f (z, x) for a.a. z ∈ Ω, all x ∈ [0, δ].

Remark 2 Since we are looking for positive solutions and the above hypotheses con-
cern the positive semiaxis R+ = [0,+∞), without any loss of generality we may
assume that f (z, x) = 0 for a.a. z ∈ Ω , all x < 0. Hypothesis H1(ii) says that for
a.a. z ∈ Ω the perturbation f (z, ·) is (p − 1)-sublinear near +∞. Finally hypothesis
H1(iii) implies the presence of a concave term near 0+.

Example 1 The following functions satisfy hypotheses H1. For the sake of simplicity
we drop the z-dependence.

f1(x) = xq−1 for all x ≥ 0 with 1 < q < p,

f2(x) =
{
xq−1 − xτ−1 if x ∈ [0, 1],
ln x p−1 if 1 < x,

with 1 < q < p, 1 < q < τ.

Proposition 7 If hypotheses H(ξ), H(β)1, H1 hold and λ < λ̂1, then S(λ) = ∅ and
so L = (−∞, λ̂1).

Proof Let η > ‖ξ‖∞ and consider the following Carathéodory function

gλ(z, x) =
{
0 if x ≤ 0,

(λ + η)x p−1 + f (z, x) if 0 < x .
(7)

We setGλ(z, x) = ∫ x
0 gλ(z, s)ds and consider theC1-functional ϕλ : W 1,p(Ω) →

R defined by

ϕλ(u) = 1

p
ϑ(u) + η

p
‖u‖p

p −
∫

Ω

Gλ(z, u)dz for all u ∈ W 1,p(Ω).

Hypotheses H1(i), (ii) imply that given ε > 0, we can find c2 = c2(ε) > 0 s.t.

F(z, x) ≤ ε

p
x p + c2 for a.a. z ∈ Ω, all x ≥ 0. (8)

Then for all u ∈ W 1,p(Ω) we have

ϕλ(u) ≥ 1

p
ϑ(u) + η

p
‖u−‖p

p − λ + ε

p
‖u+‖p

p − c2|Ω|N (see (7), (8))

≥ 1

p
ϑ(u) − λ + ε

p
‖u‖p

p − c2|Ω|N . (9)
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Here by | · |N we denote the Lebesgue measure on R
N . Choosing ε ∈ (0, λ̂1 − λ)

(recall that λ < λ̂1), from (9) and Lemma 1, we have

ϕλ(u) ≥ c3‖u‖p − c2|Ω|N for some c3 > 0, all u ∈ W 1,p(Ω),

⇒ ϕλ(·) is coercive.

Using the Sobolev embedding theorem and the compactness of the trace operator,
we see that

ϕλ(·) is sequentially weakly lower semicontinuous.

Then invoking the Weierstrass-Tonelli theorem, we can find uλ ∈ W 1,p(Ω) s.t.

ϕλ(uλ) = inf
[
ϕλ(u) : u ∈ W 1,p(Ω)

]
. (10)

Let t ∈ (0, 1) be small s.t.

t û1(z) ∈ (0, δ] for all z ∈ Ω (recall û1 ∈ D+).

Here δ > 0 is as in hypothesis H1(iii). Then we have

ϕλ(t û1) ≤ t p

p
ϑ(̂u1) − t p

p
λ − tq

q
c1‖û1‖qq (see (7) and hypothesis H1(iii))

= t p

p
[̂λ1 − λ] − tq

q
c1‖û1‖qq (see Proposition 1 and recall that ‖û1‖p = 1)

= t p

p
c4 − tq

q
c5 with c4 = λ̂1 − λ > 0, c5 = c1‖û1‖qq > 0.

Since t ∈ (0, 1) and q < p, by choosing t ∈ (0, 1) even smaller if necessary, we
have

ϕλ(t û1) < 0,

⇒ ϕλ(uλ) < 0 = ϕλ(0) (see (10)),

⇒ uλ = 0.

From (10), we have

ϕ′
λ(uλ) = 0,

⇒ 〈A(uλ), h〉 +
∫

Ω

(ξ(z) + η)|uλ|p−2uλhdz +
∫

∂Ω

β(z)|uλ|p−2uλhdσ

=
∫

Ω

[(λ + η)(u+
λ )p−1 + f (z, u+

λ )]hdz for all h ∈ W 1,p(Ω). (11)
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In (11) we choose h = −u−
λ ∈ W 1,p(Ω). Then

ϑ(u−
λ ) + η‖u−

λ ‖p
p = 0,

⇒ c6‖u−
λ ‖p ≤ 0 for some c6 > 0

(recall that η > ‖ξ‖∞ and see hypothesis H(β)1)

⇒ uλ ≥ 0, uλ = 0.

Then equation (11) becomes

〈A(uλ), h〉 +
∫

Ω

ξ(z)u p−1
λ hdz +

∫

∂Ω

β(z)u p−1
λ hdσ

=
∫

Ω

[λu p−1
λ + f (z, uλ)]hdz for all h ∈ W 1,p(Ω),

⇒ −Δpuλ(z) + ξ(z)uλ(z)
p−1 = λuλ(z)

p−1 + f (z, uλ(z)) for a.a. z ∈ Ω,

∂uλ

∂n p
+ β(z)u p−1

λ = 0 on ∂Ω,

⇒ uλ ∈ S(λ) ⊆ D+ (see Proposition 5 and so L = (−∞, λ̂1).

��

In fact we can show that problem (Pλ) for λ < λ̂1 has a smallest positive solution.
Fix λ < λ̂1 and r ∈ (p, p∗). Hypotheses H1(i), (ii), (iii) imply that we can find

c7(λ) > 0 with λ → c7(λ) bounded on bounded subsets of L = (−∞, λ̂1) s.t.

λx p−1 + f (z, x) ≥ c1x
q−1 − c7(λ)xr−1 for a.a. z ∈ Ω, all x ≥ 0. (12)

This unilateral growth estimate for the reaction term of problem (Pλ) leads to the
following auxiliary nonlinear Robin problem:

⎧
⎨

⎩

−Δpu(z) + ξ(z)u(z)p−1 = c1u(z)q−1 − c7(λ)u(z)r−1 in Ω,
∂u

∂n p
+ β(z)u p−1 = 0 on ∂Ω, u ≥ 0.

(Auλ)

For this problem we have the following existence and uniqueness result.

Proposition 8 If hypotheses H(ξ), H(β)1 hold, then for every λ ∈ R problem (Auλ)
admits a unique positive solution uλ∗ ∈ D+.

Proof First we show the existence of a positive solution for problem (Auλ). To this
end, we consider the C1-functional ψλ : W 1,p(Ω) → R defined by
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ψλ(u) = 1

p
ϑ(u) + η

p
‖u−‖p

p − c1
q

‖u+‖qq + c7(λ)

r
‖u+‖rr for all u ∈ W 1,p(Ω)

≥ 1

p

[
ϑ(u−) + η‖u−‖p

p
] + 1

p
ϑ(u+) + c7(λ)

r
‖u+‖rr − c1

q
‖u+‖qq . (13)

We have

1

p
ϑ(u+) + c7(λ)

r
‖u+‖rr − c1

q
‖u+‖qq

≥ 1

p
‖∇u+‖p

p + c8(λ)‖u+‖rp − 1

p
‖ξ‖∞‖u+‖p

p − c9‖u+‖qp (for some c8(λ), c9 > 0)

= 1

p
‖∇u+‖p

p +
[

c8(λ)‖u+‖r−p
p − 1

p
‖ξ‖∞ − c9

‖u+‖p−q
p

]

‖u+‖p
p. (14)

Using (14) in (13) and recalling thatq < p < r ,we infer thatψλ(·) is coercive.Also,
it is sequentially weakly lower semicontinuous (use the Sobolev embedding theorem
and the compactness of the trace map). So, by the Weierstrass-Tonelli theorem, we
can find uλ∗ ∈ W 1,p(Ω) s.t.

ψλ(u
λ∗) = inf

[
ψλ(u) : u ∈ W 1,p(Ω)

]
. (15)

Since q < p < r , as before (see the proof of Proposition 7), we can show that

ψλ(u
λ∗) < 0,

⇒ uλ∗ = 0.

From (15) we have

ψ ′
λ(u

λ∗) = 0,

⇒ 〈A(uλ∗), h〉 +
∫

Ω

ξ(z)|uλ∗|p−2uλ∗hdz +
∫

∂Ω

β(z)|uλ∗|p−2uλ∗hdσ

− η

∫

Ω

(uλ−
∗ )p−1hdz

= c1

∫

Ω

(uλ+
∗ )q−1hdz − c7(λ)

∫

Ω

(uλ+
∗ )r−1hdz for all h ∈ W 1,p(Ω). (16)

In (16) we choose h = −uλ−
∗ ∈ W 1,p(Ω). Then

ϑ(uλ−
∗ ) + η‖uλ−

∗ ‖p
p = 0,

⇒ c10‖uλ−
∗ ‖p ≤ 0 for some c10 > 0 (recall that η > ‖ξ‖∞),

⇒ uλ∗ ≥ 0, uλ∗ = 0.
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Therefore Eq. (16) becomes

〈A(uλ∗), h〉 +
∫

Ω

ξ(z)(uλ∗)p−1hdz +
∫

∂Ω

β(z)(uλ∗)p−1hdσ

= c1

∫

Ω

(uλ∗)q−1hdz − c7(λ)

∫

Ω

(uλ∗)r−1hdz for all h ∈ W 1,p(Ω),

⇒ −Δpu
λ∗(z) + ξ(z)uλ∗(z)p−1 = c1u

λ∗(z)q−1 − c7(λ)uλ∗(z)r−1 for a.a. z ∈ Ω,

∂uλ∗
∂n p

+ β(z)(uλ∗)p−1 = 0 on ∂Ω (see Papageorgiou-Rǎdulescu [17]), (17)

⇒ uλ∗ is a positive solution of (Auλ).

As before, the nonlinear regularity theory (see [13]) implies uλ∗ ∈ C+\{0}.
Moreover, from (17) we have

Δpu
λ∗(z) ≤ (c7(λ)‖uλ∗‖r−p∞ + ‖ξ‖∞)uλ∗(z)p−1

≤ c11u
λ∗(z)p−1 for a.a. z ∈ Ω, some c11 > 0,

⇒ uλ∗ ∈ D+ (by the nonlinear strong maximum principle, [8] (p. 738)).

Next we show the uniqueness of this positive solution. To this end suppose that
vλ∗ ∈ W 1,p(Ω) is another positive solution of (Auλ). As above we can show that
vλ∗ ∈ D+.

We have

∫

Ω

(
c1

(uλ∗)p−q
− c7(λ)(uλ∗)r−p

)
(
(uλ∗)p − (vλ∗)p

)
dz

=
∫

Ω

(
c1(u

λ∗)q−1 − c7(λ)(uλ∗)r−1
) (

uλ∗ − (vλ∗)p

(uλ∗)p−1

)

dz

=
∫

Ω

(
−Δpu

λ∗ + ξ(z)(uλ∗)p−1
) (

uλ∗ − (vλ∗)p

(uλ∗)p−1

)

dz (see (17))

=
∫

Ω

|∇uλ∗|p−2
(

∇uλ∗,∇
(

uλ∗ − (vλ∗)p

(uλ∗)p−1

))

RN
dz

+
∫

Ω

ξ(z)(uλ∗)p−1
(

uλ∗ − (vλ∗)p

(uλ∗)p−1

)

dz

+
∫

Ω

β(z)(uλ∗)p−1
(

uλ∗ − (vλ∗)p

(uλ∗)p−1

)

dσ

(using the nonlinear Green’s identity, see [8] (p. 211))

= ‖∇uλ∗‖p
p − ‖∇vλ∗‖p

p +
∫

Ω

R(vλ∗ , uλ∗)dz +
∫

Ω

ξ(z)
(
(uλ∗)p − (vλ∗)p

)
dz

+
∫

Ω

β(z)
(
(uλ∗)p − (vλ∗)p

)
dσ. (18)
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Interchanging the roles of uλ∗ and vλ∗ in the above argument, we also have

∫

Ω

(
c1

(vλ∗)p−q
− c7(λ)(vλ∗)r−p

)
(
(vλ∗)p − (uλ∗)p

)
dz

= ‖∇vλ∗‖p
p − ‖∇uλ∗‖p

p +
∫

Ω

R(uλ∗, vλ∗)dz +
∫

Ω

ξ(z)
(
(vλ∗)p − (uλ∗)p

)
dz

+
∫

Ω

β(z)
(
(vλ∗)p − (uλ∗)p

)
dσ. (19)

Adding (18) and (19) and using the nonlinear Picone’s identity, we have

0 ≤
∫

Ω

(
R(vλ∗ , uλ∗) + R(uλ∗, vλ∗ )

)
dz

=
∫

Ω

(

c1

(
1

(uλ∗)p−q
− 1

(vλ∗ )p−q

)

− c7(λ)
(
(uλ∗)r−p − (vλ∗ )r−p)

)
(
(uλ∗)p − (vλ∗ )p

)
dz.

(20)

Since the function x → c1
x p−q

−c7(λ)xr−p is strictly decreasing on (0,+∞), from

(20) we infer that

uλ∗ = vλ∗ .

This proves the uniqueness of the positive solution uλ∗ ∈ D+ of problem (Auλ). ��
Remark 3 There is an alternative approach to the uniqueness of the positive solution
uλ∗ ∈ D+ of problem (Auλ) which does not use the nonlinear Picone’s identity. For this
we need to assume that β(z) > 0 for all z ∈ ∂Ω . First note that, if ρ = ‖uλ∗‖∞, thenwe
can find ξ̂ρ > 0 s.t. for a.a. z ∈ Ω , the function x → c1xq−1 − c7(λ)xr−1 + ξ̂ρx p−1 is
nondecreasing on [0, ρ]. As before let vλ∗ ∈ D+ be another positive solution of (Auλ)
and let t > 0 be the biggest real s.t.

tvλ∗ ≤ uλ∗. (21)

We assume that t ∈ (0, 1). We have

− Δp(tv
λ∗) + (ξ(z) + ξ̂ρ)(tvλ∗)p−1

= t p−1[−Δpv
λ∗ + (ξ(z) + ξ̂ρ)(vλ∗)p−1]

= t p−1[c1(vλ∗)q−1 − c7(λ)(vλ∗)r−1 + ξ̂ρ(vλ∗)p−1]
< c1(tv

λ∗)q−1 − c7(λ)(tvλ∗)r−1 + ξ̂ρ(tvλ∗)p−1 (since t ∈ (0, 1) and q < p < r)

≤ c1(u
λ∗)q−1 − c7(λ)(uλ∗)r−1 + ξ̂ρ(uλ∗)p−1 (see (21))

= −Δpu
λ∗ + (ξ(z) + ξ̂ρ)(uλ∗)p−1 for a.a. z ∈ Ω.
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Invoking Proposition 4 (recall β > 0), we have

uλ∗ − tvλ∗ ∈ D+, (22)

where we recall that Ĉ+ =
{

y ∈ C1(Ω) : y(z) ≥ 0 for all z ∈ Ω,
∂u

∂n

∣
∣
∣
∂Ω

≤ 0

}

.

Evidently (22) contradicts the maximality of t > 0. Therefore we must have t ≥ 1
and so

vλ∗ ≤ uλ∗ (see (21)).

Interchanging the roles of uλ∗ ∈ D+ and vλ∗ ∈ D+ in the above argument we also
have

uλ∗ ≤ vλ∗ ,

⇒ uλ∗ = vλ∗ .

So, again we have proved uniqueness of the positive solution of problem (Auλ).
Recall that λ → c7(λ) is bounded on bounded sets of λ ∈ R. So, if B ⊆ R is bounded,
ĉ7 ≥ c7(λ) for all λ ∈ B and û ∈ D+ is the unique positive solution of the auxiliary
problem

⎧
⎨

⎩

−Δpu(z) + ξ(z)u(z)p−1 = c1u(z)q−1 − ĉ7u(z)r−1 in Ω,
∂u

∂n p
+ β(z)u p−1 = 0 on ∂Ω,

(see Proposition 8), then û ≤ uλ∗ for all λ ∈ B.
Next using uλ∗ ∈ D+, we can have a lower bound for the elements of the set S(λ).

This fact will be used to produce the smallest positive solution for problem (Pλ) when
λ < λ̂1.

So, we have the following result.

Proposition 9 If hypotheses H(ξ), H(β)1, H1 hold and λ < λ̂1, then uλ∗ ≤ u for all
u ∈ S(λ).

Proof As before let η > ‖ξ‖∞. For u ∈ S(λ)we consider the following Carathéodory
function

ĝλ(z, x) =

⎧
⎪⎨

⎪⎩

0 if x < 0,

c1xq−1 − c7(λ)xr−1 + ηx p−1 if 0 ≤ x ≤ u(z),

c1u(z)q−1 − c7(λ)u(z)r−1 + ηu(z)p−1 if u(z) < x .

(23)

We set Ĝλ(z, x) = ∫ x
0 ĝλ(z, s)ds and consider theC1-functional ψ̂λ : W 1,p(Ω) →

R defined by

ψ̂λ(u) = 1

p
ϑ(u) + η

p
‖u‖p

p −
∫

Ω

Ĝλ(z, u)dz for all u ∈ W 1,p(Ω).
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From (23) and since η > ‖ξ‖∞, we see that the functional ψ̂λ is coercive. Also, it
is sequentially weakly lower semicontinuous. So, we can find ûλ∗ ∈ W 1,p(Ω) s.t.

ψ̂λ(̂u
λ∗) = inf

[
ψ̂λ(u) : u ∈ W 1,p(Ω)

]
. (24)

As before, since q < p < r , we have that

ψ̂λ(̂u
λ∗) < 0 = ψ̂λ(0),

⇒ ûλ∗ = 0.

From (24) we have

ψ̂ ′
λ(̂u

λ∗) = 0,

⇒ 〈A(̂uλ∗), h〉 +
∫

Ω

(ξ(z) + η)|̂uλ∗|p−2ûλ∗hdz +
∫

∂Ω

β(z)|̂uλ∗|p−2ûλ∗hdσ

=
∫

Ω

gλ(z, û
λ∗)hdz for all h ∈ W 1,p(Ω). (25)

In (25) first we choose h = −ûλ−
∗ ∈ W 1,p(Ω). We obtain

ϑ(̂uλ−
∗ ) + η‖ûλ−

∗ ‖p
p = 0 (see (23)),

⇒ c12‖ûλ−
∗ ‖p ≤ 0 for some c12 > 0 (recall that η > ‖ξ‖∞),

⇒ ûλ∗ ≥ 0, ûλ∗ = 0.

Next in (25) we choose (̂uλ∗ − u)+ ∈ W 1,p(Ω). We have

〈A(̂uλ∗), (̂uλ∗ − u)+〉 +
∫

Ω

(ξ(z) + η)(̂uλ∗)p−1(̂uλ∗ − u)+dz

+
∫

∂Ω

β(z)(̂uλ∗)p−1(̂uλ∗ − u)+dσ

=
∫

Ω

(c1u
q−1 − c7(λ)ur−1 + ηu p−1)(̂uλ∗ − u)+dz (see (23))

≤
∫

Ω

(λu p−1 + f (z, u) + ηu p−1)(̂uλ∗ − u)+dz (see (12))

= 〈A(u), (̂uλ∗ − u)+〉 +
∫

Ω

(ξ(z) + η)u p−1(̂uλ∗ − u)+dz

+
∫

∂Ω

β(z)u p−1(̂uλ∗ − u)+dσ (recall that u ∈ S(λ)),

⇒ 〈A(̂uλ∗) − A(u), (̂uλ∗ − u)+〉 +
∫

Ω

(ξ(z) + η)((̂uλ∗)p−1 − u p−1)(̂uλ∗ − u)+dz

+
∫

∂Ω

β(z)((̂uλ∗)p−1 − u p−1)(̂uλ∗ − u)+dσ ≤ 0,
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⇒ ûλ∗ ≤ u (since η > ‖ξ‖∞ and β ≥ 0, see hypothesis H(β)1).

Therefore, we have proved that

ûλ∗ ∈ [0, u] = {v ∈ W 1,p(Ω) : 0 ≤ v(z) ≤ u(z) for a.a. z ∈ Ω}, ûλ∗ = 0,

⇒ ûλ∗ is a positive solution of (Auλ) (see (25) and (23)),

⇒ ûλ∗ = uλ∗ ∈ D+ (see Proposition 8).

Finally we have

uλ∗ ≤ u for all u ∈ S(λ).

��
Proposition 10 If hypotheses H(ξ), H(β)1, H1 hold and λ < λ̂1, then problem (Pλ)
admits a smallest positive solution uλ ∈ D+.

Proof As in Filippakis–Papageorgiou [5], we have that S(λ) is downward directed,
that is, if u1, u2 ∈ S(λ), there is u ∈ S(λ) s.t. u ≤ u1, u ≤ u2. Invoking Lemma 3.10
of Hu–Papageorgiou [9] (p. 178), we can find {un}n≥1 ⊆ S(λ) decreasing s.t.

inf S(λ) = inf
n≥1

un .

We have

〈A(un), h〉 +
∫

Ω

ξ(z)u p−1
n hdz +

∫

∂Ω

β(z)u p−1
n hdσ =

∫

Ω

(λu p−1
n + f (z, un))dz

(26)

for all h ∈ W 1,p(Ω). Since un ≤ u1 ∈ S(λ) ⊆ D+, from (26) and hypotheses H(ξ),
H(β)1, H1(i) it follows that

{un}n≥1 ⊆ W 1,p(Ω) is bounded.

So, we may assume that

un
w−→ uλ in W 1,p(Ω) and un → uλ in L p(Ω) and in L p(∂Ω). (27)

In (26) we choose h = un − uλ ∈ W 1,p(Ω), pass to the limit as n → +∞ and use
(27). Then we have

lim
n→+∞〈A(un), un − uλ〉 = 0,

⇒ un → uλ in W 1,p(Ω) (see Proposition 2). (28)
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If in (26) we pass to the limit as n → +∞ and use (28), then

〈A(uλ), h〉 +
∫

Ω

ξ(z)u p−1
λ hdz +

∫

∂Ω

β(z)u p−1
λ hdσ =

∫

Ω

(λu p−1
λ + f (z, uλ))hdz

for all h ∈ W 1,p(Ω),

⇒ uλ ≥ 0 is a solution of problem (Pλ).

From Proposition 9 we have

uλ∗ ≤ un for all n ∈ N,

⇒ uλ∗ ≤ uλ (see (28)).

Hence uλ = 0 and so we conclude that

uλ ∈ S(λ) ⊆ D+ and uλ = inf S(λ). ��
Next we examine the map λ → uλ from (−∞, λ̂1) into C1(Ω).

Proposition 11 If hypotheses H(ξ), H(β)1, H1 hold, then the map λ → uλ from
L = (−∞, λ̂1) into C1(Ω) is nondecreasing (that is, if λ < μ, then uλ ≤ uμ) and
left continuous.

Proof Suppose that λ,μ ∈ L = (−∞, λ̂1) and λ < μ. Let uμ ∈ S(μ) be the minimal
positive solution of problem (Pμ) (see Proposition 10). For η > ‖ξ‖∞ we introduce
the following Carathéodory function

eλ(z, x) =

⎧
⎪⎨

⎪⎩

0 if x < 0,

(λ + η)x p−1 + f (z, x) if 0 ≤ x ≤ uμ(z),

(λ + η)uμ(z)p−1 + f (z, uμ(z)) if uμ(z) < x .

(29)

We set Eλ(z, x) = ∫ x
0 eλ(z, s)ds and consider theC1-functional ψ̃λ : W 1,p(Ω) →

R defined by

ψ̃λ(u) = 1

p
ϑ(u) + η

p
‖u‖p

p −
∫

Ω

Eλ(z, u)dz for all u ∈ W 1,p(Ω).

From (29) and since η > ‖ξ‖∞, we see that ψ̃λ is coercive. Also, it is sequentially
weakly lower semicontinuous. So, we can find uλ ∈ W 1,p(Ω) s.t.

ψ̃λ(uλ) = inf
[
ψ̃λ(u) : u ∈ W 1,p(Ω)

]
. (30)

Let mμ = minΩ uμ > 0 (recall that uμ ∈ D+) and choose t ∈ (0, 1) small s.t.
t û1(z) ≤ min{mμ, δ} for all z ∈ Ω (here δ > 0 is as in hypothesis H1(iii)). Because
q < p and by choosing t ∈ (0, 1) even smaller if necessary, we have that

ψ̃λ(t û1) < 0,
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⇒ ψ̃λ(uλ) < 0 = ψ̃λ(0) (see (30))

⇒ uλ = 0.

From (30) we have

ψ̃ ′
λ(uλ) = 0,

⇒ 〈A(uλ), h〉 +
∫

Ω

(ξ(z) + η)|uλ|p−2uλhdz +
∫

∂Ω

β(z)|uλ|p−2uλhdσ

=
∫

Ω

eλ(z, uλ)hdz for all h ∈ W 1,p(Ω). (31)

As in the proof of Proposition 9, using this time (31) and (29), we show that

uλ ∈ [0, uμ] = {v ∈ W 1,p(Ω) : 0 ≤ v(z) ≤ uμ(z) for a.a. z ∈ Ω}, uλ = 0,

⇒ uλ ∈ S(λ) ⊆ D+ (see (29), (31)),

⇒ uλ ≤ uμ.

This proves that λ → uλ is nondecreasing.
Next we show the left continuity of this map. So, let {λn, λ}n≥1 ⊆ L and suppose

that λn → λ−. From the first part of the proof we have uλn ≤ uλ for all n ∈ N and so
we infer that {uλn }n≥1 ⊆ W 1,p(Ω) is bounded. So, we may assume that

uλn

w−→ ũ in W 1,p(Ω) and uλn → ũ in L p(Ω) and in L p(∂Ω). (32)

We have

〈A(uλn ), h〉 +
∫

Ω

ξ(z)u p−1
λn

hdz +
∫

∂Ω

β(z)u p−1
λn

hdσ =
∫

Ω

(λnu
p−1
λn

+ f (z, uλn ))hdz

(33)

for all h ∈ W 1,p(Ω), all n ∈ N. In (33) we choose h = uλn − ũ ∈ W 1,p(Ω), pass to
the limit as n → +∞ and use (32). Then

lim
n→+∞〈A(uλn ), uλn − ũ〉 = 0,

⇒ uλn → ũ in W 1,p(Ω) (see Proposition 2). (34)

So, if in (33) we pass to the limit as n → +∞ and use (34), then
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〈A(̃u), h〉 +
∫

Ω

ξ(z)̃u p−1hdz +
∫

∂Ω

β(z)̃u p−1hdσ =
∫

Ω

(λũ p−1 + f (z, ũ))hdz

(35)

for all h ∈ W 1,p(Ω).
Set B = {λn}n≥1 and let ĉ7 ≥ c7(̃λ) for all λ̃ ∈ B (recall that λ → c7(λ) is bounded

on bounded sets). Consider û ∈ D+ the unique positive solution of

⎧
⎨

⎩

−Δpu(z) + ξ(z)u(z)p−1 = c1u(z)q−1 − ĉ7u(z)r−1 in Ω,
∂u

∂n p
+ β(z)u p−1 = 0 on ∂Ω,

(see Proposition 8 and the Remark following it).
We know that

û ≤ uλn for all n ∈ N,

⇒ û ≤ ũ, that is, ũ = 0.

Then from (35) we infer that ũ ∈ S(λ).
Suppose that ũ = uλ. Then we can find z0 ∈ Ω s.t.

uλ(z0) < ũ(z0). (36)

FromTheorem 2 of Lieberman [13], we know that there existM > 0 and τ ∈ (0, 1)
s.t.

uλn ∈ C1,τ (Ω) and ‖uλn‖C1,τ (Ω) ≤ M for all n ∈ N. (37)

Exploiting the compact embedding of C1,τ (Ω) into C1(Ω) and using (34), from
(37) we have

uλn → ũ in C1(Ω), (38)

⇒ uλn (z0) > uλ(z0), for all n ≥ n0 (see (36)),

which contradicts themonotonicity of λ → uλ (recall λn < λ for all n ∈ N). Therefore
ũ = uλ and so from (38) we conclude that the map λ → uλ is left continuous from
L = (−∞, λ̂1) into C1(Ω). ��

If we strengthen the conditions on the perturbation f (z, ·), we can have uniqueness
of the positive solution for problem (Pλ), λ < λ̂1.

The new hypotheses on f (z, x) are the following:
H2: f : Ω × R → R is a Carathéodory function s.t. for a.a. z ∈ Ω , f (z, 0) = 0,
f (z, x) > 0 for all x > 0, hypotheses H2(i), (ii), (iii) are the same as the corresponding
hypotheses H1(i), (ii), (iii) and

(iv) for a.a. z ∈ Ω the function x → f (z, x)

x p−1 is strictly decreasing on (0,+∞).
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Example 2 The function f1(x) = xq−1 for all x ≥ 0 with 1 < q < p satisfies
hypotheses H2. On the other hand the function

f2(x) =
{
xq−1 − xτ−1 if x ∈ [0, 1],
ln x p−1 if 1 < x,

with 1 < q < p, q < τ,

need not satisfy hypotheses H2 unless additional restrictions are imposed on the expo-
nents q, τ .

Proposition 12 If hypotheses H(ξ), H(β)1, H2 hold and λ < λ̂1, then problem (Pλ)
has a unique positive solution uλ ∈ D+.

Proof Existence follows from Proposition 7. The uniqueness is proved as in the proof
of Proposition 8 using the nonlinear Picone’s identity (for an alternative approach, see
the Remark following the proof of Proposition 8). ��

In this case, because of the uniqueness of the positive solution, Proposition 11 takes
the following form:

Proposition 13 If hypotheses H(ξ), H(β)1, H2 hold, then the map λ → uλ is nonde-
creasing and continuous from L = (−∞, λ̂1) into C1(Ω).

In fact, by strengthening hypothesis H(β)1 (since we will use Proposition 4) and
with an additional condition on the perturbation f (z, ·) we can improve the mono-
tonicity property of the maps λ → uλ in Proposition 11 and of the map λ → uλ in
Proposition 12.

So, we introduce the following conditions on the functions β(z) and f (z, x):
H(β)2: β ∈ C0,α(∂Ω) with α ∈ (0, 1) and β(z) > 0 for all z ∈ ∂Ω .
H3: f : Ω × R → R is a Carathéodory function s.t. for a.a. z ∈ Ω , f (z, 0) = 0,
f (z, x) > 0 for all x > 0, hypotheses H3(i), (ii), (iii) are the same as the corresponding
hypotheses H1(i), (ii), (iii) and

(iv) for every ρ > 0, there exists ξ̂ρ > 0 s.t. for a.a. z ∈ Ω the function x →
f (z, x) + ξ̂ρx p−1 is nondecreasing on [0, ρ].

We also introduce a corresponding strengthening of hypotheses H2.
H4: f : Ω × R → R is a Carathéodory function s.t. for a.a. z ∈ Ω , f (z, 0) = 0,
f (z, x) > 0 for all x > 0, hypotheses H4(i), (ii), (iii), (iv) are the same as the
corresponding hypotheses H2(i), (ii), (iii), (iv) and

(v) for every ρ > 0, there exists ξ̂ρ > 0 s.t. for a.a. z ∈ Ω , the function x →
f (z, x) + ξ̂ρx p−1 is nondecreasing on [0, ρ].

Proposition 14 If hypotheses H(ξ), H(β)2, H3 hold, then the map λ → uλ is strictly
increasing from L = (−∞, λ̂1) into C1(Ω) in the sense that λ < μ ⇒ uμ − uλ ∈
int Ĉ+ with D0 = {z ∈ ∂Ω : uμ(z) = uλ(z)}.
Proof Let λ,μ ∈ L = (−∞, λ̂1) with λ < μ. From Proposition 11 we know that

uλ ≤ uμ.
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Let ρ = ‖uμ‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H3(iv). We set

ξ̃ρ = ξ̂ρ + max{−μ, 0}.

For δ > 0 we define uδ
λ = uλ + δ ∈ D+. We have

− Δpu
δ
λ + (ξ(z) + ξ̃ρ)(uδ

λ)
p−1

≤ −Δpuλ + (ξ(z) + ξ̃ρ)u p−1
λ + χ(δ) with χ(δ) → 0+ as δ → 0+

= λu p−1
λ + f (z, uλ) + ξ̃ρu

p−1
λ + χ(δ)

= μu p−1
λ + f (z, uλ) + ξ̃ρu

p−1
λ − (μ − λ)u p−1

λ + χ(δ). (39)

Note that if μ < 0, then ξ̃ρ = ξ̂ρ + |μ| and we have

0 ≤
[
f (z, uμ) + ξ̂ρu

p−1
μ − ( f (z, uλ) + ξ̂ρu

p−1
λ )

]
+ (|μ| + μ)(u p−1

μ − u p−1
λ )

⇔ μu p−1
λ + f (z, uλ) + ξ̃ρu

p−1
λ ≤ μu p−1

μ + f (z, uμ) + ξ̃ρu
p−1
μ .

If μ ≥ 0, then ξ̃ρ = ξ̂ρ and using hypothesis H3(iv) we have

μu p−1
λ + f (z, uλ) + ξ̂ρu

p−1
λ ≤ μu p−1

μ + f (z, uμ) + ξ̂ρu
p−1
μ .

Returning to (39), we have

− Δpu
δ
λ + (ξ(z) + ξ̃ρ)(uδ

λ)
p−1

≤ μu p−1
μ + f (z, uμ) + ξ̃ρu

p−1
μ − (μ − λ)u p−1

λ + χ(δ)

= −Δpuμ + ξ̃ρu
p−1
μ − (μ − λ)u p−1

λ + χ(δ). (40)

Since μ > λ and uλ ∈ D+, we have

0 < m̂ ≤ (μ − λ)uλ(z)
p−1 for all z ∈ Ω.

Then since χ(δ) → 0+ as δ → 0+, for δ > 0 small we have

m̂ − χ(δ) > 0.

Using this in (40) we have

− Δpu
δ
λ + (ξ(z) + ξ̃ρ)(uδ

λ)
p−1 < −Δpuμ + (ξ(z) + ξ̃ρ)uμ

for a.a. z ∈ Ω, all δ > 0 small,

⇒ uμ − uλ ∈ int Ĉ+, (see Proposition 4 and the Remark that follows).

In this case in the definition of Ĉ+, D0 = {z ∈ ∂Ω : uμ(z) = uλ(z)}. ��
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Similarly we have:

Proposition 15 If hypotheses H(ξ), H(β)2, H4 hold, then the map λ → uλ is strictly
increasing from L = (−∞, λ̂1) into C1(Ω).

The next theorem summarizes the situation for problem (Pλ) when the perturbation
f (z, ·) is (p − 1)-sublinear.

Theorem 1 We have:

1. If hypotheses H(ξ), H(β)1, H1 hold, then

(a) for all λ ≥ λ̂1 problem (Pλ) has no positive solution;
(b) for all λ < λ̂1 problem (Pλ) has at least one positive solution and it admits a

smallest positive solution uλ ∈ D+;
(c) the map λ → uλ from L = (−∞, λ̂1) into C1(Ω) is nondecreasing (that is,

if λ ≤ μ, then uλ ≤ uμ) and left continuous.

2. If hypotheses H(ξ), H(β)2, H3 hold, then the map λ → uλ from L = (−∞, λ̂1)

into C1(Ω) is strictly increasing as in Proposition 14.
3. If hypotheses H(ξ), H(β)1, H2 hold and λ < λ̂1, then problem (Pλ) has a unique

solution uλ ∈ D+ and the map λ → uλ from L = (−∞, λ̂1) into C1(Ω) is
nondecreasing and continuous.

4. If hypotheses H(ξ), H(β)2, H4 hold, then the solution map λ → uλ from L =
(−∞, λ̂1) into C1(Ω) is strictly increasing.

4 (p− 1)-superlinear perturbation

In this sectionweconsider the casewhere the perturbation f (z, ·) is (p−1)-superlinear.
In this case uniqueness of the solution fails and the problem exhibits a bifurcation-type
behaviour, namely there are no positive solutions for all λ ≥ λ̂1 and there are at least
two positive solutions for λ < λ̂1.

The new hypotheses on the perturbation term f (z, x) are the following:
H5: f : Ω × R → R is a Carathéodory function s.t. for a.a. z ∈ Ω f (z, 0) = 0,
f (z, x) ≥ 0 for all x > 0, there exist Ω0 ⊆ Ω with |Ω0|N > 0 s.t. f (z, x) > 0 for
all z ∈ Ω0, all x > 0 and

(i) f (z, x) ≤ a(z)(1 + xr−1) for a.a. z ∈ Ω , all x ≥ 0, with a ∈ L∞(Ω)+,
r ∈ (p, p∗);

(ii) if F(z, x) = ∫ x
0 f (z, s)ds, then

lim
x→+∞

F(z, x)

x p
= +∞ uniformly for a.a. z ∈ Ω

and there exists τ ∈ (max{1, (r − p) Np }, p∗) s.t.

0 < ξ̃ ≤ lim inf
x→+∞

f (z, x)x − pF(z, x)

xτ
uniformly for a.a. z ∈ Ω;
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(iii) limx→0+
f (z, x)

x p−1 = 0 uniformly for a.a. z ∈ Ω .

Remark 4 Aswedid for the “sublinear” case, sinceweare looking for positive solutions
and the above hypotheses concern the positive semiaxis, without any loss of generality,
we may assume that f (z, x) = 0 for a.a. z ∈ Ω , all x < 0. Hypothesis H5(ii) implies
that for a.a. z ∈ Ω f (z, ·) is (p−1)-superlinear. However, note that we do not use the
usual in such cases “Ambrosetti–Rabinowitz condition” (the AR-condition for short,
unilateral version since we are looking for positive solutions), which says that there
exist q > p and M > 0 s.t.

0 < qF(z, x) ≤ f (z, x)x for a.a. z ∈ Ω, all x ≥ M, (41)

0 < ess inf
Ω

F(·, M) (42)

(see Ambrosetti–Rabinowitz [3] andMugnai [15]). Integrating (41) and using (42) we
obtain

c13x
q ≤ F(z, x) for a.a. z ∈ Ω, all x ≥ M, some c13 > 0. (43)

Hence from (41) and (43) we infer that near +∞, f (z, ·) exhibits at least (q − 1)-
polynomial growth. Our hypothesis H5(ii) is more general. Indeed, suppose that the
AR-condition holds. We may assume that q > max{1, (r − p) Np }. We have

f (z, x)x − pF(z, x)

xq
= f (z, x)x − qF(z, x)

xq
+ (q − p)

F(z, x)

xq

≥ (q − p)
F(z, x)

xq
(see (41))

≥ (q − p)c13 > 0 (see (43)),

⇒ lim inf
x→+∞

f (z, x)x − pF(z, x)

xq
≥ (q − p)c13 > 0 uniformly for a.a. z ∈ Ω,

⇒ hypothesis H5(ii) holds.

The function

f (x) = x p−1 ln(1 + x) for all x ≥ 0

satisfies hypotheses H5, but not the AR-condition (see (41)).

From Propositions 5 and 6 we have

S(λ) ⊆ D+ for all λ ∈ R,

S(λ) = ∅ for all λ ≥ λ̂1.

It follows that L ⊆ (−∞, λ̂1). In the next proposition we show that equality holds.

Proposition 16 If hypotheses H(ξ), H(β)1, H5 hold, then L = (−∞, λ̂1).
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Proof We fix λ ∈ (−∞, λ̂1) and consider the Carathéodory function kλ(z, x) defined
by

kλ(z, x) =
{
0 if x ≤ 0,

λx p−1 + f (z, x) if 0 < x .
(44)

We set Kλ(z, x) = ∫ x
0 kλ(z, x)ds and consider theC1-functionalwλ : W 1,p(Ω) →

R defined by

wλ(u) = 1

p
ϑ(u) + η

p
‖u−‖p

p −
∫

Ω

Kλ(z, u)dz for all u ∈ W 1,p(Ω).

As before η > ‖ξ‖∞. Hypotheses H5(i), (iii) imply that given ε > 0, we can find
c14 = c14(ε) > 0 s.t.

F(z, x) ≤ ε

p
x p + c14x

r for a.a. z ∈ Ω, all x ≥ 0. (45)

Choosing ε ∈ (0, λ̂1 − λ) (recall λ < λ̂1), for every u ∈ W 1,p(Ω) we have

wλ(u) ≥ 1

p

[
ϑ(u−) + η‖u−‖p

p
] + 1

p
ϑ(u+) − λ + ε

p
‖u+‖p

p − c14‖u+‖rr
(see (44) and (45)).

≥ c15‖u‖p − c16‖u‖r for some c15, c16 > 0,

(use Lemma 1 and recall η > ‖ξ‖∞). (46)

Since p < r , from (46) we infer that u = 0 is a strict local minimizer of wλ. So,
we can find ρ ∈ (0, 1) small s.t.

wλ(0) = 0 < inf [wλ : ‖u‖ = ρ] = mλ
ρ (47)

(see Aizicovici–Papageorgiou–Staicu [1], proof of Proposition 29).
Hypothesis H5(ii) implies that

wλ(t û1) → −∞ as t → +∞. (48)

Claim: wλ satisfies the C-condition.
Let {un}n≥1 ⊆ W 1,p(Ω) be a sequence s.t.

|wλ(un)| ≤ M1 for some M1 > 0, all n ∈ N, (49)

(1 + ‖un‖)w′
λ(un) → 0 in W 1,p(Ω)∗ as n → +∞. (50)

From (50) we have

∣
∣
∣
∣〈A(un), h〉 +

∫

Ω

ξ(z)|un|p−2unhdz +
∫

∂Ω

β(z)|un|p−2unhdσ
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− η

∫

Ω

(u−
n )p−1hdσ −

∫

Ω

kλ(z, un)hdz

∣
∣
∣
∣

≤ εn‖h‖
1 + ‖un‖ for all h ∈ W 1,p(Ω) with εn → 0+. (51)

In (51) we choose h = −u−
n ∈ W 1,p(Ω). Using (44) we obtain

∣
∣ϑ(u−

n ) + η‖u−
n ‖p

p
∣
∣ ≤ εn for all n ∈ N,

⇒ c17‖u−
n ‖p ≤ εn for all n ∈ N, some c17 > 0 (recall that η > ‖ξ‖∞),

⇒ u−
n → 0 in W 1,p(Ω). (52)

From (49), (52) and (44) it follows that

ϑ(u+
n ) −

∫

Ω
[λ(u+

n )p + pF(z, u+
n )]dz ≤ M2 for some M2 > 0, all n ∈ N. (53)

In (51) we choose h = u+
n ∈ W 1,p(Ω). Then

− ϑ(u+
n ) +

∫

Ω

[λ(u+
n )p + f (z, u+

n )u+
n ]dz ≤ εn for all n ∈ N. (54)

Adding (53) and (54) we obtain

∫

Ω

[ f (z, u+
n )u+

n − pF(z, u+
n )]dz ≤ M3 for some M3 > 0, all n ∈ N. (55)

Hypotheses H5(i), (ii) imply that we can find ξ̃0 ∈ (0, ξ̃ ) and c18 > 0 s.t.

ξ̃0x
τ − c18 ≤ f (z, x)x − pF(z, x) for a.a. z ∈ Ω, all x ≥ 0. (56)

Using (56) in (55), we infer that

{u+
n }n≥1 ⊆ Lτ (Ω) is bounded. (57)

First suppose that N > p. Clearly in hypothesis H5(ii), we can always assume that
τ < r < p∗ (recall that p∗ = +∞ if p ≥ N ). Let t ∈ (0, 1) be such that

1

r
= 1 − t

τ
+ t

p∗ . (58)

From the interpolation inequality (see, for example, Gasiński–Papageorgiou [8] (p.
905)), we have

‖u+
n ‖r ≤ ‖u+

n ‖1−t
τ ‖u+

n ‖tp∗ ,

⇒ ‖u+
n ‖rr ≤ M4‖u+

n ‖tr for some M4 > 0, all n ∈ N (59)
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(see (57) and use the Sobolev embedding theorem).

In (51) we choose h = u+
n ∈ W 1,p(Ω). Then

ϑ(u+
n ) −

∫

Ω

[λ(u+
n )p + f (z, u+

n )u+
n ]dz ≤ εn for all n ∈ N (see (44)),

⇒ ϑ(u+
n ) ≤ c19(1 + ‖u+

n ‖rr ) for some c19 > 0, all n ∈ N

(see hypothesis H5(i) and recall that r > p),

⇒ ϑ(u+
n ) ≤ c20(1 + ‖u+

n ‖tr ) for some c20 > 0, all n ∈ N (see (59)). (60)

From hypothesis H5(i) we see that we can always take r ∈ (p, p∗) close to p∗ and
as r → (p∗)−, we have τ > p. So, there is no loss of generality in assuming that
τ > p. Then from (60) and (57), we have

ϑ(u+
n ) + η‖u+

n ‖p
p ≤ c21(1 + ‖u+

n ‖tr ) for some c21 > 0, all n ∈ N,

⇒ ‖u+
n ‖p ≤ c22(1 + ‖u+

n ‖tr ) for some c22 > 0, all n ∈ N (recall that η > ‖ξ‖∞).

(61)

From hypothesis H5(ii) and (58) we see that

tr < p,

⇒ {u+
n }n≥1 ⊆ W 1,p(Ω) is bounded (see (61)),

⇒ {un}n≥1 ⊆ W 1,p(Ω) is bounded (see (52)). (62)

If N ≤ p, then p∗ = +∞, while the Sobolev embedding theorem says that
W 1,p(Ω) ↪→ Lq(Ω) for all q ∈ [1,+∞). Let q > r > τ and choose t ∈ (0, 1) s.t.

1

r
= 1 − t

τ
+ t

q
,

⇒ tr = q(r − τ)

q − τ
. (63)

Note that

q(r − τ)

q − τ
→ r − τ as q → p∗ = +∞. (64)

Since by hypothesis H5(ii) we have r − τ < p (recall N ≤ p), for the previous
argument (case N ≤ p) to work, we use q > r big s.t. tr < p (see (63), (64)). Then
again we conclude that (62) holds. Because of (62) we may assume that

un
w−→ u in W 1,p(Ω) and un → u in L p(Ω) and in L p(∂Ω). (65)
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In (51) we choose h = un − u ∈ W 1,p(Ω), pass to the limit as n → +∞ and use
(65). Then we have

lim
n→+∞〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p(Ω) (see Proposition 2),

⇒ wλ satisfies the C-condition.

This proves the Claim.
Then (47), (48) and the Claim permit the use of the mountain pass theorem (see, for

example, Gasiński–Papageorgiou [8] (p. 648)). So, we can find uλ ∈ W 1,p(Ω) s.t.

uλ ∈ Kwλ = {v ∈ W 1,p(Ω) : w′
λ(v) = 0} and wλ(0) = 0 < mλ

ρ ≤ wλ(uλ).

(66)

From (66) it follows that uλ = 0 and uλ ∈ S(λ) ⊆ D+ (see Proposition 5).
Therefore L = (−∞, λ̂1). ��

In fact as we did in the “sublinear” case, we can produce the minimal positive
solution for problem (Pλ) , λ < λ̂1.

Proposition 17 If hypotheses H(ξ), H(β)1, H5 hold and λ ∈ L = (−∞, λ̂1), then
problem (Pλ) has a smallest positive solution uλ ∈ D+.

Proof We argue as in the proof of Proposition 10. Recall that S(λ) is downward
directed (see Filippakis–Papageorgiou [5]). Using Lemma 3.10 of Hu–Papageorgiou
[9] (p. 178), we can find a decreasing sequence {un}n≥1 ⊆ S(λ) s.t.

inf S(λ) = inf
n≥1

un .

We have

〈A(un), h〉 +
∫

Ω

ξ(z)u p−1
n hdz +

∫

∂Ω

β(z)u p−1
n hdσ =

∫

Ω

[λu p−1
n + f (z, un)]hdz

(67)

for all h ∈ W 1,p(Ω), all n ∈ N.

In (67) we choose h = un ∈ W 1,p(Ω), we obtain

ϑ(un) = λ‖un‖p
p +

∫

Ω

f (z, un)undz for all n ∈ N. (68)

Recall that

0 ≤ un ≤ u1 ∈ D+ for all n ∈ N. (69)
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From (68) to (69) it follows that

{un}n≥1 ⊆ W 1,p(Ω) is bounded (see hypotheses H(ξ), H(β)1).

So, we may assume that

un
w−→ uλ in W 1,p(Ω) and un → uλ in L p(Ω) and in L p(∂Ω). (70)

In (67) we choose h = un − uλ ∈ W 1,p(Ω), pass to the limit as n → +∞ and use
(70). Then

lim
n→+∞〈A(un), un − uλ〉 = 0,

⇒ un → uλ in W 1,p(Ω) (see Proposition 2). (71)

Passing to the limit as n → +∞ in (67) and using (71), we obtain

〈A(uλ), h〉 +
∫

Ω

ξ(z)u p−1
λ hdz +

∫

∂Ω

β(z)u p−1
λ hdσ

=
∫

Ω

[λu p−1
λ + f (z, uλ)]hdz for all h ∈ W 1,p(Ω),

⇒ uλ is a nonnegative solution of problem (Pλ).

If we can show that uλ = 0, then uλ ∈ S(λ) ⊆ D+. Arguing by contradiction, suppose
that uλ = 0. Then

‖un‖ → 0 (see (71)).

We set yn = un
‖un‖ , n ∈ N. Then for all n ∈ N we have ‖yn‖ = 1, yn ≥ 0. So, we

may assume that

yn
w−→ y in W 1,p(Ω) and yn → y in L p(Ω) and in L p(∂Ω). (72)

From (67) we have

〈A(yn), h〉 +
∫

Ω

ξ(z)y p−1
n hdz +

∫

∂Ω

β(z)y p−1
n hdσ (73)

=
∫

Ω

[

λy p−1
n + N f (un)

‖un‖p−1

]

hdz for all h ∈ W 1,p(Ω), all n ∈ N.

Here N f (y)(·) = f (·, y(·)) for all y ∈ W 1,p(Ω). We set ρ = ‖u1‖∞. Hypotheses
H5(i), (iii) imply that

0 ≤ f (z, x) ≤ c23x
p−1 for a.a. z ∈ Ω, all x ∈ [0, ρ], some c23 > 0,
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⇒
{

N f (un)

‖un‖p−1

}

n≥1
⊆ L p(Ω) is bounded.

Then by passing to a suitable subsequence if necessary and using hypothesis H5(iii),
we have

N f (un)

‖un‖p−1
w−→ 0 in L p(Ω) (74)

(see Aizicovici–Papageorgiou–Staicu [1], proof of Proposition 14).
In (73) we choose h = yn − y ∈ W 1,p(Ω), pass to the limit as n → +∞ and use

(72) and (74). Then

lim
n→+∞〈A(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p(Ω) (see Proposition 2), ‖y‖ = 1, y ≥ 0. (75)

So, if in (73) we pass to the limit as n → +∞ and use (74) and (75), then

〈A(y), h〉 +
∫

Ω

ξ(z)y p−1hdz +
∫

∂Ω

β(z)y p−1hdσ = λ

∫

Ω

y p−1hdz

for all h ∈ W 1,p(Ω).

Choosing h = y ∈ W 1,p(Ω), we obtain

ϑ(y) = λ‖y‖p
p < λ̂1‖y‖p

p (see (75) and recall λ < λ̂1),

a contradiction to Proposition 1. Therefore

uλ = 0,

⇒ uλ ∈ S(λ) and uλ = inf S(λ).

��
As in the “sublinear” case, we have:

Proposition 18 If hypotheses H(ξ), H(β)1, H5 hold, then the map λ → uλ from
L = (−∞, λ̂1) into C1(Ω) is nondecreasing and left continuous.

Again by strengthening the conditions on the functions β(·) and f (z, ·) we can
improve the monotonicity of the map λ → uλ.

The new hypotheses on the perturbation f (z, x) are the following:
H6: f : Ω × R → R is a Carathéodory function s.t. for a.a. z ∈ Ω , f (z, 0) = 0,
f (z, x) ≥ 0 for all x > 0, there exists Ω0 ⊆ Ω with f (z, x) > 0 for all z ∈ Ω0,
all x > 0, hypotheses H6(i), (ii), (iii) are the same as the corresponding hypotheses
H5(i), (ii), (iii) and
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(iv) for every ρ > 0, there exists ξ̂ρ > 0 s.t. for a.a. z ∈ Ω , the function

x → f (z, x) + ξ̂ρx
p−1

is nondecreasing on [0, ρ].
Proposition 19 If hypotheses H(ξ), H(β)2, H6 hold, then the map λ → uλ from
L = (−∞, λ̂1) into C1(Ω) is strictly decreasing.

In fact under these stronger conditions on β(z) and f (z, x), we can produce a
second positive solution for problem (Pλ), when λ ∈ L = (−∞, λ̂1).

Proposition 20 If hypotheses H(ξ), H(β)2, H6 hold and λ ∈ L = (−∞, λ̂1), then
problem (Pλ) admits at least two positive solutions

uλ, ûλ ∈ D+, uλ ≤ ûλ, uλ = ûλ.

Proof From Proposition 16 we already have a positive solution uλ ∈ D+. We may
assume that uλ is the minimal positive solution, that is, uλ = uλ (see Proposition 17).
We introduce the following Carathéodory function

ζλ(z, x) =
{

(λ + η)uλ(z)p−1 + f (z, uλ(z)) if x ≤ uλ(z),

(λ + η)x p−1 + f (z, x) if uλ(z) < x,
(76)

with η > ‖ξ‖∞ as always. We set Zλ(z, x) = ∫ x
0 ζλ(z, s)ds and consider the C1-

functional jλ : W 1,p(Ω) → R defined by

jλ(u) = 1

p
ϑ(u) + η

p
‖u‖p

p −
∫

Ω

Zλ(z, u)dz, for all u ∈ W 1,p(Ω).

From (76) it is clear that

jλ = wλ + ξ∗
λ with ξ∗

λ ∈ R (77)

with wλ ∈ C1(W 1,p(Ω)) as in the proof of Proposition 16. From (77) and the Claim
in the proof of Proposition 16, it follows that

jλ satisfies the C-condition. (78)

Claim: We may assume that uλ ∈ D+ is a local minimizer of jλ.
Let λ < μ < λ̂1 and let uμ ∈ S(μ) ⊆ D+ (see Proposition 16). We consider the

following truncation of ζλ(z, ·)

ζ̂λ(z, x) =
{

ζ(z, x) if x ≤ uμ(z),

ζ(z, uμ(z)) if uμ(z) < x .
(79)



Perturbed eigenvalue problems for the Robin p-Laplacian… Page 31 of 34 69

Evidently this is a Carathéodory function. We set Ẑλ(z, x) = ∫ x
0 ζ̂λ(z, s)ds and con-

sider the C1-functional ĵλ : W 1,p(Ω) → R defined by

ĵλ(u) = 1

p
ϑ(u) + η

p
‖u‖p

p −
∫

Ω

Ẑλ(z, u)dz for all u ∈ W 1,p(Ω).

If K ĵλ = {u ∈ W 1,p(Ω) : ĵ ′λ(u) = 0}, then we will show that

K ĵλ ⊆ [uλ, uμ] = {u ∈ W 1,p(Ω) : uλ(z) ≤ u(z) ≤ uμ(z) for a.a. z ∈ Ω}.

So, let u ∈ K ĵλ . Then

ĵ ′λ(u) = 0

⇒ 〈A(u), h〉 +
∫

Ω

(ξ(z) + η)|u|p−2uhdz +
∫

∂Ω

β(z)|u|p−2uhdσ =
∫

Ω

ζ̂λ(z, u)hdz

(80)

for all h ∈ W 1,p(Ω).

In (80) we choose h = (uλ − u)+ ∈ W 1,p(Ω). Then

〈A(u), (uλ − u)+〉 +
∫

Ω

(ξ(z) + η)|u|p−2u(uλ − u)+dz +
∫

∂Ω

β(z)|u|p−2u(uλ − u)+dσ

=
∫

Ω

[(λ + η)u p−1
λ + f (z, uλ)](uλ − u)+dz (see (76) and (79))

= 〈A(uλ), (uλ − u)+〉 +
∫

Ω

(ξ(z) + η)u p−1
λ (uλ − u)+dz

+
∫

∂Ω

β(z)u p−1
λ (uλ − u)+dσ (since uλ ∈ S(λ)),

⇒ 〈A(uλ) − A(u), (uλ − u)+〉 +
∫

Ω

(ξ(z) + η)(u p−1
λ − |u|p−2u)(uλ − u)+dz

+
∫

∂Ω

β(z)(u p−1
λ − |u|p−2u)(uλ − u)+dσ = 0,

⇒ uλ ≤ u (recall that η > ‖ξ‖∞ and see hypothesis H(β)).

Also in (80), we choose h = (u − uμ)+ ∈ W 1,p(Ω). Then

〈A(u), (u − uμ)+〉 +
∫

Ω
(ξ(z) + η)u p−1(u − uμ)+dz +

∫

∂Ω
β(z)u p−1(u − uμ)+dσ

=
∫

Ω
[(λ + η)u p−1

μ + f (z, uμ)](u − uμ)+dz (see (76), (79))

≤
∫

Ω
[(μ + η)u p−1

μ + f (z, uμ)](u − uμ)+dz (since λ < μ)

= 〈A(uμ), (u − uμ)+〉 +
∫

Ω
(ξ(z) + η)u p−1

μ (u − uμ)+dz +
∫

∂Ω
β(z)u p−1

μ (u − uμ)+dσ
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(since uμ ∈ S(μ)),

⇒ 〈A(u) − A(uμ), (u − uμ)+〉 +
∫

Ω
(ξ(z) + η)(u p−1 − u p−1

μ )(u − uμ)+dz

+
∫

∂Ω
β(z)(u p−1 − u p−1

μ )(u − uμ)+dσ ≤ 0,

⇒ u ≤ uμ.

So, we have proved that

u ∈ [uλ, uμ],
⇒ K ĵλ ⊆ [uλ, uμ]. (81)

Since η > ‖ξ‖∞, from (76) and (79) it follows that ĵλ is coercive. Also, the Sobolev
embedding theorem and the compactness of the trace map imply that ĵλ is sequentially
weakly lower semicontinuous. So, from the Weierstrass-Tonelli theorem, we can find
ũλ ∈ W 1,p(Ω) s.t.

ĵλ(̃uλ) = inf
[
ĵλ(u) : u ∈ W 1,p(Ω)

]
,

⇒ ũλ ∈ K ĵλ ⊆ [uλ, uμ] (see (81)). (82)

If ũλ = uλ, then from (76), (79) and (82), we see that

ũλ ∈ S(λ) ⊆ D+, uλ ≤ ũλ, ũλ = uλ.

So, this is the desired second solution of (Pλ) and we are done.
Therefore, we assume that ũλ = uλ. From Proposition 19, we have

uμ − uλ ∈ int Ĉ+ (recall that uλ = uλ). (83)

From (76) and (79) it is clear that

ĵλ
∣
∣[0,uμ] = jλ

∣
∣[0,uμ].

From this equality and (83) we infer that

uλ is a local C1(Ω)-minimizer of jλ,

⇒ uλ is a local W 1,p(Ω)-minimizer of jλ (see Proposition 3).

This proves the Claim.
In proving (81), we established that

K jλ ⊆ [uλ) = {u ∈ W 1,p(Ω) : uλ(z) ≤ u(z) for a.a. z ∈ Ω}. (84)
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We assume that K jλ is finite or otherwise (84) implies that we already have a whole
sequence of distinct positive solutions of (Pλ), all bigger that uλ, hence we are done.
Then we can find ρ ∈ (0, 1) small s.t.

jλ(uλ) < inf [ jλ(u) : ‖u − uλ‖ = ρ] = mλ
ρ (85)

(see Aizicovici–Papageorgiou–Staicu [1], proof of Proposition 29). Note that hypoth-
esis H6(ii) and (76) imply that

jλ(t û1) → −∞ as t → +∞. (86)

From (78), (85) and (86) we see that we can apply the mountain pass theorem and find
ûλ ∈ W 1,p(Ω) s.t.

ûλ ∈ K jλ and mλ
ρ ≤ jλ(̂uλ). (87)

From (76), (84), (85) and (87), we infer that

ûλ ∈ S(λ) ⊆ D+, uλ ≤ ûλ, ûλ = uλ. ��
So, summarizing the situation for problem (Pλ) when the perturbation f (z, ·) is

(p − 1)-superlinear, we have the following theorem

Theorem 2 If hypotheses H(ξ), H(β)2, H6 hold, then

(a) for all λ ≥ λ̂1 problem (Pλ) has no positive solution;
(b) for all λ < λ̂1 problem (Pλ) has at least two positive solutions

uλ, ûλ ∈ D+, uλ ≤ ûλ, ûλ = uλ;

(c) for all λ < λ̂1 problem (Pλ) has a smallest positive solution uλ ∈ D+ and the
map λ → uλ from L = (−∞, λ̂1) into C1(Ω) is strictly increasing and left
continuous.
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