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Abstract
We introduce new classes of meromorphic harmonic univalent functions. Using the
duality principle, we obtain the duals of such classes of functions leading to coefficient
bounds, extreme points and some applications for these functions.
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1 Introduction

A continuous function f = u+ iv is a complex-valued harmonic function in a domain
D⊂C if both u and v are real harmonic in D. In any simply connected domain D, we
write f = h+g, where h and g are analytic in D. A necessary and sufficient condition
for f to be locally one-to-one and orientation preserving in D is that |g′(z)| < |h′(z)|
for z ∈ D (see Clunie and Sheil-Small [4]). Functions that are harmonic and univalent
in D = {z : |z| > 1} are investigated by Hengartner and Schober [7]. In particular, it
was shown in [7] that a complex-valued, harmonic, orientation preserving univalent
mapping f , defined on D and satisfying f (∞) = ∞, must admit the representation

f (z) = h(z) + g(z) + A log |z| (1)

where h(z) = αz + ∑∞
n=0 anz

−n , g(z) = βz + ∑∞
n=0 bnz

−n , 0 ≤ |β| < |α|, and
ω = f z/ fz is analytic and satisfies |ω(z)| < 1 for z ∈ D. We remove the logarithmic
singularity in (1) by letting A = 0 and also letα = 1 andβ = 0 and focus on the family
�H of meromorphic harmonic orientation preserving univalent mappings of the form
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f (z) = h(z) + g(z)

where
h(z) = z +

∑∞
n=1

anz
−n , g(z) =

∑∞
n=1

bnz
−n . (2)

We say that a function f ∈ �H is harmonic starlike in D if

∂

∂t

(
arg f

(
reit

))
≥ 0

or

Re
DH f (z)

f (z)
≥ 0

where z = reit∈D, 0≤t≤2π , and

DH f (z) = zh′(z) − zg′(z) = z −
∞∑

n=1

n
(
anz

−n − bnz−n
)

.

For l = 1, 2 and functions fl ∈ �H of the form

fl(z) = z +
∞∑

n=1

(
al,nz

−n + bl,nz−n
)

(3)

we definethe convolution of f1 and f2 by

( f1 ∗ f2) (z) = f1(z) ∗ f2(z) = z +
∞∑

n=1

(
a1,na2,nz

−n + b1,nb2,nz−n
)

.

For m ∈ N0 := {0} ∪N = {1, 2, ...} and f = h + g∈�H we define the linear operator
Dm
H : �H → �H by

Dm
H := Dm

H f (z) = Dmh(z) + (−1)m Dmg(z)

= z +
∞∑

n=1

mn

{
anz

−n + (−1)m bnz−n
}

where

Dmh(z) = h(z) ∗
(

z + (−1)m

z(1 − 1
z )

m+1

)

= h(z) ∗
(

z + (−z)m

(z − 1)m+1

)

,

m1 = 1,mn = (m + 1) · . . . · (m + n − 1)

(n − 1)! ; (n = 2, 3, ...) .

We note that D0
H f = f and D1

H f = DH f .
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In 2008Mauir [13] considered a weak subordination for complex-valued harmonic
functions defined in the open unit disk � := {z : |z| < 1}. In [8] Jahangiri (see also
[10]) investigated the classes of harmonic meromorphic starlike and convex functions
of order γ. To obtain some generalizations of these classes we introduce definition of
weak subordination for complex-valued functions in D.

A complex-valued function f in D is said to be weakly subordinate to a complex-
valued function F in D, and we write f (z) � F(z) (or simply f � F), if f (∞) =
F(∞) and f (D) ⊂ F(D).

If f � F and F is univalent in D, then we can consider the function ω (z) =
F−1 ( f (z)) , z ∈ D which maps D into oneself with ω(∞) = ∞. Conversely, if
ω (z) = F−1 ( f (z)) , z ∈ D, maps D into oneself with ω(∞) = ∞, then f � F .

Thus, we have the following equivalence.

Lemma 1 A complex-valued function f in D is weakly subordinate to a function
complex-valued function F in D if and only if there exists a complex-valued function
ω which maps D into oneself with ω(∞) = ∞ such that f (z) = F(ω(z)), z ∈ D.

The following two subclasses of �H are the main focus of this paper.
For −B ≤ A < B ≤ 1 let �m

H (A, B) be the class of functions f ∈ �H so that

DH
(
Dm
H f (z)

)

Dm
H f (z)

� A + z

B + z

and V
m
H (A, B) be the class of functions f ∈�H so that

Dm
H f (z)

z
� A + z

B + z
.

In particular, for m = 0,m = 1, we obtain classes studied in [5]. The classes
�∗
H(γ ) := �1

H(2γ −1, 1)and�c
H(γ ) := �1

H(2γ −1, 1) are investigated by Jahangiri
[8]. The classes �∗

H := �∗
H(0) and �c

H := �c
H(0) are the classes of functions

f ∈ �H (k) which are starlike in U (r) or convex in U (r) , respectively, for all r > 1
(see [10]).

We further letTη be the class of functions f = h+g ∈ �Hwith varying coefficients
(e.g. see [9]) for which there exists a real number η so that

f (z) = h(z) + g(z) = z +
∞∑

n=2

ei(n+1)η |an | z−n + (−1)m+1
∞∑

n=2

ei(n−1)η |bn | z−n (4)

and �m
η (A, B) := Tη ∩ �m

H (A, B) and Vm
η (A, B) := Tη ∩ Vm

H (A, B) .

2 Dual sets and coefficient bounds

Here we make use of the “duality principle” defined by Ruscheweyh ([14] , Chapter
1). For the set V ⊂�H we define the dual set of V by

V∗ = { f2 ∈ �H|∀ f1∈V : ( f1 ∗ f2) (z) �= 0; z ∈ D} .
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Consequently, the second dual of V or the dual of V∗ is defined as

V∗∗ = (V∗)∗ = {
f3 ∈ �H|∀ f2∈V∗ : ( f2 ∗ f3) (z) �= 0; z ∈ D

}
.

This duality principle indicates that under fairly weak conditions on V which is a
subset of �H, many linear and other extremal problems in the second dual of V are
solved in V . This is a very useful tool since in many cases of interest (such as convex,
starlike or close-to-convex harmonic univalent functions), the set V∗∗ is much larger
than the set V . This, on its own right, would be a separate endeavor and research topic
that can be explored further which is not the focus of the present paper. The following
theorem presents a duality condition for the set �m

H(A, B).

Theorem 1
�m
H (A, B) = {

ψξ : |ξ | = 1
}∗

,

where

ψξ (z) := (B − A) z + (−1)m+1 (B + A + 2ξ) z − (1 + m) ξ + (λB + A)

(1 − z)m+2 zm

+ (−1)m+1 (2ξ + B + A) z

+ (B − A) z + (1 − m) ξ − (λB − A)

(1 − z)m+2 zm; (z ∈ D) .

Proof Let f ∈ �H. Then f ∈ �m
H (A, B) if and only if

DH
(
Dm
H f

)
(z)

Dm
H f (z)

�= A + ξ

B + ξ
; (z ∈ D, |ξ | = 1) . (5)

Since

DH
(
Dm
Hh

)
(z) = z

(
Dm
Hh

)′
(z) = h (z) ∗

{

z

(

z + (−z)m

(z − 1)m+1

)′}

= h (z) ∗
(

z − (z − m) (−z)m

(z − 1)m+2

)

,

the above inequality (5) yields

(B + ξ) DH
(
Dm
H f

)
(z) − (A + ξ) Dm

H f (z)

= (B + ξ) DH
(
Dm
Hh

)
(z) − (A + ξ) Dm

Hh (z)

− (−1)m
[
(B + ξ) DH

(
Dm
Hg

)
(z) + (A + ξ) Dm

Hh (z)
]

= h (z) ∗
(

(B + ξ)

(

z − (z − m) (−z)m

(z − 1)m+2

)

− (A + ξ)

(

z + (−z)m

(z − 1)m+1

))

− (−1)m g (z) ∗
(

(B + ξ)

(

z − (z − m) (z)m

(z − 1)m+2

)
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+ (A + ξ)

(

z + (−z)m

(z − 1)m+1

))

= f (z) ∗ ψξ (z) �= 0.

Thus, f ∈ �m
H (A, B) if and only if f (z) ∗ ψξ (z) �= 0 i.e. �m

H (A, B) =
{
ψξ : |ξ | = 1

}∗. ��
A similar argument can be used to obtain a duality condition for the set Vm

H(A, B).

Theorem 2
V
m
H (A, B) = {

δξ : |ξ | = 1
}∗

,

where

δξ (z) : = (B − A) z + (−1)m+1 (1 + Bξ) zm

(z − 1)m+1

+ (−1)m (B + ξ) z − (B + ξ) zm

(z − 1)m+1 (z ∈ D) .

Next we determine sufficient coefficient bounds for function in �m
H (A, B).

Theorem 3 Let f = h + g be of the form (2) and −B ≤ A < B ≤ 1. If

∞∑

n=1

mn {(n(1 + B) + (1 + A)) |an| + (n(1 + B) − (1 + A)) |bn|} ≤ B − A,

then f is univalent and orientation preserving in D and f ∈ �m
H (A, B).

Proof The univalency and orientation preserving of the function f follows by a result
of Jahangiri and Silverman ([10], Theorem 1) since

n(B − A)≤mn(n(1 + B) − (1 + A))≤mn(n(1 + B) + (1 + A)).

Therefore, by Lemma 1 f ∈ �m
H (A, B) if and only if there exists a complex-valued

function ω where ω(∞) = ∞, |ω(z)| > 1 and z ∈ D such that

DH
(
Dm
H f

)
(z)

Dm
H f (z)

= A + ω(z)

B + ω(z)

or equivalently ∣
∣
∣
∣
∣

DH
(
Dm
H f

)
(z) − Dm

H f (z)

BDH
(
Dm
H f

)
(z) − A

(
Dm
H f (z)

)
(z)

∣
∣
∣
∣
∣
< 1. (6)

Thus for z ∈ D it suffices to show that

∣
∣DH

(
Dm
H f

)
(z) − Dm

H f (z)
∣
∣ − ∣

∣BDH
(
Dm
H f

)
(z) − Dm

H f (z)
∣
∣ < 0.
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Indeed, letting |z| = r (r > 1) we have

∣
∣DH

(
Dm
H f

)
(z) − Dm

H f (z)
∣
∣ − ∣

∣BDH
(
Dm
H f

)
(z) − Dm

H f (z)
∣
∣

=
∣
∣
∣
∣
∣

∞∑

n=1

(n + 1)mnanz
−n − (−1)m

∞∑

n=1

(n − 1)mnbnz
−n

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣
(B − A) z +

∞∑

n=1

(Bn + A)mnanz
−n + (−1)m

∞∑

n=1

(Bn − A)mnbnz
−n

∣
∣
∣
∣
∣

≤
∞∑

n=1

(n + 1)mn |an| r−n +
∞∑

n=1

(n − 1)mn |bn| r−n − (B − A) r

+
∞∑

n=1

(Bn + A)mn |an| r−n +
∞∑

n=1

(Bn − A)mn |bn| r−n

≤ r

{ ∞∑

n=1

(αn |an| + βn |bn|) r−n−1 − (B − A)

}

< 0

where αn = mn(n(1 + B) + (1 + A)) and βn = mn(n(1 + B) − (1 + A))). Thus,
according to the hypothesis of the theorem, f ∈ �m

H (A, B). ��

The sufficient coefficient bound given in Theorem 3 is also necessary for functions
to be in the class �m

η (A, B) as stated in the following theorem.

Theorem 4 Let f = h + g be of the form (4) and −B ≤ A < B ≤ 1. Then f ∈
�m

η (A, B) if and only if

∞∑

n=1

mn {(n(1 + B) + (1 + A)) |an| + (n(1 + B) − (1 + A)) |bn|} ≤ B − A.

Proof The “if ” part follows from Theorem 3. For the “only-if ” part, assume that
f ∈ �m

η (A, B), then by (6) we have

∣
∣
∣
∣
∣
∣
∣
∣

∞∑
n=1

mn
{
(n + 1) anz−n − (−1)m (n − 1) bnz−n}

(B − A) z −
∞∑
n=1

mn
{
(Bn + A) anz−n − (−1)m (Bn − A) bnz−n}

∣
∣
∣
∣
∣
∣
∣
∣

< 1 (z ∈ D).

Therefore, by (4) for z = reiη (r > 1), we obtain

∑∞
n=1 {(n + 1) |mn| |an| + (n − 1) |mn| |bn|} r−n−1

(B − A) − ∑∞
n=1 {(Bn + A) |mn| |an| + (Bn − A) |mn| |bn|} r−n−1

< 1. (7)
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It is clear that the denominator of the ratio in the inequality (7) cannot vanish for r > 1.
Moreover, it is positive as r→∞ and consequently for r > 1. Thus, we must have

∞∑

n=1

(αn |an| + βn |bn|) r−n−1 < B − A(r > 1) (8)

where αn = mn(n(1 + B) + (1 + A)) and βn = mn(n(1 + B) − (1 + A))). The
sequence of partial sums {Sn} associated with the series

∑∞
n=1 (αn |an| + βn |bn|) is

a non-decreasing sequence. Moreover, by (8), it is bounded above by B − A. Hence,
the sequence {Sn} is convergent and

∞∑

n=1

(αn |an| + βn |bn|) = lim
n→∞{Sn}≤B − A.

��
A similar argument can be used to prove the following theorem.

Theorem 5 Let f = h + g be of the form (2) and −B ≤ A < B ≤ 1. Then f ∈
V
m
η (A, B) if and only if

∞∑

n=1

mn (|an| + |bn|) ≤ B − A

1 + B
.

As a consequence of Theorems 4 and 5 we have the following corollary.

Corollary 1 For −B ≤ A < B ≤ 1 let a = 1+A
1+B ,

φ (z) = z +
∞∑

n=1

(
1

n − a
z−n + 1

n + a
z−n

)

(z ∈ D) ,

ω (z) = z +
∞∑

n=1

(
(n − a) z−n + (n + a) z−n

)
(z ∈ D) .

Then

f ∈ V
m
η (A, B) ⇔ f ∗ φ ∈ �m

η (A, B),

f ∈ �m
η (A, B) ⇔ f ∗ ω ∈ V

m
η (A, B).

3 Extreme points

The Krein-Milman theorem (see [11]) is fundamental in the theory of extreme points.
In particular, it implies the following lemma.
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Lemma 2 LetF be a non-empty compact convex subset of the set�H andJ : �H →
R be a real-valued, continuous and convex functional on F . Then

max {J ( f ) : f ∈ F} = max {J ( f ) : f ∈ EF} ,

where EF denotes the set of extreme points of F .

Since �H is a complete metric space, Montel’s theorem [12] implies the following
lemma.

Lemma 3 A set F ⊂ �H is compact if and only if F is closed and locally uniformly
bounded.

Now we are equipped to state and prove the two main theorems in this section.

Theorem 6 The set �m
η (A, B) is a convex and compact subset of �H.

Proof For l = 1, 2 let fl ∈ �m
η (A, B) be functions of the form (3), 0 ≤ γ ≤ 1. Since

γ f1(z) + (1 − γ ) f2 (z) = z +
∞∑

n=1

{(
γ a1,n + (1 − γ ) a2,n

)
z−n

+(
γ b1,n + (1 − γ ) b2,n

)
z−n

}
,

and since for

αn = mn(n(1 + B) + (1 + A)), βn = mn(n(1 + B) − (1 + A))) (9)

(by Theorem 4), we have

∞∑

n=1

{
αn

∣
∣γ a1,n + (1 − γ ) a2,n

∣
∣ + βn

∣
∣γ b1,n + (1 − γ ) b2,n

∣
∣
}

≤ γ

∞∑

n=1

{
αn

∣
∣a1,n

∣
∣ + βn

∣
∣b1,n

∣
∣
} + (1 − γ )

∞∑

n=1

{
αn

∣
∣a2,n

∣
∣ + βn

∣
∣b2,n

∣
∣
}

≤ γ (B − A) + (1 − γ ) (B − A) = B − A,

the function φ = γ f1 + (1 − γ ) f2 belongs to the class �m
η (A, B). Hence, the set

�m
η (A, B) is convex. Furthermore, for f ∈ �m

η (A, B) and |z| = r > 1 we have

| f (z)| ≤ r +
∞∑

n=1

(|an| + |bn|) r−n ≤ r +
∞∑

n=1

(αn |an| + βn |bn|) ≤ r + (B − A) .
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Thus, the class �m
η (A, B) is locally uniformly bounded. Now, by Lemma 3, we only

need to show that it is closed i.e. if fl ∈ �m
η (A, B) and fl → f then f ∈ �m

η (A, B).

Let fl and f be given by (3) and (4), respectively. Using Theorem 4 we have

∞∑

n=1

(
αn

∣
∣al,n

∣
∣ + βn

∣
∣bl,n

∣
∣
) ≤ B − A (l ∈ N) . (10)

Since fl → f , we conclude that al,n → an and bl,n → bn as l → ∞ (n ∈ N). The
sequence of partial sums {Sn} associated with the series ∑∞

n=1 (αn |an| + βn |bn|) is a
non-decreasing sequence.Moreover, by (10), it is bounded above by B−A.Therefore,
the sequence{Sn} is convergent and

∞∑

n=1

(αn |an| + βn |bn|) = lim
n→∞ Sn ≤ B − A.

This implies that f ∈ �m
η (A, B) which completes the proof. ��

In the following theorem we determine the extreme points of �m
η (A, B).

Theorem 7
E�m

η (A, B) = {hn : n ∈ N0} ∪ {gn : n ∈ N} ,

where

h0(z) = z, hn(z) = z + (B − A) ei(1+n)η

mn(n(1 + B) + (1 + A))
z−n,

gn(z) = z + (−1)m+1 (B − A) ei(1−n)η

mn(n(1 + B) − (1 + A)))
z−n (z ∈ D) . (11)

Proof Suppose that 0 < γ < 1 and gn = γ f1+(1 − γ ) f2 where f1, f2 ∈ �m
η (A, B)

are functions of the form (3) and let αn, βn be defined by (9). Then
∣
∣b1,n

∣
∣ = ∣

∣b2,n
∣
∣ =

B−A
βn

and consequently a1,n = a2,n = 0 and b1,k = b2,k = 0 for k ∈ N� {n} . It
follows that gn = f1 = f2, and so gn ∈ �m

η (A, B). Similarly, we can verify that
the functions hn of the form (11) are the extreme pointsof the class �m

η (A, B). Now,
suppose that the function f belongs to the set E�m

η (A, B) and f is not of the form
(11). Then there exists s ∈ N such that

0 < |as | <
B − A

αs
or 0 < |bs | <

B − A

βs
.

If 0 < |as | < B−A
αs

, then setting

γ = αs |as |
B − A

and ϕ = 1

1 − γ
( f − γ hs) ,

wehave thaths �= ϕ and so f = γ hs+(1 − γ ) ϕ, 0 < γ < 1.Thus, f /∈ E�m
η (A, B).
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Similarly, if 0 < |bs | < B−A
βn

, then setting

γ = βs |bs |
B − A

, φ = 1

1 − γ
( f − γ gs) ,

we have that gs �= φ and so f = γ gs + (1 − γ ) φ, 0 < γ < 1.
It follows that f /∈ E�m

η (A, B) and so the proof is completed. ��

4 Applications

It is clear that if the class
F = { fn ∈ �H : n ∈ N} ,

is locally uniformly bounded, then

coF =
{ ∞∑

n=1

γn fn :
∞∑

n=1

γn = 1, γn ≥ 0 (n ∈ N)

}

.

Thus, by Theorem 7, we have the following corollary.

Corollary 2

�m
η (A, B) :=

{ ∞∑

n=0

γnhn +
∞∑

n=1

δngn :
∞∑

n=0

γn +
∞∑

n=1

δn = 1, γn ≥ 0, δn ≥ 0

}

where hn and gn are given by (11).

For f ∈ �H, γ ≥ 1 and r > 1 the real-valued functional

J ( f ) =
⎛

⎝ 1

2π

2π∫

0

∣
∣
∣ f

(
reiθ

)∣
∣
∣
γ

dθ

⎞

⎠

1/γ

is continuous and convex on �H.

Moreover, for f ∈ �H, z ∈ D and each fixed n ∈ N the real-valued functionals
J1 ( f ) = an , J2 ( f ) = bn , J3 ( f ) = | f (z)| and J4 ( f ) = |DH f (z)| are also
continuous and convex on �H.

These in conjunction with Lemma 2 yield the following corollaries.

Corollary 3 Let f ∈ �m
η (A, B). Then

|an| ≤ B − A

mn(n(1 + B) + (1 + A))
and |bn| ≤ B − A

mn(n(1 + B) − (1 + A)))
.

The result is sharp and the functions hn and gn of the form (11) are the extremal
functions.
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Corollary 4 Let f ∈ �m
η (A, B). Then

r − 1

r
≤ | f (z)| ≤ r + 1

r

and

r − 1

r
≤ |DH f (z)| ≤ r + 1

r
.

The result is sharp and the extremal function is given by (11).

The following covering result follows from Corollary 4.

Corollary 5 If f ∈ �m
η (A, B), then D (2) ⊂ f (D) .

Corollary 6 Let r > 1 and γ ≥ 1. If f ∈ �m
η (A, B), then

1

2π

2π∫

0

∣
∣
∣ f (reiθ )

∣
∣
∣
γ

dθ ≤ 1

2π

2π∫

0

∣
∣
∣
∣r − 1

reiθ

∣
∣
∣
∣

γ

dθ,

1

2π

2π∫

0

|DH f (z)|γ dθ ≤ 1

2π

2π∫

0

∣
∣
∣
∣r − 1

reiθ

∣
∣
∣
∣

γ

dθ.

Corollary 7 The class V
m
η (A, B) is a convex compact subset of �H. Moreover,

EV
m
η (A, B) = {hn : n ∈ N0} ∪ {gn : n ∈ N}

and

V
m
η (A, B) =

{ ∞∑

n=0

γnhn +
∞∑

n=1

δngn :
∑∞

n=0
γn +

∑∞
n=1

δn = 1, γn ≥ 0, δn ≥0

}

where h0(z) = z, and

hn(z) = z + (B − A) ei(1+n)η

(1 + B)mn
z−n,

gn(z) = z + (−1)m+1 (B − A) ei(1−n)η

(1 + B)mn
z−n . (12)

Corollary 8 Let f ∈ V
m
η (A, B) be a function of the form (4) . Then

|an| ≤ B − A

(1 + B)mn
, |bn| ≤ B − A

(1 + B)mn
(n ∈ N),

r − B − A

(1 + B) r
≤ | f (z)| ≤ r + B − A

(1 + B) r
,
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r − B − A

(1 + B) r
≤ |DH f (z)| ≤ r + B − A

(1 + B) r
,

1

2π

2π∫

0

∣
∣
∣ f (reiθ )

∣
∣
∣
γ

dθ ≤ 1

2π

2π∫

0

∣
∣
∣
∣r − B − A

(1 + B) reiθ

∣
∣
∣
∣

γ

dθ,

1

2π

2π∫

0

∣
∣
∣DH f (reiθ )

∣
∣
∣
γ

dθ ≤ 1

2π

2π∫

0

∣
∣
∣
∣r − B − A

(1 + B) reiθ

∣
∣
∣
∣

γ

dθ.

The results are sharp and the functions hn and gn of the form (12) are the extremal
functions.

Corollary 9 If f ∈ V
m
η (A, B), then D (r) ⊂ f (D) where

r = 1 + B − A

1 + B
.

Remark 1 The classes �m
H(A, B) and V

m
H(A, B) for different values of m, A and B

give various well-known as well as new classes of meromorphic harmonic univalent
functions (see for example [2,3,5,6,8,10]).
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