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Abstract

We deduce Paley—Wiener results in the Bargmann setting. At the same time we deduce
characterisations of Pilipovi¢ spaces of low orders. In particular we improve the
characterisation of the Grochenig test function space H),, = Sc, deduced in Toft
(J Pseudo-Differ Oper Appl 8:83-139, 2017).

Mathematics Subject Classification Primary 46F05 - 32A25 - 32A36; Secondary
35Q40 - 30Gxx

1 Introduction
Paley—Wiener theorems characterize functions and distributions with certain restricted
supports in terms of estimates of their Fourier—-Laplace transforms. For example, let
f be a distribution on R? and let B,,(0) < R be the ball with center at origin and
radius ro. Then f is supported in B, (0) if and only if

IF©OI S Ve OL ¢ e e,
for some N > 0. Furthermore, f is supported in B,,(0) and smooth, if and only if

17O S (g)Nerom@I e ¢,

for every N > 0.
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A similar approach for ultra-regular functions of Gevrey types and corresponding
ultra-distribution spaces can be done. In fact, lets > 1, D; (Rd ) be the set of all Gevrey
distributions of order s and let & (R?) be the set of all smooth functions with Gevrey
regularity s. (See [6] and Sect. 2 for notations.) Then it can be proved that f € D, (Rd)
is supported in B, (0), if and only if

1FO)] < Mm@l o od

for every r > 0. Furthermore f € & (R?) is supported in B,,(0), if and only if

Fo)l < ol m@I=rlel ™ cec

for some r > 0.

We observe that s in the latter result can not be pushed to be smaller, because if
s < 1, it does not make any sense to discuss compact support properties of D; (RY)
and & (RY).

In the paper we consider analogous Paley—Wiener properties after the Fourier—
Laplace transform above is replaced by the reproducing kernel IT4 for the Bargmann
transform, and the image spaces are replaced by suitable subspaces of entire functions
on C?. These subspaces were considered in [4,12] and are given by

Ao, (€1 = | Arp, (€9, A, (Ch) = () Arp, (C9,

r>0 r>0 (11)
A€ = A (€, Ao (C) = [ Ars(Ch,

r>0 r>0

wheno > 0and 0 < 5 < %, where A, (C%) and A, ;(C?) are the sets of all entire
F on C4 such that

20 1
|F(z)] < e respective |F(z)] < e log@) ==

The spaces in (1.1) appear naturally when considering the Bargmann transform images
of extended classes of Fourier invariant Gelfand—Shilov spaces, called Pilipovi¢ spaces
(see [4,12]).

If (z, w) is the scalar product of z, w € C4, then the reproducing kernel of the
Bargmann transform is given by

(MAF)(2) = 1~ (F, &)1
when F is a suitable function or (ultra-)distribution. If

2 F(2)eR=12P ¢ L1cd), R>0 (1.2)
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holds and dA(w) is the Lebesgue measure on C4, then

(MAF)(z) = n—d/
C

F(w)e@W =1 g5 (w).
d
A recent Paley—Wiener result with respect to the transform IT4 and image spaces
(1.1) is given in [12], where it is proved that if LSO(Cd) = &'(C% N L>®(C?), then

A (&' (CY)) = AL (CY) = Ay, (CY). (1.3)

Evidently, L?o(Cd ) € &'(CY), and the gap between these spaces are rather large. It
might therefore be somewhat surprising that the first equality holds in (1.3).

In Sect. 3 we improve (1.3) in different ways. Firstly we show that we may replace
LL‘?O(Cd) in (1.3) with the smaller space L%‘fC(Cd) given by

LY (€ =LY .(K),

where L5 (K) is the set of all F' - xx, where F is analytic in a neighbourhood of the
compact set K and g is the characteristic function of K. Secondly, we may replace
&' (C%) with the set €§(Cd ) of all compactly supported Gevrey distributions of order
s > 1. Summing up we improve (1.3) into

MA(E[(CY) = ALY (CD) = A, (CY), s> 1. (1.3)

In Sect. 3 we also deduce various kinds of related mapping properties when A, (€%
in (1.3) is replaced by any of the spaces in (1.1). More precisely, let x € LSO(Cd) be
non-negative, radial symmetric in each complex variable z; and bounded from below
by a positive constant near origin. Then we prove

Ay, (€ 30 = A, (€0, 0 € (1), 00 = .

Ma(As,y (Ch) - x) = Ay, (€, o €(0,5), 00 =

)

1—-20
MA(A(CY) - x) = A€, sel0,)),

and similarly for o = % and when A,, and A are replaced by Ag, and Ao,

respectively. (Cf. Theorems 3.2-3.8 and Propositions 3.9-3.11.)

Finally, in Sect. 4 we use the results in Sect. 3 to deduce characterizations of
Pilipovi¢ spaces of small orders. We remark that some continuations of the present
analysis, involving larger spaces of analytic functions or formal power series expan-
sions, can be found in [13].
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2 Preliminaries

In this section we recall some basic facts. We start by discussing Pilipovié spaces and
some of their properties. Then we recall some facts on modulation spaces. Finally
we recall the Bargmann transform and some of its mapping properties, and introduce
suitable classes of entire functions on C.

2.1 The Pilipovi¢ spaces

In order to define Pilipovié spaces we recall the definition of Hermite functions. We
recall that the Hermite function of order @ € N is defined by

Ix|2

ho(x) = w5 (D)2l @lal) "1 (9211,
It follows that

-4 la| _1 k2
he(x) =n~3Q2%al)"2e” 2 py(x),

for some polynomial p, on R¢, which is called the Hermite polynomial of order «. The
Hermite functions are eigenfunctions to the Fourier transform, and to the Harmonic
oscillator H; = |x|?> — A which acts on functions and (ultra-)distributions defined on
R<. More precisely, we have

Hihy = Qla| + d)hg,  Ha = |x|* = A.

It is well-known that the set of Hermite functions is a basis for . (R?) and an
orthonormal basis for L2(R?) (cf. [10]). In particular, if f € L?(R?), then

1 172y = D len(fr @),

aeNd

where

f) =" en(f  a)ha @2.1)

aeNd

is the Hermite series expansion of f, and
cn(fo @) = (f+ha) 2re) 2.2)
is the Hermite coefficient of f of order & € R9.
In order to define the full scale of Pilipovi¢ spaces, their order s should belong to

the extended set

R, =R, U{b,: o e Ry},
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of R, with extended inequality relations as
§1 <by <s2 and by < by,

when s < % < sy and 07 < o3. (Cf. [12].)
Forsuchs and r € R‘fr we set

1 1
1.2 L.,2s
"Gt Tt )

. s € Rp\{3),
Or.s(@) = r“a!_%, s =bg, (2.3)
re, s = % o e N
and
Lot pit o
ST ) s e Ry,
/
2 @) =1 g s =b,. 2.4)
re, s = %, a e N4,

Definition 2.1 Lets € R, = R, U {0}, and let U s and 19,/’3 be as in (2.3) and (2.4).

(1) Ho(R?) consists of all finite Hermite series expansions (2.1), and H6 (R?) consists
of all formal Hermite series expansions in (2.1);
(2) if s € Ry, then H;(R?) (Ho s (R?)) consists of all f € L?(R?) such that

len(f, ha)l 5 Vs ()

holds true for some r € Ri (forevery r € Ri);
(3) ifs € Ry, then H; (RY) (Hé).s(Rd )) consists of all formal Hermite series expan-
sions in (2.1) such that '

len(fs ha)l S 0y 4 (e)

holds true for every r € Rff_ (for some r € Rff_).

The spaces H, (R?) and Ho.s (R?) are called Pilipovi¢ spaces of Roumieu respectively
Beurling type of order s, and H, (R?) and HE)’S (RY) are called Pilipovi¢ distribution
spaces of Roumieu respectively Beurling type of order s.

Remark 2.2 Let.%;(R?) and = (R?) be the Fourier invariant Gelfand—Shilov spaces of
order s € Ry and of Rourmeu and Beurling types respectively (see [12] for notations).
Then it is proved in [8,9] that

Hos(RY) = ,(RY) # {0}, s >

El

Ho,s(RY) # Z,RY) = {0}, s <

b

NS NS
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HyRY) = SR £ (0}, 5 > %

and

0| -

HyRY) #S;RY) = {0}, s <

In Proposition 2.3 below we give further characterisations of Pilipovi¢ spaces.
Next we recall the topologies for Pilipovi¢ spaces. Let s € Ry, r > 0, and let

£ l17,, and [ fllz¢; be given by

I flln,., = sup len(f, )9, (@), s €R,, (2.5)
aeNd
and
1, = sup len(f.a)Prs(@), s € Ry, 2.6)
’ aeNd

when f is a formal expansion in (2.1). Then HW(R‘[) consists of all expansions
(2.1) such that || f |3, is finite, and H;,F(Rd) consists of all expansions (2.1) such

that || f |4y is finite. It follows that both Hm(Rd ) and H;;r (R%) are Banach spaces
under the ﬁgrms f = flln,, and f— || f ”HQ-H respectively.

We let the topologies of H (RY) and Ho,x(Rd) be the inductive respectively pro-
jective limit topology of H:. -(R?) with respect to r > 0. In the same way, the
topologies of H;, (RY) and ’HEM (R9) are the projective respectively inductive limit
topology of H;; . (RY) with respect to » > 0. It follows that all the spaces in Definition
2.1 are complete, and that Hy s (RY) and H;, (RY) are Fréchet spaces with semi-norms
[ ||f||Hw and f — ||f||H;;r,respectively.

The following characterisations for Pilipovi¢ spaces can be found in [12]. The proof
is therefore omitted.

Proposition 2.3 Let s € Ry U {0} and let f € H(’)(Rd). Then f € Ho,s(Rd) (f €
Hs(RY)), if and only if f € C*®°(RY) and satisfies

o (MES SN
Nen \ VNS

for every h > 0 (for some h > 0).

From now on we let

Bl

x|
2

d(x)=m de” 2. 2.7
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2.2 Spaces of entire functions and the Bargmann transform

Let © € CY be open. Then A() is the set of all analytic functions in €. If instead
Q € €4 is closed, then A(S) is the set of all functions which are analytic in an open
neighbourhood of 2. In particular, if zp € C? is fixed, then A({zo}) is the set of all
complex-valued functions which are defined and analytic near z.

We shall now consider the Bargmann transform which is defined by the formula

R 1 2 1
@@ =7 [ exp( =22+ P +25z ) F0dy,
R4 2

when f € L2(R?) (cf. [1]). We note that for all f € L*(R%), then the Bargmann
transform U, f of f is the entire function on C¢, given by

(Vaf)() = /R e ) F)dy,

or

(Baf)2) = (f, Aa(z, -)), (2.8)

where the Bargmann kernel 2(; is given by

gz y) =77 exp (—%((z, 2+ Iy + 27z, y>) :

Here

d
(zow) =Y zjwj, whenz=(z1.....za) € CYand w = (w, ..., wg) € C,
j=1

and otherwise (-, -) denotes the duality between test function spaces and their
corresponding duals. We note that the right-hand side in (2.8) makes sense when
f € Si /2(Rd) and defines an element in A(Cd), since y — 24(z, y) can be inter-
preted as an element in S /Z(Rd ) with values in A(C?).

It was proved in [1] that f +— U, f is a bijective and isometric map from L2(Rd)
to the Hilbert space A%(C?) = B2(C%) N A(C?), where B?(C?) consists of all mea-
surable functions F on C¢ such that

%
|F|lg> = ( /C ) |F(z)|2du<z)) < oo0. (2.9)

Here diu(z) = %~ da(z), where dA(z) is the Lebesgue measure on C?. We
recall that A2(C9) and B2(C9) are Hilbert spaces, where the scalar products are given
by
(F,G)p = /4 F()G(x)du(z), F,G e B*(CY). (2.10)
C
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If F,G e A%(CY), then we set ||[F| 42 = || F| g2 and (F, G) 42 = (F, G) 2.
Furthermore, Bargmann showed that there is a convenient reproducing formula on
A2(C%). More precisely, let

(M4 F)(z) = /d F(w)e®™ du(w), (2.11)
C

when z — F(z)eRm_|Z|2 belongs to L'(C?) for every R > 0. Here

d
(z,w) = szw_j, whenz = (z1,...,24) € C4and w = (wy, ..., wy) € Cd,
j=1

is the scalar product of z € C? and w € C?. Then it is proved in [1,2] that [Ty is
the orthogonal projection of B>(C¢) onto A%(C?). In particular, [T4F = F when
F € A%2(CY).
In [1] it is also proved that
o

Vyhy = €y, where eq(2) = % zec (2.12)
ol

In particular, the Bargmann transform maps the orthonormal basis {/1 }, cne in L>(RY)
bijectively into the orthonormal basis {ey },cn¢ Of monomials in A? (Cd). Hence, there
is a natural way to identify formal Hermite series expansion by formal power series
expansions

F)= Y c(F.a)eq(2), (2.13)

aeNd

by letting the series (2.1) be mapped into

> en(f. @ea(2). (2.14)

aeNd

It follows that if f, g € L2(R?) and F, G € A%(C?), then

(f.®)r2wre) = Z en(f)en(g, a),

aeNd

(F,G)p2cty = Y c(F,a)c(G, a). (2.15)

aeNd

Here and in what follows, (-, -)2gey and (-, -) s2(ce) denote the scalar products in
L>(R?) and A%(C?), respectively. Furthermore,

ch(f,a) =c(F,a) when F =23, f. (2.16)

We now recall the following spaces of power series expansions given in [12].
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Definition 2.4 Lets € R, = R, U {0}, and let Vs and 19,/,5 be as in (2.3) and (2.4).

(1) Ag(C?) consists of all analytic polynomials on C¢, and A6(Cd) consists of all
formal power series expansions on C? in (2.13);
(2) if s € Ry, then A (CY) (Ag ;(C?)) consists of all F € L?(C?) such that

lc(F, hy)l 5 19}’,5(01)

holds true for some r > 0 (for every r > 0);
(3) ifs € Ry, then A, (C%) (A(’)’ s (C%)) consists of all formal power series expansions
in (2.13) such that

|C(F3 hl){)' 5 ﬂ}i’s(a)

holds true for every » > O (for some r > 0).

Let f € H6 (Rd) with formal Hermite series expansion (2.1). Then the Bargmann
transform U, f of f is defined to be the formal power series expansion (2.14). It
follows that U, agrees with the earlier definition when acting on L*(R?), that Uy
is linear and bijective from HE)(Rd) to A6(Cd ), and restricts to bijections from the
spaces

Hos(RY), H,RY), HLRY) and Hj (RY) (2.17)

to

Aos(Ch),  AgC?), A€ and Aj (€9 (2.18)

respectively, when s € R,. We also let the topologies of the spaces in (2.18) be
inherited from the spaces in (2.17).

Ifs € Ry, f € HyRY), g € Hi(RY), F € A (C? and G € A,(CY), then
(f, &) r2rey and (F, G) g2 (ca) are defined by the formula (2.15). It follows that (2.16)
holds for such choices of f and F. Furthermore, the duals of H; (RY) and A,(C9)
can be identified with 74 (RY) and Al (C9), respectively, through the forms in (2.15).
The same holds true with

! /
Hos, Hoyr Aos, and Ay
in place of
/ /
Hs, Hg, A, and A,
respectively, at each occurrence.

In order to identify the spaces of power series expansions above with spaces of
analytic functions, we let

1 1
r1(10g<zl))172x +...+rd(10g<zd>) -, §< %’
20 20
Mirs(2) = §rilz1|oF 4+ - 4 ryglza|oHT, s =by, o >0,
2 1 1
: 5 N 1
B —tilails 4+ 4 ralzal®), s> 1,
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1
Mo (z) = Ml,r,s(z)s s #* bR
1,r,s - 2 2 _ 1
rilzil® 4 - +ralzal®, s =3,
27T + e+ ralzal T b 1
rilzile=T + -+ ralzalo-T, s =bg, 0 >1,
My, 5(2) = 212 1 1 1
5+ rilzls + -t ralzals), s> 5,
1
0 MZ,r,s(Z)s s # 3>
MY, () = ) ) 2 (2.19)
rilzil® 4 - +ralzals, s =3,

when r € R‘i and z € C¢. For conveniency we set M, = Mjp, ,.

By [12] we have the following. The proof is therefore omitted.
Proposition 2.5 Let M s, MY M> , s and Mg be as in (2.19) when s € R, and
r e Ri. Then

1,r,s’

Aoy (Cly = {F e ACY): Fe™irs € L®(CY) foreveryr eR%}, s >0,
A (€ = {F € A(CY); Fe™Mirs € L%(C?) for somer e RL), 5 >0,
Al (Chy = {F € A(CY); FeM2rs ¢ L°(CY) for every r € R b, s> by,

Ay (€ = {F e A(CY); Fe™rs ¢ L°(CY) for some r e RYY, s >0y,

[ (Ch) = ACY) and A, (C) = A({O}).

Next we recall the link between the Bargmann transform and the short-time Fourier
transform f > V f with window function ¢ given by (2.7), defined by

VoS (. 6) = (f.¢(- —x)e ),
Let S be the dilation operator given by
(SF)(x.§) = FQ 3x, ~27%8), (2.20)
when F € Ll oc (R??). Then it follows by straight-forward computations that
(Ba @) = (Taf)x +i8) = @m) T2 (AR =itbly, £ 015, —23¢)
= (2m)f 3 IPHER) =) (51 (v, ) (x, ), (2.21)
or equivalently,
—4 o1 (xPHEP) =i x.)/2 -1 -3
Vo f(x,8) = Q2m) 2e 4 (B )27 2x, —2728)
—4 _ix.£)/)2
= (2m) e Se™ (Qldf))(x £) (2.22)
We observe that (2.21) and (2.22) can be formulated as

Vg =UsgoVy, and Uy 0By =V,
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where Usg is the linear, continuous and bijective operator on 2’ R*) ~ 9/(CY),
given by
. 1
(U F)(x, &) = 2m) Tt WPHED =ile8) pody _23¢). (2.23)

Let Dy r(z0) be the polydisc
{z=(1,..,za) €Cl5 |2y — 20l <rj, j=1,...,d},
with center and radii given by
20=(201,---,20a) €C? and r = (r1,...,rq) € (0,00)".
Then

Ach= (N ADa,@). A= | AWDwGo).

re(0,00)4 re(0,00)4

2.3 Hilbert spaces of power series expansions and analytic functions

The spaces in Definition 2.4 can also be described by related unions and intersections
of Hilbert spaces of analytic functions and power series expansions as follows. (See
also [12].)

Let ¥ be a weight on NY wbea weight on C4, and let

D=

1FlLae, oy = | 22 le(F a)p @] (224)

aeNd

when F € A} (C?) is given by (2.13), and

1

2
1Fllaz, e = ( | |F<z>w<2%2)|2dmz>> 2.25)
0} cd

when F € A(C?). We let A[zm(Cd) be the setof all F € A6(Cd) such that ||F||A%0] is
finite, and Afw) (C%) be the set of all F € A(C?) such that || F|| a2, is finite. It follows

that these spaces are Hilbert spaces under these norms.
If ¥ and w are related to each others as

1
2
¥ @) = (l f wo(r)*r® dr) (2.26)
o! Ri

and

I
2

0@ =eZw(z1l ..., |zal). (2.27)
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for some suitable weight wy on RZ, then the following multi-dimensional version

of [7, Theorem (4.1)] shows that Aw](Cd) = A%w) (C%) with equal norms. Here we

identify entire functions with their power series expansions at origin. Consequently,

the Bargmann transform is bijective and isometric from H[zlﬂ (Rd) to A%w) (Cd) for such

choices of ¥ and w. We omit the proof since the result is an immediate consequence
of [12, Theorem 3.5].

Theorem 2.6 Let « € N¢ and wq be a positive measurable function on Ri. Also let
¥ and w be weights on N¢ and C%, respectively, related to each others by (2.26) and

(2.27), and such that
Jee]
r d
T S (@), aeN, (2.28)

()2

holds for every r > 0. Then Afﬁ] (€4 = A%w) (C%) with equality in norms.

In our situation, the involved weights should satisfy a split condition. In one dimen-
sion, (2.26), (2.27) and (2.28) take the forms

1

1 2
%Wﬂ=c—/'mﬂﬁﬂwo, aj €N, (2.26)
CY]' R,
L1 5
wj(zj) =e T woj(Iz;17), z;€C (2.27)
and

rlajl

- SOj(j), r>0, a; €N (2.28)
(a;h)2

Lemma 2.7 Let woy,j be weights on R, w;j be weights on C and ¥ be weights on
N such that (2.26)~(2.28) hold, j = 1,...,d, and set wy(z) = ]_[?:1 wo,j(2;),
2= (21,...,2q) € CLIf 9 and w are given by (2.26), and (2.27), then

d
P =[[?@). e=(@.....00) N (2.29)
j=1

and

d
0@ =[]ewic). 1=Gi....20) e C. (2.30)
j=1
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Proof By [12, Theorem 3.5] and its proof, it follows that wg ; - r*/ € L! (R4) for all
Jj€{l,...,d} and a; € N. Hence, Fubini’s theorem gives

1

1 2 1L e
2 1—[ 2 Q)
v (Oé! /Ri ol dr) |« ;—1/0 @0.5(75) rjj ar;

1
2

(),

—

1

J

and (2.29) follows. The assertion (2.30) follows from the definitions. O

2.4 A test function space introduced by Grochenig

In this section we recall some comparison results deduced in [12], between a test
function space, S¢ (RY), introduced by Grochenig in [5] to handle modulation spaces
with elements in spaces of ultra-distributions.

The definition of S¢ (R?) is given as follows.

d X 2
Definition 2.8 Let ¢(x) = 7~ %~ . Then Sc(R%) and Sg(R?) consist of all fe
' (R?) such that f = V F, for some F € L®RYH N & RY) and F € &' (RY),
respectively.

It follows that f € Sc(R?), if and only if
F) =Qr) 0 //de F(y, n)e~2F=3Peitem gyap. (2.31)

for some F € L®(R%) N &' (RY).

Remark 2.9 By the identity (Vyh, F) = (h, Vg F) and the fact that the map (f, ¢) —
Vs f is continuous from ZRY x R to .7 (R*), it follows that f = V(;‘F is

uniquely defined as an element in .’ (Rd) when F € .7’ (R2d) (cf. [3]). In particular,
the space Sg (R?) in Definition 2.8 is well-defined, and it is evident that S¢ (R?) C
S (RY).

The following is a restatement of [12, Lemma 4.9]. The result is essential when
deducing the characterizations of Pilipovi¢ spaces in Sect. 4.

Lemma 2.10 Let F € L*°(CY)U &' (C?). Then the Bargmann transform of f = V(;‘F
is given by I1 4 Fy, where

Fo(x +i8) = Q)T F(v/2x, —/28)e2 (FPHER) g=ilx.6) (2.32)

Moreover, the images of S¢ (Rd) and Sg (Rd) under the Bargmann transform are
given by

{(TIAF; Fe L°CHNE Y} and {TIoF; F € &(CY}, (2.33)

respectively.
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The next results follow from [12, Theorem 4.10]. The proof is therefore omitted.
Proposition 2.11 It holds Sc (R?) = Sg(RY) = H,, (RY).

Due to the image properties for the spaces in Proposition 2.11 under the Bargmann
transform, the next result is equivalent with the previous one.

Proposition 2.12 The sets in (2.33) are equal to Ay, (C%.

In the next section we extend Propositions 2.11 and 2.12 by proving that the conclu-
sions in Proposition 2.12 hold for suitable smaller and larger sets than those in (2.33).
We also deduce similar identifications for other Pilipovi¢ spaces and their Bargmann
images.

3 Paley-Wiener properties for Bargmann-Pilipovic spaces

In this section we consider spaces of compactly supported functions with interiors in
A (C%orin A, (C%). We show that the images of such functions under the reproducing
kernel T4 are equal to A, (Cd ), for some other choice of s < by. Inthe first part we state
the main results given in Theorems 3.2-3.4. They are straight-forward consequences
of Propositions 3.9, where more detailed information concerning involved constants
are given. Thereafter we deduce results which are needed for their proofs. Depending
of the choice of s, there are several different situations for characterizing Ay (C).
This gives rise to a quite large flora of main results, where each one takes care of one
situation.

First we note that if A% w) = A%ﬁ], then a split of the variables in the weight w in

A%w) induce a split of the variables in ¥ in .Alzl,]. (See Lemma 2.7.)
In order to present the main results, it is suitable to make the following definition.

Definition 3.1 Lets, 1 € Ri be such that #; < ,. Then the function x € L>®(C%) is
called positive, bounded and radial symmetric with respect to ¢ and #,, if the following
conditions are fulfilled:

o x € L®(C% N &' (Dy,(0)) is non-negative;

e x(z1,...,24) = xo(lz1l, . .., |za|) for some function xo;

e x > con Dy (0) for some constant ¢ > 0.

The set of positive, bounded and radial symmetric functions with respect to ¢; and t,
is denoted by R, (C¢), and R*°(C?) is defined by

11,12

R¥CH = |J RyE,C.

d
n=<neRy

3.1 Main results

We begin with characterizing the largest spaces in our investigations, which appears
when s = by, and then proceed with spaces of decreasing order. First we recall that
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elements in A, (C?) and Ao (C?) fulfill conditions of the forms

20 20

|F(2)| S enlal 7 +tralzal ot 3.1)

when s = b, and
1 1
|F(2)] < e"130g(z1)) 1725 +-4rq (log(zq)) 12 (3.2)

when s € [0, %).

Theorem3.2 Let F € A(C%), o0 = 1 and s > 1. Then the following conditions are
equivalent:

(1) F e A, (CY;

(2) (3.1) holds for some r € RY;

(3) Forsomery € Rﬂl_ and everyr € Rff_ withrg < r andevery x € ’ng)’r(Cd), there
exists Fo € A(D,(0)) such that F = T4 (Fo - x);

(4) Forsomery € Rf{_ and everyr € Rf{_ with rg < r and some x € Rfoo’r(Cd), there
exists Fo € A(D,(0)) such that F = Tz (Fy - x);

(5) There exists Fy € &' (C%) N L®(CY) such that F = T4 Fy;

(6) There exists Fy € & (C?) such that F = T4 Fy.

Remark 3.3 Since
E'(CH N L= C &'(CY) C £(CY,
Theorem 3.2 still holds true after £, has been replaced by &” in (6).

Theorem 3.4 Let F € A(C%), 0 = 1 and x € R>®(CY). Then the following is true:
(1) The following conditions are equivalent:

(1) F € Agp, (C;
(2) (3.1) holds for every r € R%;
(3) There exists Fy € A(Cd) such that F = T1o(Foy - x);

(ii) The map F + TIA(F - x) from A(C?) to Ao p, (C%) is a homeomorphism.
The next result deals with the case when s = b, with o € (%, 1).
Theorem 3.5 Let F € A(CY), x € R®(CY), o € (3, 1) and let

R
T 201

00

Then the following is true:

(i) The following conditions are equivalent:
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(1) F € Ay, (C) (F € Aoy, (C));
(2) (3.1) holds for some (for every) r € R%;
(3) There exists Fy € Ag),bao (CH (Fy € .A{)UO (C%)) such that F = T14(Fy - x);

(ii) The mappings F v+ T14(F - x) from AE),% (€% to A, (C?) and from A/bao (€%

to Ao p, (C%) are homeomorphisms.

The next result deals with the case when s = b, with o = %
Theorem 3.6 Let F € A(C%), 0 = % and x € R®(CY). Then the following is true:
(i) The following conditions are equivalent:

(1) F e A, (C%) (F € Ay, (C9));
(2) (3.1) holds for some (for every) r € RY;
(3) There exists Fy € Aé’l/z(Cd) (Fp € Ao,l/z(Cd)) suchthat F = T4 (Fo - x);

(ii) The mappings F +> TIo(F - x) from A6,1/2(Cd) to Abl/Z(Cd) and from
Ao /Q(Cd) 10 Aoy (C%) are homeomorphisms.

The next result deals with the case when s = b, with o € (0, %).

Theorem 3.7 Let F € A(C?), x € R™(CY), o € (0, 3) and let

Then the following is true:

(i) The following conditions are equivalent:

(1) F € Ay, (Ch) (F € Ag,, (C1));
(2) (3.1) holds for some (for every) r € R%;
(3) There exists Fy € Abao (CH (Fy € AO,bUO (C%)) such that F = T z(Fy - x);

(ii) The mappings F + T1o(F - x) from Abao (C?) to Ay, (C%) and from -AO,baO (c?y
to Ao b, (C%) are homeomorphisms.

In the next result we consider the case when s € [0, %) is real.

Theorem 3.8 Let F € A(C?), x € R®(CY), s € [0, %). Then the following is true:
(1) The following conditions are equivalent:

(1) F e A(CY) (F € Ag,s(C);
(2) (3.2) holds for some (for every) r € R‘_f_;
(3) There exists Fy € A;(C?) (Fy € Ao.s (C%)) such that F = TI4(Fy - x);

(ii) The mappings F +— TIA(F - x) from As(C¢) to As(C?) and from Ao s(C?) to
Ao (Cd) are homeomorphisms.
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The previous theorems are essentially consequences of Propositions 3.9-3.11,
where more detailed information about involved constants are given.

Proposition3.9 Ler F € A(CY), 0 = 1,5 > landr € Rf{_. Then the following
conditions are equivalent:

(1) For somerg € RfjF such that ro < r, (3.1) holds with ro in place of r;

(2) For some t] € Ri such thatty < r, every ty € Ri with ty < tp < r and every
X € Rfﬁ,z (C9), there exists Fy € A(D,(0)) such that F = T14(Fy - x);

(3) For some Fy € A(D,(0)) it holds F = T15(Fo - xp,0));

(4) For some Fy € &' (D,(0)) N L®(C?) it holds F = T14 Fy;

(5) For some ry € Ri such that ro < r, there exists Fy € E[(Dy,(0)) such that
F = T4 Fp.

Theorems 3.5-3.7 essentially follow from the following proposition.

Proposition 3.10 Let 7 > % r,t1,h € Rf{_ be such that t; < ty, and let x €
R, (CY). Then the following is true:

(1) Let F € A(CY) be such that
2 2
|F(z)| < o011 TTFT trg gl2g | 24T (3.3)

holds for some ry € Ri such that ro < r. Then for some ry € Ri such that
ro < r, there exists Fy € A(Cd) such that F = T1o(Fy - x) and

2 2
|Fo(z)| < eRO,l\Zl|2T—_T+"'+RO,d\Zd|m’ (3.4)
where
2741
2t — 1 2rg \ T -5
Ro=——\2r 11 o (3-5)
(2) Letrg, Ro € Ri be such that ro < r and
241
2t —1 2rg \Z T -4
Ro=—="\acs1) 2 56

Fy € A(C?) be such that (3.4) hold and let F = T14(Fy - x). Then F € A(CY)
and satisfies (3.3) for some rg € Rf{_ such thatro <r.

Theorem 3.8 follows from the following two propositions, where the first one
concerns the case when s > 0 and the second one make a more detailed explanation
of the case s = 0, i.e. the case of analytic polynomials.

Proposition 3.11 Let s € (0, %), re Ri, and let x € R (C4). Then the following is
true:
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(1) Suppose F € A(C?) satisfies
1 1
|F(2)| < o'0.110g(z1)) T=25 --trg g (log(za)) T=2 (3.7)

for some ry € Ri such that ry < r. Then there is an Fy € A(C?) such that
F =TI4(Fp- x) and

1 1
|Fo(2)| < £/0.1(10g(21)) T=25 470 4 (log(za)) =2 (3.8)

for some ry € Ri such that ro < r;

(2) Suppose Fy € A(CY) satisfies (3.8) for some ro € Ri such that ro < r, and let
F =Tl4(Fy- x). Then F € A(C?) and satisfies (3.7) for some ry € Rf{_ such
thatrg <r.

Proposition 3.12 Ler x € R°°(CY) and let N > 0 be an integer. Then the following

is true:

(1) Suppose F € A(C?) is given by

F(2)= Y c(F,a)z% (3.9)

le| <N

where {c(F, a)}joj<n € C. Then thereisan Fy € A(C?) such that F = T 4(Fp -
x) and
Fo@) = ) c(Fo, )z, (3.10)
le|<N

where {c(Fy, @)} o)<y € C and satisfies c(Fp, o) = 0 when ¢(F,a) =0;

(2) Suppose Fy € A(CY) satisfies (3.10) for some {c(Fy, &)} joj<n € C, and let F =
[4(Fp - x). Then F € A(C?) and satisfies (3.9) for some {c(F, a)jaj<y € C
such that c(F,a) = 0 when c(Fp, o) = 0.

3.2 Preparing results and their proofs

For the proofs of Propositions 3.9-3.11 and thereby of Theorems 3.2-3.8 we need
some preparatory results. Because the proof of Proposition 3.9 needs some room, we
put parts of the statement in the following separate proposition. At the same time we
slightly refine some parts concerning the image of compactly supported elements in
L®° under the map IT4.

Proposition3.13 Lets > 1, ro,r € Ri be such that ro < r and suppose that either
Fo € E)(Dy(0), Fy € & ,(Dry(0)), Fy € &'(Dy(0) or Fy € L®(D,(0)).

Then F = T4 Fy € A(CY) and satisfies

|F(2)| < ezl tralzal
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Proof By the inclusions
& — 5(/),54-8 — gs/ = g(/),s

whene > 0, it suffices to consider the case when Fy € &;(Dy,(0)) or Fp € L*(D,(0))
hold.

Let rp = r. First suppose that Fy € £.(D;,(0)) holds, choose r; € Ri such that
ro<ry <ry,W(y,n) = e~ 3P+ and let ®,(y, n) = e@+M By identifying C?
with R?? and using the fact that Fy € &;(Dy,(0)) we obtain

1D (%) | 1~(p, 0
M Fo()] = n~9|(Fo, & )| < sup : 0r O G.11)
Is
aeN2d h\]‘ﬂa_

for every h; > 0. We also have W € & 2(R*) — & ;(R?*?), which implies
ID“W || (D,, ©0) < Wl

for every hy > 0. Furthermore,

D@ (y, | = |ma(2)e“ V] < |mg ()| 111 ralal =y i € Dy (0),

where
d

ajtog,;
me(@) =11z, zeC? aeN™

j=1

By choosing i1 = 4 and hy = 1 above, and letting y + in € Dy, (0), Leibnitz rule
gives

4711 =5 DY (D, W) (v, 1)
— —_ a -
<47 lg! SZ()'DWDZ@, M| 1D* W (y, )l

Y=«

— - o
< 47l Z( >|my(z)|(a_y)gs eIzl alzal
y<a

< g lel Z<Q)|my(z)|)/!s ezttt alzal
y=a Y

d

Vi |\ Vd+j
< sup 1_[ |Z/| ’ . _|ZJ| ! ezt trialzal (3.12)
y<a Vil VayjV

Jj=l1
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In the last inequality we have used that the number of terms in the sums are bounded
by 2/%!, and that (}) < 2* when n, k are non-negative integers such that k < n.
By combining (3.12) with the estimate

, Lo\
27 _ Az D)7 SI21
vi¥ V!

we get

aeN2d

( 1D (@ %) | 22¢(D,, (0))
sup

1 1
< 28(ztl s +tlzals) pritlzi+--4r1.alzal
h‘lalot!s ~

< grailzildAtraalzdl
S .

In the last inequality we have used the fact that r| < 7, and s > 1. From the latter
estimate and (3.11) we obtain

[T1A Fo(2)] < €r2-||Z1|+'“+r2,d|Zd|’
and the result follows when Fy € &;(Dy,(0)).

Suppose instead that Fp € L°°(Q) holds, where Q = D,,(0) C C4, and let
Qj = Dy, ;(0) < C. Then

s Fo(2)] < fQ | Fo()11e™)] d(w)

d
< I1Foll [ (/
j=1\"¢

and the result follows in this case as well. O

Zjllw; r21lz1|++r2alz
elzill /d)»(wj)) <e 2.11z11 2.d| d|,
J

In the next lemma we give options on compactly supported functions which are
mapped on the basic monomials, e, by the operator I14.

Lemma3.14 Lett|, 1) € Ri be suchthatt) < tp, x € R;’l‘flz (Cd), and let xo be such
that xo(|z1l, ..., 1zal) = x(z1, .-+ za)- If

Fa,x(z) = gaZaX(Z),

with

Co = Z_da!% /
A

then the following is true:

—1
xo@)e 2y -y du) . Ar={ueRy;u<ry,
n

(3.13)
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(1) HAFa,X = €qu;,

(2) for some constant C > 0 which only depends on || x ||, ¢ in Definition 3.1 and

the dimension d, it holds

d d
1
T [T62@ + 0 | 52t < g < ce | [To 2+ |«
j=1 j=1

1
—200a

(3.14)

Proof By using polar coordinates in each complex variable when integrating we get

a2
(Mg Fo ) @) =74 /C g e da )

= n—dga/ Ly G, 2)u® xo(wye " uy -+ ug du,
A,2

where

d d
. —if;
Iy (u, 2) :/ S TTeme | do =TT hay w2
[0,277) i

j=1

with
. —i6;
Ia,-(btj,zj)=/ ei%¢%ini¢ " dg;.
0

By Taylor expansions we get

2 ) 0 Z];u/;e—iij
— 1ajb; .
Iaj(uj,Zj)—/O e ZT d@l

k=0

00 2 k, k &j 9
— ((/ i ei(a,——k)@,- de) Z]”]) — 27TZ] u]
- ok )T N

0 ! aj.

By inserting this into (3.15) and (3.16) we get

ul

u"‘)(o(u)e_‘ 2u1 cugdu

u®z%
a'

(MaFyy)(z) =7, f @m)?
Ar,

= ngaa!fé /
A

)

and (1) follows.

(3.15)

(3.16)

W2 xoe "y g d”) eq(2) = eq(2)
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Since x is non-negative and fullfills x > ¢ on Dy, (0) we get

-1
2 1
o S el g2 / u™uy - usdu
Ay,

d 20j+2 -1 d
a2 o4 f1,j ePar [ [Ter2 20
=" al2 Y 3 =< e al2 (tlj(aj—i—l)) t
o .
j=1 it j=I1

which gives the right inequality in (3.14). By the support properties of y we also have

Su Za!% /
A

and the left inequality in (3.14) follows by similar arguments, and (2) follows. O

-1
2%y - -~u2du> ,

o)

The next lemma shows that we may estimate entire functions by different Lebesgue
norms. We omit the proof, since the result follows from [11, Theorem 3.2].

Lemma 3.15 Suppose s, € Randr,ry € Rf{_ are such that

s < =, ‘L'>—§ and ro <r.

N =

Let p,q € [1,00], F € A(Cd) and set
2 2
My r(z) = rilzi |71 4 - -+ rglzq| 7T
and
1 1
M; (z) = ri(log(z1) =% + -+ +rg(log{zq)) =% .
Then
IF - e i)l ocay SIF - e M g cay,.

The next lemma relates Lebesgue estimates of entire functions with estimates on
corresponding Taylor coefficients. Here we let the Gamma function on Ri be defined
by

d
La(xr.....xq) = [ [T,
j=1

where I' is the Gamma function on R.
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Lemma3.16 Let T > —%, r e Ri, M, be the same as in Lemma 3.15, w(z) =

e%mz_Ml-’(Z), ze€C andletag = (1,...,1) € N Also let
1
(2 1 2
9 (ar) = ((2r 4 1)(2r)~@r Dt ( (@t + a)'(“ + “0)))> .

If F € A(CY) is given by (2.13), then

=

d
”F . E_Ml’r ”LZ(C‘I) =m?2

D leF )@ |

aeNd
and Afﬁr](Cd) = A%w) (C4) with equality in norms.

Proof Since

d 2
efMLr(z) — 1_[ e—rj\zj|21+1 ’
j=1

Lemma 2.7 shows that we may assume that d = 1, giving that r = r and o9 = 1.
In view of Theorem 2.6 we have A[zﬂ](Cd ) = A%wl)(Cd) with equality in norms,
when

1 o] 217 %
1_9(0[) — (_/ e—2rt T+1 P dt) .
ol 0

1
By u = 2rt>+1 as new variables of integration we obtain

1

?(a) = ((21 + 1)(2r)7(2t+1)(0‘+1)l /oo e Uy T HD+2T du) ’
0

o!
1
— (@e-+ pian-erstiesy (L@ D )y
al ’
which implies that 6 = 0; ,, and the result follows. O

We also need the following version of Stirling’s formula.

Lemma 3.17 Let o > 0 be an integer and let T > —%. Then

(@2t 4+ D@+ D)

‘ = 27 + DD (¢ 4 )T 01?7, (3.17)
ol
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Lemma 3.17 follows by repeated applications of Stirling’s formula and the standard
limit

t
lim (1 T ;) =

—00
for every x € R. In order to be self-contained we present the arguments.

Proof The result is obviously true for « = 0. For « > 1 we have o’ < (@ + 1)*. A
combination of the the latter relations and Stirling’s formula gives

F(QT+ D@+ 1) (2t + Da+20)@rHhetis e

ol ea+21(o¢+l) anr%
Qr+1)-a+2t+3
T o
= Q2@+
Q2T+
= (27 + 1)@rHD — 5 < QT+ DO (o L 1)T2T (3.18)
and the result follows. O

Proposition 3.9 essentially follows from the following lemma.

Lemma3.18 Let v > —% andry,r € Ri be such that ro < r. Then the following is
true:

M If
2’»0 2r2+1'a
lc(F )] S (21’ n 1) al™’, (3.19)
then
2 2
|F(z)| < eVlIZl\W-F-"-HdIZd\W; (3.20)
@ If
2 2
|F(2)| < £ 0112 ZTF eetrg g2g ] 24T (3.21)
then , "y
e(F, )] < (2 il) al~? (3.22)
T

Proof Let %, be the same as in Lemma 3.16 and r| € Ri be such thatrg < r; < r.
First we prove (1). Suppose that (3.19) holds and let g = (1, ..., 1) € N4, Also let
M , be the same as in Lemma 3.15. Then Lemmas 3.15 and 3.16 give

D=

_ _ X 2
IF e ™ ooty SIF - Ml aeny < [ 3 [e(F a)ty, @)
aeNd
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1
2\ 2
ro
ri

2

aeNd

>(0t+0to)2’2+]

c(F, ), (a) (

d
sup |c(F., )9y, (@) [ [ + D73
aeNd j=l

2r41\ T
sup |C(F,Ol)|< ) al® ).
aeNd 2]"0

Here the second inequality follows from the fact that

A

X

d . 70 Qt+1)-(a+ap)
(| e+ 07 ) (2)
j=1

r
aeNd

is convergent since rg < ri, and the fifth relation follows from Lemma 3.17. This
implies that (3.20) holds and (1) follows.
Next assume that (3.21) holds. By Lemma 3.15 we get

—My —My
”F - e Lro ||LOO(CLI) Z ||F - e Lry ”LZ(Cd)

S eF ) @]’ | = sup (Ie(F. @) 9y, (@)

d
aeNd aeN

X

2r+la d

vV

2t+1\ 7 .
sup IC(F,oc)|< i ) H(aj+1)fa!f
aeNd j=l1

21”1
2741
2t +1\ 2 ¢
sup |c(F,a)|< +) o),
aeNd 2r

where the third inequality follows from Lemma 3.17. This gives (2). O

Vv

Proposition 3.11 mainly follows from the following result.

Lemma3.19 Letr,rg € Ri be such thatrg < r,s € (0, %) andlet F € A(Cd). Then
the following is true:

(1) if (3.7) holds, then

1-2s
1 1 e
o(F, @)] e~ (Rl +t Raleal ), R:S<l_zs) BERNEEE)
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(2) if Ry € Ri is given by

1-2s

L L 1—2s\ 2
|e(F, a)| S e RoalealZbtRoaleal®) Ry — ( S) . (B29
ro

then (3.7) holds with r in place of ry.

Proof Letri,r,r3 € Ri be such that | < r < rp < r3. By Lemma 2.7 we may
assume that d = 1, and by Lemma 3.15 the result follows if we prove

1 1
sup (|c(F, a)e’“'“fwz) < / |F(z)e 108D 2 12 g (2)
C

aeN

1
< sup (IC(F, a)efre® |2> , (3.25)

aeN

where Ri, R>, R3 € Ry satisfy

1-2s

1—2s\ % .
Rj: . ]:],2,3.

rj

By Theorem 2.6 we have

1
/C|F(z)e—’“°g<2>)“2“ Pdi(z) = Y le(F, )9 ()],

aeN
where
T [ . ;
Or(@) = — | e ot gy
" 2a! Jy '
Let
1 —r(lo, t)9 o
0:1 3 >1 and g () =c¢ S A
—2s

In order to prove (3.25), we need to show that

L L
et S () S e, (3.26)

which shall be reached by modifying the proof of (15) in [4].
We have

o0 o
9 (@? < f ern=ntoet o () dy
e
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o0
_ 0
Ssup(gr o) [ 17107 gr < sup(gy, o (1))

t>e e t>e

By straight-forward computations it follows that g, o (¢) attains its global maximum

for o
a2
o = eXp <(9_r> 2 ) , (3.27)

and that
) ry,oe) — exp 7 9 2s 9 — I y 2Ry-a2s
gi’l o (l ) 1 ( )O{ 2. o 1

and the second inequality in (3.26) follows.
In order to prove the first inequality in (3.26), we claim that for some ¢ which is
independent of o« we have

o
c
<1 - ) > e(r—rz)(logt,z,a)"_ (3.28)
.o

In fact, by (3.27) it follows that
lim o', = cc.

oa—> 00

This together with the fact that r < r, give

o lry o 7,,: ‘
lim <1— C) = lim ((1— C) )2 =) =1
=00 tr2.a o= trZ,m

and

|
lim —2(=20)a/r)% _

o—> 00

and (3.28) follows.
By (3.28) and the fact that % > | we get

2o L™ g L rogiy, o) @
O (a)” 2 — e "N Y dr > —e &) () o — €)
al Ji, o—c o!
1 1 o 1, % 2 %
> e 2(0g ) 4) %, =—e Roy-a2s >e R3-a2s
al > a!

This gives the result. O
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3.3 Proofs of main results

Next we prove Proposition 3.9 and thereby Theorem 3.2.

Proof of Proposition 3.9 1t is clear that (2) = (3) = (4) = (5). By Proposition 3.13 it
follows that (5) implies (1). We need to prove that (1) implies (2).

Suppose (1) holds and let 4 = r. Choose r1, 12, 3 € Ri suchthatrg <ri <rp <
r3 <rqandrirg < r22, X € RS;,S (Cd), and let F, , be as in Lemma 3.14 with r, and
r3 in place of r1 and 5. If T = 1, then Lemma 3.18 (2) gives

c(F. o) < roal™. (3.29)
Let
Fo@) =) c(F,a)cuz". (3.30)
aeNd

We claim that the series in (3.30) is uniformly convergent with respect to z in Dg(0).
In fact, if |z;| < r4,;, then (3.14) gives

lc(F, @)guz®| S (@) dry 2rird = (@) p°,

d o

where p € Ri satisfies p; = < 1. Since ), na (@) p® is convergent, Weier-

r1,jr4,j
3

strass theorem shows that (3.30) is uniformly convergent and defines an analytic

function in D,M (0). Hence, Fy € A(Dm‘j (0)). Furthermore, by the support of x

we get

Ma(Fo-x) =T | D e(F,a)5az* - X

aeNd
= > c(F.a)euMaG - x) = Y c(F,a)eq = F. (331
aeNd aeNd
Hence (2) holds, and the proof is complete. O

For future references we observe that if ¢, and x are the same as in Lemma 3.14,
then (3.30) shows that the relationship between c(F, o) and c¢(Fp, o) is given by

c(Fy, @) = ¢(F, a)caar!?. (3.32)

Proof of Theorem 3.4 The equivalence between (1) and (2) is clear. It is also obvious
that (3) implies (2) in view of Proposition 3.9. We shall prove the equivalence between
(1) and (3).

Suppose (1) holds. Then (3.29) holds for every | € Ri. Letr, R € Ri be chosen
such that xy € RS?R(Cd), Fy,, be as in Lemma 3.14 and let F be given by (3.30). By
(3.29) we have

le(F, a)sal S (o) r™2r
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for every r| € Ri, giving that

le(F,e)sal S7G
foreveryrg € Ri. This implies that the series in (3.30) is locally uniformly convergent
with respect to z and defines an entire function on C<. Hence Fy € A(C%). Moreover,

by (3.31) it follows that T4 (Fox) = F, and we have proved that (1) implies (3).
Next suppose that (3) holds. Then

lc(Fo. 0)] < ral?
for every r € RY. By (3.14) and (3.32) we get
[e(F, )l = le(Fo, @)ls ™2 S 767! < r* R a1,
Since r € Rf’f_ can be chosen arbitrarily small we get
le(F,a)| < rgot!_%

for every rg € Ri. This implies that F € Agp, (C%). That is, we have proved that (3)
implies (1), and the result follows. O

Next we prove Proposition 3.10.

Proof of Proposition 3.10 Suppose (3.3) holds, and let r{, > € Ri be such that ry <
r1 < rp <r.Then Lemma 3.18 gives

2 21-2+|~Ot
’
e(F, )l S (5 ol
2t +1
By Lemma 3.14 and (3.32) we get
2t+1
2r L d 2
le(Fo, )] < (21+ 1) al 7 ) ol

2t+1 2t—1

o o
< 2rp 2 a!_(_[_l)t_za _ 2R, 2 a!_(f_l)
~\2r +1 ! 21 — 1 ’

when

2

dr—1( 29, \Fd _ 4

Ry = i n
2 2t +1

This proves (1).
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Suppose instead that ro, Ro, 71,72 € Ri are such that (3.6) hold and rp < r; <
ry < r,and that Fy € A(C?) satisfies (3.4). Also let F = IT4(Fp - x). Then

2t—1 2t+1
2Ry 2 2r I,
< 12,
2t — 1 2t + 1

By combining the latter estimate with Lemma 3.18 we get

2t41

2r 7 _
le(Fo, )] < <2T+1> g

Hence Lemma 3.14 and (3.32) give

2+l

2r 2 ¢
F, < 1=t
le(F,a)| S <2T n 1) o

and Lemma 3.18 again implies that (3.3) holds with r, in place of rg. This gives the
result. =

Proof of Theorems 3.5-3.7 First suppose o € (%, 1), and let 0p = 5> and 7 = %

Then

20 2 200 2
= and = .
o+1 2t + 1 oo — 1 2t —1

Theorem 3.5 now follows from these observations and Proposition 3.10 in the case
te .
In the same way, Theorem 3.6 follows by choosing 7 = 1 in Proposition 3.10.
Finally, suppose o € (0, %), and let op = 1% and T = % Then

20 2 200 2
= and = ,
o+1 2t+1 op+1 2t—1

and Theorem 3.7 follows from these observations and Proposition 3.10 in the case
T> 1. O

Next we prove Propositions 3.11 and 3.12 and thereby Theorem 3.8.

Proof of Propositions 3.11and 3.12 Letr,r;, R; € Ri, j =0,1,2,3, be such that

1-2s

1—2s\ %
ro<ri<rp<rz3<r and Rj=s .

o

J

First suppose that F € A(C?) satisfies (3.7) and let Fy be the formal power series
expansion with coefficients given by (3.32). Then F = T4 (Fp - x).
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By Lemma 3.19 we get
le(F, )| < ef(Rl,.|a1|%s+..,+R]_dlad‘%)'
Hence Lemma 3.14 and (3.32) give

1 1
lc(Fo, a)| < alt; 2@~ (Rutleal® -+ Riglad|2)

1 1
< g~ (Ralan| 25 ++Ra glaal 25)

In the last inequality we have used the fact that s < % which implies that Ry < R;
and

1 1
tl—201 (Ri1=Re,D)let | 25+ +(Rya—Ra.a)lea| s

al<e

By applying Lemma 3.19 again it follows that Fj satisfies (3.8) with r3 in place of
ro. This gives (1).

Suppose instead that Fy € A(C?) satisfies (3.8) and let F = TT4(Fo - x). Then
Lemma 3.19 gives

lc(Fy, )] < e_(Rl.l|al\%+”'+Rl,d|ad\%)’
and it follows from Lemma 3.14 and (3.32) that

1 1
—1.2a0 —(R 25 4--+R 2s
le(F,a)| < a! tzﬂle (Ritlai|2s ++Ry aloq| 25)

1 1
< o~ (Rutlan|2s 4+ Ry glea|25)
S .

By applying Lemma 3.19 again we deduce (3.7) with r; in place of r(, and Proposition
3.11 follows.

Proposition 3.12 is a straight-forward consequence of (3.32). The details are left
for the reader. O

4 Characterizations of Pilipovi¢ spaces

In this section we combine Lemma 2.10 with Theorems 3.2-3.8 to get characterizations
of Pilipovi¢ spaces.

We begin with the following characterization of H),, . The resultis a straight-forward
combination of Lemma 2.10 and Theorem 3.2. The details are left for the reader.

Proposition 4.1 Let ¢ be as in (2.7), r € Ri, Xr be the characteristic function for
D, (0) and let s > 0. Then the following conditions are equivalent:

(1) f € Hy (RY);
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(2) f = V;F forsome F € £/ (R2);
() f = VSF forsome F € &' (R¥) N L= (R2);
&) f = VS F forsome F € &' (R??) N L (R2?) which satisfies

F(x,£) = Fox —i£)e "8 x(x, &) .1
for some r € RY, X = xr and Fy € A(D,(0)).

Remark 4.2 1t is clear that x in Proposition 4.1 can be chosen as any xy € R*® (€%
with suitable support properties.

Remark 4.3 In (2.32) there is a factor e%(|x|2+|§|2) which is absent in (4.1). We notice
that this factor is not needed in (4.1) because R;’l‘ftz (Cd) is invariant under multiplica-
tions of such functions.

The next results follow from Lemma 2.10 and Theorems 3.4-3.8. The details are
left for the reader.

Proposition 4.4 Let ¢ be as in (2.7) and x € R>®(C?Y. Then the following conditions
are equivalent:

(1) f € Hop (RY);
2 f = V;F for some F e &' (R*®) N L®R*) which satisfies (4.1) for some

Foy € A(CY).

Proposition 4.5 Let ¢ be as in (2.7), x € R®(C?), o € (%, 1) and let

R
T 20 —1°

00

Then the following conditions are equivalent:

(1) f € Ho, RY) (f € Hoyp, (R);
2 f = V(;‘F for some F € &' (R*?) N L®R2) which satisfies (4.1) for some

Fo e A, (C) (Fo e Aj (CT).

Proposition 4.6 Let ¢ be as in (2.7), x € R®(CY) and let o = % Then the following
conditions are equivalent:

(1) f € Ho, RY) (f € Hoyp, (R);
Q) f = V;Ffor some F € & (R?*?) N L®R2) which satisfies (4.1) for some
Fy € Aj, 5(CY) (Fy € Ao,12(C).
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Proposition 4.7 Let ¢ be as in (2.7), x € R>(C), o € (0, 3) and let

o

=15,

Then the following conditions are equivalent:

(1) f € Ho, RY) (f € Hop, (RD));

2 f = V(;‘F for some F € &' (R*?) N L®R2) which satisfies (4.1) for some

Fo € As,, (C?) (Fo € A, (C1)).

Proposition 4.8 Let ¢ be as in (2.7), x € R>®(C and let s € (O, %). Then the

following conditions are equivalent:

() feH;®RY) (f € Hy(RY));

2 f = V(;F for some F € &' (R*?) N L®R2) which satisfies (4.1) for some

Fo € Ay (C?) (Fo € Ao,s(CY).
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