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Abstract
We deduce Paley–Wiener results in the Bargmann setting. At the same time we deduce
characterisations of Pilipović spaces of low orders. In particular we improve the
characterisation of the Gröchenig test function space H�1 = SC , deduced in Toft
(J Pseudo-Differ Oper Appl 8:83–139, 2017).

Mathematics Subject Classification Primary 46F05 · 32A25 · 32A36; Secondary
35Q40 · 30Gxx

1 Introduction

Paley–Wiener theorems characterize functions and distributions with certain restricted
supports in terms of estimates of their Fourier–Laplace transforms. For example, let
f be a distribution on Rd and let Br0(0) ⊆ Rd be the ball with center at origin and
radius r0. Then f is supported in Br0(0) if and only if

| ̂f (ζ )| � 〈ζ 〉N er0| Im(ζ )|, ζ ∈ Cd ,

for some N ≥ 0. Furthermore, f is supported in Br0(0) and smooth, if and only if

| ̂f (ζ )| � 〈ζ 〉−N er0| Im(ζ )|, ζ ∈ Cd ,

for every N ≥ 0.
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A similar approach for ultra-regular functions of Gevrey types and corresponding
ultra-distribution spaces can be done. In fact, let s > 1,D′

s(R
d) be the set of all Gevrey

distributions of order s and let Es(Rd) be the set of all smooth functions with Gevrey
regularity s. (See [6] and Sect. 2 for notations.) Then it can be proved that f ∈ D′

s(R
d)

is supported in Br0(0), if and only if

| ̂f (ζ )| � er0| Im(ζ )|+r |ζ | 1s , ζ ∈ Cd ,

for every r > 0. Furthermore f ∈ Es(Rd) is supported in Br0(0), if and only if

| ̂f (ζ )| � er0| Im(ζ )|−r |ζ | 1s , ζ ∈ Cd ,

for some r > 0.
We observe that s in the latter result can not be pushed to be smaller, because if

s ≤ 1, it does not make any sense to discuss compact support properties of D′
s(R

d)

and Es(Rd).
In the paper we consider analogous Paley–Wiener properties after the Fourier–

Laplace transform above is replaced by the reproducing kernel �A for the Bargmann
transform, and the image spaces are replaced by suitable subspaces of entire functions
on Cd . These subspaces were considered in [4,12] and are given by

A�σ (Cd) =
⋃

r>0

Ar ,�σ (Cd), A0,�σ (Cd) =
⋂

r>0

Ar ,�σ (Cd),

(1.1)

As(Cd) =
⋃

r>0

Ar ,s(Cd), A0,s(Cd) =
⋂

r>0

Ar ,s(Cd),

when σ > 0 and 0 < s < 1
2 , where Ar ,�σ (Cd) and Ar ,s(Cd) are the sets of all entire

F on Cd such that

|F(z)| � er |z| 2σ
σ+1 respective |F(z)| � er(log〈z〉) 1

1−2s
.

The spaces in (1.1) appear naturallywhen considering the Bargmann transform images
of extended classes of Fourier invariant Gelfand–Shilov spaces, called Pilipović spaces
(see [4,12]).

If (z, w) is the scalar product of z, w ∈ Cd , then the reproducing kernel of the
Bargmann transform is given by

(�A F)(z) = π−d〈F, e(z, · )−| · |2〉

when F is a suitable function or (ultra-)distribution. If

z 	→ F(z)eR|z|−|z|2 ∈ L1(Cd), R > 0 (1.2)
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holds and dλ(w) is the Lebesgue measure on Cd , then

(�A F)(z) = π−d
∫

Cd
F(w)e(z,w)−|w|2 dλ(w).

A recent Paley–Wiener result with respect to the transform �A and image spaces
(1.1) is given in [12], where it is proved that if L∞

c (Cd) = E ′(Cd) ∩ L∞(Cd), then

�A(E ′(Cd)) = �A(L∞
c (Cd)) = A�1(C

d). (1.3)

Evidently, L∞
c (Cd) ⊆ E ′(Cd), and the gap between these spaces are rather large. It

might therefore be somewhat surprising that the first equality holds in (1.3).
In Sect. 3 we improve (1.3) in different ways. Firstly we show that we may replace

L∞
c (Cd) in (1.3) with the smaller space L∞

A,c(C
d) given by

L∞
A,c(C

d) =
⋃

L∞
A,c(K ),

where L∞
A,c(K ) is the set of all F · χK , where F is analytic in a neighbourhood of the

compact set K and χK is the characteristic function of K . Secondly, we may replace
E ′(Cd) with the set E ′

s(C
d) of all compactly supported Gevrey distributions of order

s > 1. Summing up we improve (1.3) into

�A(E ′
s(C

d)) = �A(L∞
A,c(C

d)) = A�1(C
d), s > 1. (1.3)′

In Sect. 3we also deduce various kinds of relatedmapping propertieswhenA�1(C
d)

in (1.3) is replaced by any of the spaces in (1.1). More precisely, let χ ∈ L∞
c (Cd) be

non-negative, radial symmetric in each complex variable z j and bounded from below
by a positive constant near origin. Then we prove

�A(A′
0,�σ0

(Cd) · χ) = A�σ (Cd), σ ∈ ( 12 , 1), σ0 = σ

2σ − 1
,

�A(A�σ0
(Cd) · χ) = A�σ (Cd), σ ∈ (0, 1

2 ), σ0 = σ

1 − 2σ
,

�A(As(Cd) · χ) = As(Cd), s ∈ [0, 1
2 ),

and similarly for σ = 1
2 and when A�σ and As are replaced by A0,�σ and A0,s ,

respectively. (Cf. Theorems 3.2–3.8 and Propositions 3.9–3.11.)
Finally, in Sect. 4 we use the results in Sect. 3 to deduce characterizations of

Pilipović spaces of small orders. We remark that some continuations of the present
analysis, involving larger spaces of analytic functions or formal power series expan-
sions, can be found in [13].
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2 Preliminaries

In this section we recall some basic facts. We start by discussing Pilipović spaces and
some of their properties. Then we recall some facts on modulation spaces. Finally
we recall the Bargmann transform and some of its mapping properties, and introduce
suitable classes of entire functions on Cd .

2.1 The Pilipović spaces

In order to define Pilipović spaces we recall the definition of Hermite functions. We
recall that the Hermite function of order α ∈ Nd is defined by

hα(x) = π− d
4 (−1)|α|(2|α|α!)− 1

2 e
|x |2
2 (∂αe−|x |2).

It follows that

hα(x) = π− d
4 (2|α|α!)− 1

2 e− |x |2
2 pα(x),

for some polynomial pα onRd , which is called theHermite polynomial of orderα. The
Hermite functions are eigenfunctions to the Fourier transform, and to the Harmonic
oscillator Hd ≡ |x |2 − � which acts on functions and (ultra-)distributions defined on
Rd . More precisely, we have

Hd hα = (2|α| + d)hα, Hd ≡ |x |2 − �.

It is well-known that the set of Hermite functions is a basis for S (Rd) and an
orthonormal basis for L2(Rd) (cf. [10]). In particular, if f ∈ L2(Rd), then

‖ f ‖2L2(Rd )
=

∑

α∈Nd

|ch( f , α)|2,

where

f (x) =
∑

α∈Nd

ch( f , α)hα (2.1)

is the Hermite series expansion of f , and

ch( f , α) = ( f , hα)L2(Rd ) (2.2)

is the Hermite coefficient of f of order α ∈ Rd .
In order to define the full scale of Pilipović spaces, their order s should belong to

the extended set

R� = R+ ∪ { �σ ; σ ∈ R+ },
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of R+, with extended inequality relations as

s1 < �σ < s2 and �σ1 < �σ2

when s1 < 1
2 ≤ s2 and σ1 < σ2. (Cf. [12].)

For such s and r ∈ Rd+ we set

ϑr ,s(α) ≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e
−( 1

r1
·α

1
2s
1 +···+ 1

rd
·α

1
2s

d )
, s ∈ R+\{ 12 },

rαα!− 1
2σ , s = �σ ,

rα, s = 1
2 , α ∈ Nd

(2.3)

and

ϑ ′
r ,s(α) ≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e
( 1

r1
·α

1
2s
1 +···+ 1

rd
·α

1
2s

d )
, s ∈ R+\{ 12 },

rαα! 1
2σ , s = �σ ,

rα, s = 1
2 , α ∈ Nd .

(2.4)

Definition 2.1 Let s ∈ R� = R� ∪ {0}, and let ϑr ,s and ϑ ′
r ,s be as in (2.3) and (2.4).

(1) H0(Rd) consists of all finiteHermite series expansions (2.1), andH′
0(R

d) consists
of all formal Hermite series expansions in (2.1);

(2) if s ∈ R�, then Hs(Rd) (H0,s(Rd)) consists of all f ∈ L2(Rd) such that

|ch( f , hα)| � ϑr ,s(α)

holds true for some r ∈ Rd+ (for every r ∈ Rd+);
(3) if s ∈ R�, then H′

s(R
d) (H′

0,s(R
d)) consists of all formal Hermite series expan-

sions in (2.1) such that

|ch( f , hα)| � ϑ ′
r ,s(α)

holds true for every r ∈ Rd+ (for some r ∈ Rd+).
The spacesHs(Rd) andH0,s(Rd) are called Pilipović spaces of Roumieu respectively
Beurling type of order s, and H′

s(R
d) and H′

0,s(R
d) are called Pilipović distribution

spaces of Roumieu respectively Beurling type of order s.

Remark 2.2 LetSs(Rd) ands(Rd) be theFourier invariantGelfand–Shilov spaces of
order s ∈ R+ and of Rourmeu and Beurling types respectively (see [12] for notations).
Then it is proved in [8,9] that

H0,s(Rd) = s(Rd) �= {0}, s >
1

2
,

H0,s(Rd) �= s(Rd) = {0}, s ≤ 1

2
,



20 Page 6 of 34 E. Nabizadeh et al.

Hs(Rd) = Ss(Rd) �= {0}, s ≥ 1

2

and

Hs(Rd) �= Ss(Rd) = {0}, s <
1

2
.

In Proposition 2.3 below we give further characterisations of Pilipović spaces.
Next we recall the topologies for Pilipović spaces. Let s ∈ R�, r > 0, and let

‖ f ‖Hs;r and ‖ f ‖H′
s;r be given by

‖ f ‖Hs;r ≡ sup
α∈Nd

|ch( f , α)ϑ ′
r ,s(α)|, s ∈ R�, (2.5)

and

‖ f ‖H′
s;r ≡ sup

α∈Nd
|ch( f , α)ϑr ,s(α)|, s ∈ R�. (2.6)

when f is a formal expansion in (2.1). Then Hs;r (Rd) consists of all expansions
(2.1) such that ‖ f ‖Hs;r is finite, and H′

s;r (R
d) consists of all expansions (2.1) such

that ‖ f ‖H′
s;r is finite. It follows that both Hs;r (Rd) and H′

s;r (R
d) are Banach spaces

under the norms f 	→ ‖ f ‖Hs;r and f 	→ ‖ f ‖H′
s;r , respectively.

We let the topologies of Hs(Rd) and H0,s(Rd) be the inductive respectively pro-
jective limit topology of Hs;r (Rd) with respect to r > 0. In the same way, the
topologies of H′

s(R
d) and H′

0,s(R
d) are the projective respectively inductive limit

topology ofH′
s;r (R

d) with respect to r > 0. It follows that all the spaces in Definition

2.1 are complete, and thatH0,s(Rd) andH′
s(R

d) are Fréchet spaces with semi-norms
f 	→ ‖ f ‖Hs;r and f 	→ ‖ f ‖H′

s;r , respectively.
The following characterisations for Pilipović spaces can be found in [12]. The proof

is therefore omitted.

Proposition 2.3 Let s ∈ R+ ∪ {0} and let f ∈ H′
0(R

d). Then f ∈ H0,s(Rd) ( f ∈
Hs(Rd)), if and only if f ∈ C∞(Rd) and satisfies

sup
N∈N

(

‖H N
d f ‖L∞

hN N !2s

)

< ∞

for every h > 0 (for some h > 0).

From now on we let

φ(x) = π− d
4 e− |x |2

2 . (2.7)
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2.2 Spaces of entire functions and the Bargmann transform

Let � ⊆ Cd be open. Then A(�) is the set of all analytic functions in �. If instead
� ⊆ Cd is closed, then A(�) is the set of all functions which are analytic in an open
neighbourhood of �. In particular, if z0 ∈ Cd is fixed, then A({z0}) is the set of all
complex-valued functions which are defined and analytic near z0.

We shall now consider the Bargmann transform which is defined by the formula

(Vd f )(z) = π− d
4

∫

Rd
exp

(

− 1

2
(〈z, z〉 + |y|2) + 2

1
2 〈z, y〉

)

f (y) dy,

when f ∈ L2(Rd) (cf. [1]). We note that for all f ∈ L2(Rd), then the Bargmann
transformVd f of f is the entire function on Cd , given by

(Vd f )(z) =
∫

Rd
Ad(z, y) f (y) dy,

or
(Vd f )(z) = 〈 f ,Ad(z, · )〉, (2.8)

where the Bargmann kernel Ad is given by

Ad(z, y) = π− d
4 exp

(

−1

2
(〈z, z〉 + |y|2) + 2

1
2 〈z, y〉

)

.

Here

〈z, w〉 =
d

∑

j=1

z jw j , when z = (z1, . . . , zd) ∈ Cd and w = (w1, . . . , wd) ∈ Cd ,

and otherwise 〈 · , · 〉 denotes the duality between test function spaces and their
corresponding duals. We note that the right-hand side in (2.8) makes sense when
f ∈ S ′

1/2(R
d) and defines an element in A(Cd), since y 	→ Ad(z, y) can be inter-

preted as an element in S1/2(Rd) with values in A(Cd).
It was proved in [1] that f 	→ Vd f is a bijective and isometric map from L2(Rd)

to the Hilbert space A2(Cd) ≡ B2(Cd) ∩ A(Cd), where B2(Cd) consists of all mea-
surable functions F on Cd such that

‖F‖B2 ≡
(∫

Cd
|F(z)|2dμ(z)

) 1
2

< ∞. (2.9)

Here dμ(z) = π−de−|z|2 dλ(z), where dλ(z) is the Lebesgue measure on Cd . We
recall that A2(Cd) and B2(Cd) are Hilbert spaces, where the scalar products are given
by

(F, G)B2 ≡
∫

Cd
F(z)G(z) dμ(z), F, G ∈ B2(Cd). (2.10)
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If F, G ∈ A2(Cd), then we set ‖F‖A2 = ‖F‖B2 and (F, G)A2 = (F, G)B2 .
Furthermore, Bargmann showed that there is a convenient reproducing formula on

A2(Cd). More precisely, let

(�A F)(z) ≡
∫

Cd
F(w)e(z,w) dμ(w), (2.11)

when z 	→ F(z)eR|z|−|z|2 belongs to L1(Cd) for every R ≥ 0. Here

(z, w) =
d

∑

j=1

z jw j , when z = (z1, . . . , zd) ∈ Cd and w = (w1, . . . , wd) ∈ Cd ,

is the scalar product of z ∈ Cd and w ∈ Cd . Then it is proved in [1,2] that �A is
the orthogonal projection of B2(Cd) onto A2(Cd). In particular, �A F = F when
F ∈ A2(Cd).

In [1] it is also proved that

Vd hα = eα, where eα(z) ≡ zα

√
α! , z ∈ Cd . (2.12)

In particular, the Bargmann transformmaps the orthonormal basis {hα}α∈Nd in L2(Rd)

bijectively into the orthonormal basis {eα}α∈Nd of monomials in A2(Cd). Hence, there
is a natural way to identify formal Hermite series expansion by formal power series
expansions

F(z) =
∑

α∈Nd

c(F, α)eα(z), (2.13)

by letting the series (2.1) be mapped into

∑

α∈Nd

ch( f , α)eα(z). (2.14)

It follows that if f , g ∈ L2(Rd) and F, G ∈ A2(Cd), then

( f , g)L2(Rd ) =
∑

α∈Nd

ch( f , α)ch(g, α),

(F, G)A2(Cd ) =
∑

α∈Nd

c(F, α)c(G, α). (2.15)

Here and in what follows, ( · , · )L2(Rd ) and ( · , · )A2(Cd ) denote the scalar products in
L2(Rd) and A2(Cd), respectively. Furthermore,

ch( f , α) = c(F, α) when F = Vd f . (2.16)

We now recall the following spaces of power series expansions given in [12].
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Definition 2.4 Let s ∈ R� = R� ∪ {0}, and let ϑr ,s and ϑ ′
r ,s be as in (2.3) and (2.4).

(1) A0(Cd) consists of all analytic polynomials on Cd , and A′
0(C

d) consists of all
formal power series expansions on Cd in (2.13);

(2) if s ∈ R�, then As(Cd) (A0,s(Cd)) consists of all F ∈ L2(Cd) such that

|c(F, hα)| � ϑr ,s(α)

holds true for some r > 0 (for every r > 0);
(3) if s ∈ R�, thenA′

s(C
d) (A′

0,s(C
d)) consists of all formal power series expansions

in (2.13) such that

|c(F, hα)| � ϑ ′
r ,s(α)

holds true for every r > 0 (for some r > 0).

Let f ∈ H′
0(R

d) with formal Hermite series expansion (2.1). Then the Bargmann
transform Vd f of f is defined to be the formal power series expansion (2.14). It
follows that Vd agrees with the earlier definition when acting on L2(Rd), that Vd

is linear and bijective from H′
0(R

d) to A′
0(C

d), and restricts to bijections from the
spaces

H0,s(Rd), Hs(Rd), H′
s(R

d) and H′
0,s(R

d) (2.17)

to
A0,s(Cd), As(Cd), A′

s(C
d) and A′

0,s(C
d) (2.18)

respectively, when s ∈ R�. We also let the topologies of the spaces in (2.18) be
inherited from the spaces in (2.17).

If s ∈ R�, f ∈ Hs(Rd), g ∈ H′
s(R

d), F ∈ As(Cd) and G ∈ A′
s(C

d), then
( f , g)L2(Rd ) and (F, G)A2(Cd ) are defined by the formula (2.15). It follows that (2.16)
holds for such choices of f and F . Furthermore, the duals of Hs(Rd) and As(Cd)

can be identified withH′
s(R

d) andA′
s(C

d), respectively, through the forms in (2.15).
The same holds true with

H0,s, H′
0,s, A0,s, and A′

0,s

in place of

Hs, H′
s, As, and A′

s,

respectively, at each occurrence.
In order to identify the spaces of power series expansions above with spaces of

analytic functions, we let

M1,r ,s(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r1(log〈z1〉) 1
1−2s + · · · + rd(log〈zd〉) 1

1−2s , s < 1
2 ,

r1|z1| 2σ
σ+1 + · · · + rd |zd | 2σ

σ+1 , s = �σ , σ > 0,
|z|2
2 − (r1|z1| 1s + · · · + rd |zd | 1s ), s ≥ 1

2 ,
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M0
1,r ,s(z) =

{

M1,r ,s(z), s �= 1
2 ,

r1|z1|2 + · · · + rd |zd |2, s = 1
2 ,

M2,r ,s(z) =
{

r1|z1| 2σ
σ−1 + · · · + rd |zd | 2σ

σ−1 , s = �σ , σ > 1,
|z|2
2 + (r1|z1| 1s + · · · + rd |zd | 1s ), s ≥ 1

2 ,

M0
2,r ,s(z) =

{

M2,r ,s(z), s �= 1
2 ,

r1|z1|2 + · · · + rd |zd |2, s = 1
2 ,

(2.19)

when r ∈ Rd+ and z ∈ Cd . For conveniency we set Mr = M1,�1,r .
By [12] we have the following. The proof is therefore omitted.

Proposition 2.5 Let M1,r ,s , M0
1,r ,s , M2,r ,s and M0

2,r ,s be as in (2.19) when s ∈ R� and

r ∈ Rd+. Then

A0,s(Cd) = { F ∈ A(Cd) ; Fe−M0
1,r ,s ∈ L∞(Cd) for every r ∈ Rd+ }, s > 0,

As(Cd) = { F ∈ A(Cd) ; Fe−M1,r ,s ∈ L∞(Cd) for some r ∈ Rd+ }, s ≥ 0,

A′
s(C

d) = { F ∈ A(Cd) ; Fe−M2,r ,s ∈ L∞(Cd) for every r ∈ Rd+ }, s > �1,

A′
0,s(C

d) = { F ∈ A(Cd) ; Fe−M0
2,r ,s ∈ L∞(Cd) for some r ∈ Rd+ }, s > �1,

A′
�1

(Cd) = A(Cd) and A′
0,�1(C

d) = A({0}).
Next we recall the link between the Bargmann transform and the short-time Fourier

transform f 	→ Vφ f with window function φ given by (2.7), defined by

Vφ f (x, ξ) ≡ 〈 f , φ( · − x)e−i〈 · ,ξ〉〉.
Let S be the dilation operator given by

(SF)(x, ξ) = F(2− 1
2 x,−2− 1

2 ξ), (2.20)

when F ∈ L1
loc(R

2d). Then it follows by straight-forward computations that

(Vd f )(z) = (Vd f )(x + iξ) = (2π)
d
2 e

1
2 (|x |2+|ξ |2)e−i〈x,ξ〉Vφ f (2

1
2 x,−2

1
2 ξ)

= (2π)
d
2 e

1
2 (|x |2+|ξ |2)e−i〈x,ξ〉(S−1(Vφ f ))(x, ξ), (2.21)

or equivalently,

Vφ f (x, ξ) = (2π)−
d
2 e− 1

4 (|x |2+|ξ |2)e−i〈x,ξ〉/2(Vd f )(2− 1
2 x,−2− 1

2 ξ)

= (2π)−
d
2 e−i〈x,ξ〉/2S(e− | · |2

2 (Vd f ))(x, ξ) (2.22)

We observe that (2.21) and (2.22) can be formulated as

Vd = UV ◦ Vφ, and U−1
V ◦ Vd = Vφ,
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where UV is the linear, continuous and bijective operator on D ′(R2d) � D ′(Cd),
given by

(UVF)(x, ξ) = (2π)
d
2 e

1
2 (|x |2+|ξ |2)e−i〈x,ξ〉F(2

1
2 x,−2

1
2 ξ). (2.23)

Let Dd,r (z0) be the polydisc

{ z = (z1, . . . , zd) ∈ Cd ; |z j − z0, j | < r j , j = 1, . . . , d },

with center and radii given by

z0 = (z0,1, . . . , z0,d) ∈ Cd and r = (r1, . . . , rd) ∈ (0,∞)d .

Then

A(Cd) =
⋂

r∈(0,∞)d

A(Dd,r (z)), A({0}) =
⋃

r∈(0,∞)d

A(Dd,r (z0)).

2.3 Hilbert spaces of power series expansions and analytic functions

The spaces in Definition 2.4 can also be described by related unions and intersections
of Hilbert spaces of analytic functions and power series expansions as follows. (See
also [12].)

Let ϑ be a weight on Nd , ω be a weight on Cd , and let

‖F‖A2[ϑ](Cd ) ≡
⎛

⎝

∑

α∈Nd

|c(F, α)ϑ(α)|2
⎞

⎠

1
2

(2.24)

when F ∈ A′
0(C

d) is given by (2.13), and

‖F‖A2
(ω)

(Cd ) ≡
(∫

Cd
|F(z)ω(2

1
2 z)|2 dμ(z)

) 1
2

(2.25)

when F ∈ A(Cd). We letA2[ϑ](Cd) be the set of all F ∈ A′
0(C

d) such that ‖F‖A2[ϑ]
is

finite, and A2
(ω)(C

d) be the set of all F ∈ A(Cd) such that ‖F‖A2
(ω)

is finite. It follows

that these spaces are Hilbert spaces under these norms.
If ϑ and ω are related to each others as

ϑ(α) =
(

1

α!
∫

Rd+
ω0(r)2rα dr

) 1
2

(2.26)

and

ω(z) = e
|z|2
2 ω0(|z1|2, . . . , |zd |2), (2.27)
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for some suitable weight ω0 on Rd+, then the following multi-dimensional version
of [7, Theorem (4.1)] shows that A2[ϑ](Cd) = A2

(ω)(C
d) with equal norms. Here we

identify entire functions with their power series expansions at origin. Consequently,
theBargmann transform is bijective and isometric fromH2[ϑ](Rd) to A2

(ω)(C
d) for such

choices of ϑ and ω. We omit the proof since the result is an immediate consequence
of [12, Theorem 3.5].

Theorem 2.6 Let α ∈ Nd and ω0 be a positive measurable function on Rd+. Also let
ϑ and ω be weights on Nd and Cd , respectively, related to each others by (2.26) and
(2.27), and such that

r |α|

(α!) 1
2

� ϑ(α), α ∈ Nd , (2.28)

holds for every r > 0. Then A2[ϑ](Cd) = A2
(ω)(C

d) with equality in norms.

In our situation, the involved weights should satisfy a split condition. In one dimen-
sion, (2.26), (2.27) and (2.28) take the forms

ϑ j (α j ) =
(

1

α j !
∫

R+
ω0, j (r)2rα j dr

) 1
2

, α j ∈ N, (2.26)′

ω j (z j ) = e
|z j |2
2 ω0, j (|z j |2), z j ∈ C (2.27)′

and

r |α j |

(α j !) 1
2

� ϑ j (α j ), r > 0, α j ∈ N. (2.28)′

Lemma 2.7 Let ω0, j be weights on R+, ω j be weights on C and ϑ j be weights on
N such that (2.26)′–(2.28)′ hold, j = 1, . . . , d, and set ω0(z) ≡ ∏d

j=1 ω0, j (z j ),

z ≡ (z1, . . . , zd) ∈ Cd . If ϑ and ω are given by (2.26), and (2.27), then

ϑ(α) =
d

∏

j=1

ϑ j (α j ), α = (α1, . . . , αd) ∈ Nd (2.29)

and

ω(z) =
d

∏

j=1

ω j (z j ), z = (z1, . . . , zd) ∈ Cd . (2.30)
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Proof By [12, Theorem 3.5] and its proof, it follows that ω0, j · rα j ∈ L1(R+) for all
j ∈ {1, . . . , d} and α j ∈ N. Hence, Fubini’s theorem gives

ϑ(α) =
(

1

α!
∫

Rd+
ω0(r)2rα dr

) 1
2

=
⎛

⎝

1

α!
d

∏

j=1

∫ ∞

0
ω0, j (r j )

2r
α j
j dr j

⎞

⎠

1
2

=
d

∏

j=1

ϑ j (α j ),

and (2.29) follows. The assertion (2.30) follows from the definitions. ��

2.4 A test function space introduced by Gröchenig

In this section we recall some comparison results deduced in [12], between a test
function space, SC (Rd), introduced by Gröchenig in [5] to handle modulation spaces
with elements in spaces of ultra-distributions.

The definition of SC (Rd) is given as follows.

Definition 2.8 Let φ(x) = π− d
4 e− |x |2

2 . Then SC (Rd) and SG(Rd) consist of all f ∈
S ′(Rd) such that f = V ∗

φ F , for some F ∈ L∞(Rd) ∩ E ′(Rd) and F ∈ E ′(Rd),
respectively.

It follows that f ∈ SC (Rd), if and only if

f (x) = (2π)−
d
2

∫∫

R2d
F(y, η)e− 1

2 |x−y|2ei〈x,η〉 dydη, (2.31)

for some F ∈ L∞(Rd) ∩ E ′(Rd).

Remark 2.9 By the identity (Vφh, F) = (h, V ∗
φ F) and the fact that the map ( f , φ) 	→

Vφ f is continuous from S (Rd) × S (Rd) to S (R2d), it follows that f = V ∗
φ F is

uniquely defined as an element inS ′(Rd) when F ∈ S ′(R2d) (cf. [3]). In particular,
the space SG(Rd) in Definition 2.8 is well-defined, and it is evident that SC (Rd) ⊆
SG(Rd).

The following is a restatement of [12, Lemma 4.9]. The result is essential when
deducing the characterizations of Pilipović spaces in Sect. 4.

Lemma 2.10 Let F ∈ L∞(Cd)∪E ′(Cd). Then the Bargmann transform of f = V ∗
φ F

is given by �A F0, where

F0(x + iξ) = (2π3)
d
4 F(

√
2x,−√

2ξ)e
1
2 (|x |2+|ξ |2)e−i〈x,ξ〉. (2.32)

Moreover, the images of SC (Rd) and SG(Rd) under the Bargmann transform are
given by

{ �A F ; F ∈ L∞(Cd) ∩ E ′(Cd) } and { �A F ; F ∈ E ′(Cd) }, (2.33)

respectively.
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The next results follow from [12, Theorem 4.10]. The proof is therefore omitted.

Proposition 2.11 It holds SC (Rd) = SG(Rd) = H�1(R
d).

Due to the image properties for the spaces in Proposition 2.11 under the Bargmann
transform, the next result is equivalent with the previous one.

Proposition 2.12 The sets in (2.33) are equal to A�1(C
d).

In the next section we extend Propositions 2.11 and 2.12 by proving that the conclu-
sions in Proposition 2.12 hold for suitable smaller and larger sets than those in (2.33).
We also deduce similar identifications for other Pilipović spaces and their Bargmann
images.

3 Paley–Wiener properties for Bargmann–Pilipović spaces

In this section we consider spaces of compactly supported functions with interiors in
As(Cd)or inA′

s(C
d).We show that the images of such functions under the reproducing

kernel�A are equal toAs(Cd), for someother choice of s ≤ �1. In the first partwe state
the main results given in Theorems 3.2–3.4. They are straight-forward consequences
of Propositions 3.9, where more detailed information concerning involved constants
are given. Thereafter we deduce results which are needed for their proofs. Depending
of the choice of s, there are several different situations for characterizing As(Cd).
This gives rise to a quite large flora of main results, where each one takes care of one
situation.

First we note that if A2
(ω) = A2[ϑ], then a split of the variables in the weight ω in

A2
(ω) induce a split of the variables in ϑ in A2[ϑ]. (See Lemma 2.7.)
In order to present the main results, it is suitable to make the following definition.

Definition 3.1 Let t1, t2 ∈ Rd+ be such that t1 ≤ t2. Then the function χ ∈ L∞(Cd) is
called positive, bounded and radial symmetric with respect to t1 and t2, if the following
conditions are fulfilled:

• χ ∈ L∞(Cd) ∩ E ′(Dt2(0)) is non-negative;
• χ(z1, . . . , zd) = χ0(|z1|, . . . , |zd |) for some function χ0;
• χ ≥ c on Dt1(0) for some constant c > 0.

The set of positive, bounded and radial symmetric functions with respect to t1 and t2
is denoted by R∞

t1,t2(C
d), and R∞(Cd) is defined by

R∞(Cd) ≡
⋃

t1≤t2∈Rd+

R∞
t1,t2(C

d).

3.1 Main results

We begin with characterizing the largest spaces in our investigations, which appears
when s = �1, and then proceed with spaces of decreasing order. First we recall that
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elements in As(Cd) and A0,s(Cd) fulfill conditions of the forms

|F(z)| � er1|z1|
2σ

σ+1 +···+rd |zd | 2σ
σ+1 (3.1)

when s = �σ and

|F(z)| � er1(log〈z1〉)
1

1−2s +···+rd (log〈zd 〉) 1
1−2s (3.2)

when s ∈ [0, 1
2 ).

Theorem 3.2 Let F ∈ A(Cd), σ = 1 and s > 1. Then the following conditions are
equivalent:

(1) F ∈ A�1(C
d);

(2) (3.1) holds for some r ∈ Rd+;
(3) For some r0 ∈ Rd+ and every r ∈ Rd+ with r0 ≤ r and every χ ∈ R∞

r0,r (C
d), there

exists F0 ∈ A(Dr (0)) such that F = �A(F0 · χ);
(4) For some r0 ∈ Rd+ and every r ∈ Rd+ with r0 < r and some χ ∈ R∞

r0,r (C
d), there

exists F0 ∈ A(Dr (0)) such that F = �A(F0 · χ);
(5) There exists F0 ∈ E ′(Cd) ∩ L∞(Cd) such that F = �A F0;
(6) There exists F0 ∈ E ′

s(C
d) such that F = �A F0.

Remark 3.3 Since

E ′(Cd) ∩ L∞(Cd) ⊆ E ′(Cd) ⊆ E ′
s(C

d),

Theorem 3.2 still holds true after E ′
s has been replaced by E ′ in (6).

Theorem 3.4 Let F ∈ A(Cd), σ = 1 and χ ∈ R∞(Cd). Then the following is true:

(i) The following conditions are equivalent:

(1) F ∈ A0,�1(C
d);

(2) (3.1) holds for every r ∈ Rd+;
(3) There exists F0 ∈ A(Cd) such that F = �A(F0 · χ);

(ii) The map F 	→ �A(F · χ) from A(Cd) to A0,�1(C
d) is a homeomorphism.

The next result deals with the case when s = �σ with σ ∈ ( 12 , 1).

Theorem 3.5 Let F ∈ A(Cd), χ ∈ R∞(Cd), σ ∈ ( 12 , 1) and let

σ0 = σ

2σ − 1
.

Then the following is true:

(i) The following conditions are equivalent:
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(1) F ∈ A�σ (Cd) (F ∈ A0,�σ (Cd));
(2) (3.1) holds for some (for every) r ∈ Rd+;
(3) There exists F0 ∈ A′

0,�σ0
(Cd) (F0 ∈ A′

�σ0
(Cd)) such that F = �A(F0 · χ);

(ii) The mappings F 	→ �A(F ·χ) from A′
0,�σ0

(Cd) to A�σ (Cd) and from A′
�σ0

(Cd)

to A0,�σ (Cd) are homeomorphisms.

The next result deals with the case when s = �σ with σ = 1
2 .

Theorem 3.6 Let F ∈ A(Cd), σ = 1
2 and χ ∈ R∞(Cd). Then the following is true:

(i) The following conditions are equivalent:

(1) F ∈ A�σ (Cd) (F ∈ A0,�σ (Cd));
(2) (3.1) holds for some (for every) r ∈ Rd+;
(3) There exists F0 ∈ A′

0,1/2(C
d) (F0 ∈ A0,1/2(Cd)) such that F = �A(F0 ·χ);

(ii) The mappings F 	→ �A(F · χ) from A′
0,1/2(C

d) to A�1/2(C
d) and from

A0,1/2(Cd) to A0,�1/2(C
d) are homeomorphisms.

The next result deals with the case when s = �σ with σ ∈ (0, 1
2 ).

Theorem 3.7 Let F ∈ A(Cd), χ ∈ R∞(Cd), σ ∈ (0, 1
2 ) and let

σ0 = σ

1 − 2σ
.

Then the following is true:

(i) The following conditions are equivalent:

(1) F ∈ A�σ (Cd) (F ∈ A0,�σ (Cd));
(2) (3.1) holds for some (for every) r ∈ Rd+;
(3) There exists F0 ∈ A�σ0

(Cd) (F0 ∈ A0,�σ0
(Cd)) such that F = �A(F0 · χ);

(ii) The mappings F 	→ �A(F ·χ) from A�σ0
(Cd) to A�σ (Cd) and from A0,�σ0

(Cd)

to A0,�σ (Cd) are homeomorphisms.

In the next result we consider the case when s ∈ [0, 1
2 ) is real.

Theorem 3.8 Let F ∈ A(Cd), χ ∈ R∞(Cd), s ∈ [0, 1
2 ). Then the following is true:

(i) The following conditions are equivalent:

(1) F ∈ As(Cd) (F ∈ A0,s(Cd));
(2) (3.2) holds for some (for every) r ∈ Rd+;
(3) There exists F0 ∈ As(Cd) (F0 ∈ A0,s(Cd)) such that F = �A(F0 · χ);

(ii) The mappings F 	→ �A(F · χ) from As(Cd) to As(Cd) and from A0,s(Cd) to
A0,s(Cd) are homeomorphisms.
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The previous theorems are essentially consequences of Propositions 3.9–3.11,
where more detailed information about involved constants are given.

Proposition 3.9 Let F ∈ A(Cd), σ = 1, s > 1 and r ∈ Rd+. Then the following
conditions are equivalent:

(1) For some r0 ∈ Rd+ such that r0 < r , (3.1) holds with r0 in place of r;
(2) For some t1 ∈ Rd+ such that t1 < r , every t2 ∈ Rd+ with t1 ≤ t2 < r and every

χ ∈ R∞
t1,t2(C

d), there exists F0 ∈ A(Dr (0)) such that F = �A(F0 · χ);

(3) For some F0 ∈ A(Dr (0)) it holds F = �A(F0 · χDr (0));
(4) For some F0 ∈ E ′(Dr (0)) ∩ L∞(Cd) it holds F = �A F0;
(5) For some r0 ∈ Rd+ such that r0 < r , there exists F0 ∈ E ′

s(Dr0(0)) such that
F = �A F0.

Theorems 3.5–3.7 essentially follow from the following proposition.

Proposition 3.10 Let τ > 1
2 , r , t1, t2 ∈ Rd+ be such that t1 ≤ t2, and let χ ∈

R∞
t1,t2(C

d). Then the following is true:

(1) Let F ∈ A(Cd) be such that

|F(z)| � er0,1|z1|
2

2τ+1 +···+r0,d |zd | 2
2τ+1 (3.3)

holds for some r0 ∈ Rd+ such that r0 < r . Then for some r0 ∈ Rd+ such that
r0 < r , there exists F0 ∈ A(Cd) such that F = �A(F0 · χ) and

|F0(z)| � eR0,1|z1|
2

2τ−1 +···+R0,d |zd | 2
2τ−1

, (3.4)

where

R0 = 2τ − 1

2

(

2r0
2τ + 1

) 2τ+1
2τ−1

t
− 4

2τ−1
1 ; (3.5)

(2) Let r0, R0 ∈ Rd+ be such that r0 < r and

R0 = 2τ − 1

2

(

2r0
2τ + 1

) 2τ+1
2τ−1

t
− 4

2τ−1
2 , (3.6)

F0 ∈ A(Cd) be such that (3.4) hold and let F = �A(F0 · χ). Then F ∈ A(Cd)

and satisfies (3.3) for some r0 ∈ Rd+ such that r0 < r .

Theorem 3.8 follows from the following two propositions, where the first one
concerns the case when s > 0 and the second one make a more detailed explanation
of the case s = 0, i. e. the case of analytic polynomials.

Proposition 3.11 Let s ∈ (0, 1
2 ), r ∈ Rd+, and let χ ∈ R∞(Cd). Then the following is

true:
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(1) Suppose F ∈ A(Cd) satisfies

|F(z)| � er0,1(log〈z1〉)
1

1−2s +···+r0,d (log〈zd 〉) 1
1−2s (3.7)

for some r0 ∈ Rd+ such that r0 < r . Then there is an F0 ∈ A(Cd) such that
F = �A(F0 · χ) and

|F0(z)| � er0,1(log〈z1〉)
1

1−2s +···+r0,d (log〈zd 〉) 1
1−2s (3.8)

for some r0 ∈ Rd+ such that r0 < r;
(2) Suppose F0 ∈ A(Cd) satisfies (3.8) for some r0 ∈ Rd+ such that r0 < r , and let

F = �A(F0 · χ). Then F ∈ A(Cd) and satisfies (3.7) for some r0 ∈ Rd+ such
that r0 < r .

Proposition 3.12 Let χ ∈ R∞(Cd) and let N ≥ 0 be an integer. Then the following
is true:

(1) Suppose F ∈ A(Cd) is given by

F(z) =
∑

|α|≤N

c(F, α)zα, (3.9)

where {c(F, α)}|α|≤N ⊆ C. Then there is an F0 ∈ A(Cd) such that F = �A(F0 ·
χ) and

F0(z) =
∑

|α|≤N

c(F0, α)zα, (3.10)

where {c(F0, α)}|α|≤N ⊆ C and satisfies c(F0, α) = 0 when c(F, α) = 0;
(2) Suppose F0 ∈ A(Cd) satisfies (3.10) for some {c(F0, α)}|α|≤N ⊆ C, and let F =

�A(F0 · χ). Then F ∈ A(Cd) and satisfies (3.9) for some {c(F, α)}|α|≤N ⊆ C
such that c(F, α) = 0 when c(F0, α) = 0.

3.2 Preparing results and their proofs

For the proofs of Propositions 3.9–3.11 and thereby of Theorems 3.2–3.8 we need
some preparatory results. Because the proof of Proposition 3.9 needs some room, we
put parts of the statement in the following separate proposition. At the same time we
slightly refine some parts concerning the image of compactly supported elements in
L∞ under the map �A.

Proposition 3.13 Let s > 1, r0, r ∈ Rd+ be such that r0 < r and suppose that either

F0 ∈ E ′
s(Dr0(0)), F0 ∈ E ′

0,s(Dr0(0)), F0 ∈ E ′(Dr0(0)) or F0 ∈ L∞(Dr (0)).

Then F = �A F0 ∈ A(Cd) and satisfies

|F(z)| � er1|z1|+···+rd |zd |.
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Proof By the inclusions

E ↪→ E ′
0,s+ε ↪→ E ′

s ↪→ E ′
0,s

when ε > 0, it suffices to consider the casewhen F0 ∈ E ′
s(Dr0(0)) or F0 ∈ L∞(Dr (0))

hold.
Let r2 = r . First suppose that F0 ∈ E ′

s(Dr0(0)) holds, choose r1 ∈ Rd+ such that

r0 < r1 < r2, �(y, η) = e−(|y|2+|η|2) and let �z(y, η) = e(z,y+iη). By identifying Cd

with R2d and using the fact that F0 ∈ E ′
s(Dr0(0)) we obtain

|�A F0(z)| = π−d |〈F0,�z�〉| � sup
α∈N2d

(‖Dα(�z�)‖L∞(Dr1 (0))

h|α|
1 α!s

)

(3.11)

for every h1 > 0. We also have � ∈ E1/2(R2d) ↪→ E0,s(R2d), which implies

‖Dα�‖L∞(Dr1 (0)) � h|α|
2 α!s

for every h2 > 0. Furthermore,

|Dα�z(y, η)| = |mα(z)e(z,y+iη)| ≤ |mα(z)|er1,1|z1|+···+r1,d |zd |, y + iη ∈ Dr1(0),

where

mα(z) =
d

∏

j=1

z
α j +αd+ j
j , z ∈ Cd , α ∈ N2d .

By choosing h1 = 4 and h2 = 1 above, and letting y + iη ∈ Dr1(0), Leibnitz rule
gives

4−|α|α!−s |Dα(�z�)(y, η)|
≤ 4−|α|α!−s

∑

γ≤α

(

α

γ

)

|Dγ �z(y, η)| |Dα−γ �(y, η)|

� 4−|α|α!−s

⎛

⎝

∑

γ≤α

(

α

γ

)

|mγ (z)|(α − γ )!s
⎞

⎠ er1,1|z1|+···+r1,d |zd |

� 4−|α|
⎛

⎝

∑

γ≤α

(

α

γ

)

|mγ (z)|γ !−s

⎞

⎠ er1,1|z1|+···+r1,d |zd |

≤ sup
γ≤α

⎛

⎝

d
∏

j=1

|z j |γ j

γ j !s · |z j |γd+ j

γd+ j !s

⎞

⎠ er1,1|z1|+···+r1,d |zd |. (3.12)
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In the last inequality we have used that the number of terms in the sums are bounded
by 2|α|, and that

(n
k

) ≤ 2k when n, k are non-negative integers such that k ≤ n.
By combining (3.12) with the estimate

|z j |γ j

γ j !s =
(

(|z j | 1s )γ j

γ j !

)s

≤ es|z j | 1s ,

we get

sup
α∈N2d

(‖Dα(�z�)‖L∞(Dr1 (0))

h|α|
1 α!s

)

� e2s(|z1| 1s +···+|zd | 1s )er1,1|z1|+···+r1,d |zd |

� er2,1|z1|+···+r2,d |zd |.

In the last inequality we have used the fact that r1 < r2 and s > 1. From the latter
estimate and (3.11) we obtain

|�A F0(z)| � er2,1|z1|+···+r2,d |zd |,

and the result follows when F0 ∈ E ′
s(Dr0(0)).

Suppose instead that F0 ∈ L∞(Q) holds, where Q = Dr2(0) ⊆ Cd , and let
Q j = Dr2, j (0) ⊆ C. Then

|�A F0(z)| �
∫

Q
|F0(z)||e(z,w)| dλ(w)

≤ ‖F0‖L∞
d

∏

j=1

(

∫

Q j

e|z j ||w j | dλ(w j )

)

� er2,1|z1|+···+r2,d |zd |,

and the result follows in this case as well. ��
In the next lemma we give options on compactly supported functions which are

mapped on the basic monomials, eα by the operator �A.

Lemma 3.14 Let t1, t2 ∈ Rd+ be such that t1 ≤ t2, χ ∈ R∞
t1,t2(C

d), and let χ0 be such
that χ0(|z1|, . . . , |zd |) = χ(z1, . . . , zd). If

Fα,χ (z) = ςαzαχ(z),

with

ςα = 2−dα! 12
(

∫

�t2

χ0(u)e−|u|2u2αu1 · · · ud du

)−1

, �t = { u ∈ Rd+ ; u ≤ t },
(3.13)

then the following is true:
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(1) �A Fα,χ = eα;
(2) for some constant C > 0 which only depends on ‖χ‖L∞ , c in Definition 3.1 and

the dimension d, it holds

C−1

⎛

⎝

d
∏

j=1

t−2
2, j (α j + 1)

⎞

⎠ t−2α
2 α! 12 ≤ ςα ≤ Ce|t2|2

⎛

⎝

d
∏

j=1

t−2
1, j (α j + 1)

⎞

⎠ t−2α
1 α! 12 .

(3.14)

Proof By using polar coordinates in each complex variable when integrating we get

(�A Fα,χ )(z) = π−dςα

∫

Cd
wαχ(w)e(z,w)−|w|2 dλ(w)

= π−dςα

∫

�t2

Iα(u, z)uαχ0(u)e−|u|2u1 · · · ud du, (3.15)

where

Iα(u, z) =
∫

[0,2π)d
ei〈α,θ〉

⎛

⎝

d
∏

j=1

ez j u j e−iθ j

⎞

⎠ dθ =
d

∏

j=1

Iα j (u j , z j ) (3.16)

with

Iα j (u j , z j ) =
∫ 2π

0
eiα j θ j ez j u j e−iθ j

dθ j .

By Taylor expansions we get

Iα j (u j , z j ) =
∫ 2π

0
eiα j θ j

( ∞
∑

k=0

zk
j u

k
j e

−ikθ j

k!

)

dθ j

=
∞
∑

k=0

(

(∫ 2π

0
ei(α j −k)θ j dθ j

) zk
j u

k
j

k!

)

= 2π z
α j
j u

α j
j

α j !

By inserting this into (3.15) and (3.16) we get

(�A Fα,χ )(z) = π−dςα

∫

�t2

(2π)d uαzα

α! uαχ0(u)e−|u|2u1 · · · ud du

=
(

2dςαα!− 1
2

∫

�t2

u2αχ0(u)e−|u|2u1 · · · ud du

)

eα(z) = eα(z)

and (1) follows.
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Since χ is non-negative and fullfills χ ≥ c on Dt1(0) we get

ςα � e|t2|2α! 12
(

∫

�t1

u2αu1 · · · u2 du

)−1

= e|t2|2α! 12
d

∏

j=1

⎛

⎝

t
2α j +2
1, j

2α j + 2

⎞

⎠

−1

� e|t2|2α! 12
⎛

⎝

d
∏

j=1

(t−2
1, j (α j + 1))

⎞

⎠ t−2α
1

which gives the right inequality in (3.14). By the support properties of χ we also have

ςα � α! 12
(

∫

�t2

t2αu1 · · · u2 du

)−1

,

and the left inequality in (3.14) follows by similar arguments, and (2) follows. ��
The next lemma shows that we may estimate entire functions by different Lebesgue

norms. We omit the proof, since the result follows from [11, Theorem 3.2].

Lemma 3.15 Suppose s, τ ∈ R and r , r0 ∈ Rd+ are such that

s <
1

2
, τ > −1

2
and r0 < r .

Let p, q ∈ [1,∞], F ∈ A(Cd) and set

M1,r (z) = r1|z1| 2
2τ+1 + · · · + rd |zd | 2

2τ+1

and

M2,r (z) = r1(log〈z1〉) 1
1−2s + · · · + rd(log〈zd〉) 1

1−2s .

Then

‖F · e−M j,r ‖L p(Cd ) � ‖F · e−M j,r0 ‖Lq (Cd ).

The next lemma relates Lebesgue estimates of entire functions with estimates on
corresponding Taylor coefficients. Here we let the Gamma function on Rd+ be defined
by

�d(x1, . . . , xd) =
d

∏

j=1

�(x j ),

where � is the Gamma function on R+.
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Lemma 3.16 Let τ > − 1
2 , r ∈ Rd+, M1,r be the same as in Lemma 3.15, ω(z) =

e
1
2 |z|2−M1,r (z), z ∈ Cd , and let α0 = (1, . . . , 1) ∈ Nd . Also let

ϑr (α) =
(

(2τ + 1)(2r)−(2τ+1)(α+α0)

(

� ((2τ + 1)(α + α0))

α!
)) 1

2

.

If F ∈ A(Cd) is given by (2.13), then

‖F · e−M1,r ‖L2(Cd ) = π
d
2

⎛

⎝

∑

α∈Nd

|c(F, α)ϑr (α)|2
⎞

⎠

1
2

,

and A2[ϑr ](C
d) = A2

(ω)(C
d) with equality in norms.

Proof Since

e−M1,r (z) =
d

∏

j=1

e−r j |z j |
2

2τ+1
,

Lemma 2.7 shows that we may assume that d = 1, giving that r = r1 and α0 = 1.
In view of Theorem 2.6 we have A2[ϑ](Cd) = A2

(ω1)
(Cd) with equality in norms,

when

ϑ(α) =
(

1

α!
∫ ∞

0
e−2r t

1
2τ+1

tα dt

) 1
2

.

By u = 2r t
1

2τ+1 as new variables of integration we obtain

ϑ(α) =
(

(2τ + 1)(2r)−(2τ+1)(α+1) 1

α!
∫ ∞

0
e−uuα(2τ+1)+2τ du

) 1
2

=
(

(2τ + 1)(2r)−(2τ+1)(α+1)
(

� ((2τ + 1)(α + 1))

α!
)) 1

2

,

which implies that θ = θ1,r , and the result follows. ��

We also need the following version of Stirling’s formula.

Lemma 3.17 Let α ≥ 0 be an integer and let τ > − 1
2 . Then

� ((2τ + 1)(α + 1))

α! � (2τ + 1)(2τ+1)·α (α + 1)τ · α!2τ . (3.17)
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Lemma 3.17 follows by repeated applications of Stirling’s formula and the standard
limit

lim
t→∞

(

1 + x

t

)t = ex

for every x ∈ R. In order to be self-contained we present the arguments.

Proof The result is obviously true for α = 0. For α ≥ 1 we have ατ � (α + 1)τ . A
combination of the the latter relations and Stirling’s formula gives

� ((2τ + 1)(α + 1))

α! � ((2τ + 1)α + 2τ)(2τ+1)·α+2τ+ 1
2

eα+2τ(α+1)
· eα

αα+ 1
2

=
(2τ + 1)(2τ+1)·α+2τ+ 1

2

(

1 + 2τ

(2τ + 1)α

)(2τ+1)·α+2τ+ 1
2

α2τ(α+1)

e2τ(α+1)

� (2τ + 1)(2τ+1)·α α2τ(α+1)

e2τα
� (2τ + 1)(2τ+1)·α (α + 1)τ α!2τ , (3.18)

and the result follows. ��
Proposition 3.9 essentially follows from the following lemma.

Lemma 3.18 Let τ > − 1
2 and r0, r ∈ Rd+ be such that r0 < r . Then the following is

true:

(1) If

|c(F, α)| �
(

2r0
2τ + 1

) 2τ+1
2 ·α

α!−τ , (3.19)

then

|F(z)| � er1|z1|
2

2τ+1 +···+rd |zd | 2
2τ+1 ; (3.20)

(2) If

|F(z)| � er0,1|z1|
2

2τ+1 +···+r0,d |zd | 2
2τ+1 (3.21)

then

|c(F, α)| �
(

2r

2τ + 1

) 2τ+1
2 ·α

α!−τ (3.22)

Proof Let ϑr be the same as in Lemma 3.16 and r1 ∈ Rd+ be such that r0 < r1 < r .
First we prove (1). Suppose that (3.19) holds and let α0 = (1, . . . , 1) ∈ Nd . Also let
M1,r be the same as in Lemma 3.15. Then Lemmas 3.15 and 3.16 give

‖F · e−M1,r ‖L∞(Cd ) � ‖F · e−M1,r1 ‖L2(Cd ) �
⎛

⎝

∑

α∈Nd

∣

∣c(F, α)ϑr1(α)
∣

∣

2

⎞

⎠

1
2
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=
⎛

⎝

∑

α∈Nd

∣

∣

∣

∣

∣

c(F, α)ϑr0(α)

(

r0
r1

)(α+α0)
2τ+1
2

∣

∣

∣

∣

∣

2
⎞

⎠

1
2

� sup
α∈Nd

∣

∣

∣

∣

∣

∣

c(F, α)ϑr0(α)

d
∏

j=1

(α j + 1)−
τ
2

∣

∣

∣

∣

∣

∣

� sup
α∈Nd

(

|c(F, α)|
(

2τ + 1

2r0

) 2τ+1
2 ·α

α!τ
)

.

Here the second inequality follows from the fact that

∑

α∈Nd

⎛

⎝

⎛

⎝

d
∏

j=1

(α j + 1)
τ
2

⎞

⎠

(

r0
r1

)(2τ+1)·(α+α0)
⎞

⎠

is convergent since r0 < r1, and the fifth relation follows from Lemma 3.17. This
implies that (3.20) holds and (1) follows.

Next assume that (3.21) holds. By Lemma 3.15 we get

‖F · e−M1,r0 ‖L∞(Cd ) � ‖F · e−M1,r1 ‖L2(Cd )

�
⎛

⎝

∑

α∈Nd

∣

∣c(F, α)ϑr1(α)
∣

∣

2

⎞

⎠

1
2

≥ sup
α∈Nd

(|c(F, α)| ϑr1(α)
)

� sup
α∈Nd

⎛

⎝|c(F, α)|
(

2τ + 1

2r1

) 2τ+1
2 α d

∏

j=1

(α j + 1)
τ
2 α!τ

⎞

⎠

� sup
α∈Nd

(

|c(F, α)|
(

2τ + 1

2r

) 2τ+1
2 α

α!τ
)

,

where the third inequality follows from Lemma 3.17. This gives (2). ��

Proposition 3.11 mainly follows from the following result.

Lemma 3.19 Let r , r0 ∈ Rd+ be such that r0 < r , s ∈ (0, 1
2 ) and let F ∈ A(Cd). Then

the following is true:

(1) if (3.7) holds, then

|c(F, α)| � e−(R1|α1|
1
2s +···+Rd |αd | 1

2s ), R = s

(

1 − 2s

r

) 1−2s
2s ; (3.23)
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(2) if R0 ∈ Rd+ is given by

|c(F, α)| � e−(R0,1|α1|
1
2s +···+R0,d |αd | 1

2s ), R0 = s

(

1 − 2s

r0

) 1−2s
2s

, (3.24)

then (3.7) holds with r in place of r0.

Proof Let r1, r2, r3 ∈ Rd+ be such that r1 < r < r2 < r3. By Lemma 2.7 we may
assume that d = 1, and by Lemma 3.15 the result follows if we prove

sup
α∈N

(

|c(F, α)eR3·α
1
2s |2

)

�
∫

C
|F(z)e−r(log〈z〉) 1

1−2s |2 dλ(z)

� sup
α∈N

(

|c(F, α)eR1·α
1
2s |2

)

, (3.25)

where R1, R2, R3 ∈ R+ satisfy

R j =
(

1 − 2s

r j

) 1−2s
2s

, j = 1, 2, 3.

By Theorem 2.6 we have

∫

C
|F(z)e−r(log〈z〉) 1

1−2s |2 dλ(z) �
∑

α∈N
|c(F, α)ϑr (α)|2,

where

ϑr (α) =
(

π

2α!
∫ ∞

0
e−r(log〈t〉) 1

1−2s
tα dt

) 1
2

.

Let

θ = 1

1 − 2s
> 1 and gr ,α(t) = e−r(log t)θ tα.

In order to prove (3.25), we need to show that

eR2α
1
2s � ϑr (α) � eR1α

1
2s

, (3.26)

which shall be reached by modifying the proof of (15) in [4].
We have

ϑr (α)2 �
∫ ∞

e
e(r1−r)(log t)θ gr1,α(t) dt
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� sup
t≥e

(gr1,α(t))
∫ ∞

e
e(r1−r)(log t)θ dt � sup

t≥e
(gr1,α(t)).

By straight-forward computations it follows that gr ,α(t) attains its global maximum
for

tr ,α = exp

(

( α

θr

) 1−2s
2s

)

, (3.27)

and that

gr1,α(tr1,α) = exp

(

r
1− 1

2s
1 θ− 1

2s (θ − 1)α
1
2s

)

= e2R1·α
1
2s

,

and the second inequality in (3.26) follows.
In order to prove the first inequality in (3.26), we claim that for some c which is

independent of α we have

(

1 − c

tr2,α

)α

� e(r−r2)(log tr2,α)θ . (3.28)

In fact, by (3.27) it follows that

lim
α→∞ α−1tr2,α = ∞.

This together with the fact that r < r2 give

lim
α→∞

(

1 − c

tr2,α

)α

= lim
α→∞

((

1 − c

tr2,α

)tr2,α
)

α
tr2,α = (e−c)0 = 1

and

lim
α→∞ e(r−r2)((1−2s)α/r2)

1
2s = 0,

and (3.28) follows.
By (3.28) and the fact that 1

2s > 1 we get

ϑr (α)2 � 1

α!
∫ tr2,α

tr2,α−c
e−r(log t)θ tα dt � 1

α!e−r(log tr2,α)θ (tr2,α − c)α

� 1

α!e−r2(log tr2,α)θ tαr2,α = 1

α!e2R2·α
1
2s � e2R3·α

1
2s

.

This gives the result. ��
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3.3 Proofs of main results

Next we prove Proposition 3.9 and thereby Theorem 3.2.

Proof of Proposition 3.9 It is clear that (2) ⇒ (3) ⇒ (4) ⇒ (5). By Proposition 3.13 it
follows that (5) implies (1). We need to prove that (1) implies (2).

Suppose (1) holds and let r4 = r . Choose r1, r2, r3 ∈ Rd+ such that r0 < r1 < r2 ≤
r3 < r4 and r1r4 < r22 , χ ∈ R∞

r2,r3(C
d), and let Fα,χ be as in Lemma 3.14 with r2 and

r3 in place of r1 and r2. If τ = 1, then Lemma 3.18 (2) gives

|c(F, α)| � rα
1 α!− 1

2 . (3.29)

Let
F0(z) =

∑

α∈Nd

c(F, α)ςαzα. (3.30)

We claim that the series in (3.30) is uniformly convergent with respect to z in DR(0).
In fact, if |z j | ≤ r4, j , then (3.14) gives

|c(F, α)ςαzα| � 〈α〉dr−2α
2 rα

1 rα
4 = 〈α〉dρα,

where ρ ∈ Rd+ satisfies ρ j = r1, j r4, j

r22, j
< 1. Since

∑

α∈Nd 〈α〉dρα is convergent, Weier-

strass theorem shows that (3.30) is uniformly convergent and defines an analytic
function in Dr4, j (0). Hence, F0 ∈ A(Dr4, j (0)). Furthermore, by the support of χ

we get

�A(F0 · χ) = �A

⎛

⎝

∑

α∈Nd

c(F, α)ςαzα · χ

⎞

⎠

=
∑

α∈Nd

c(F, α)ςα�A(zα · χ) =
∑

α∈Nd

c(F, α)eα = F . (3.31)

Hence (2) holds, and the proof is complete. ��
For future references we observe that if ςα and χ are the same as in Lemma 3.14,

then (3.30) shows that the relationship between c(F, α) and c(F0, α) is given by

c(F0, α) = c(F, α)ςαα! 12 . (3.32)

Proof of Theorem 3.4 The equivalence between (1) and (2) is clear. It is also obvious
that (3) implies (2) in view of Proposition 3.9. We shall prove the equivalence between
(1) and (3).

Suppose (1) holds. Then (3.29) holds for every r1 ∈ Rd+. Let r , R ∈ Rd+ be chosen
such that χ ∈ R∞

r ,R(Cd), Fα,χ be as in Lemma 3.14 and let F0 be given by (3.30). By
(3.29) we have

|c(F, α)ςα| � 〈α〉dr−2αrα
1
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for every r1 ∈ Rd+, giving that

|c(F, α)ςα| � rα
0

for every r0 ∈ Rd+. This implies that the series in (3.30) is locally uniformly convergent
with respect to z and defines an entire function on Cd . Hence F0 ∈ A(Cd). Moreover,
by (3.31) it follows that �A(F0χ) = F , and we have proved that (1) implies (3).

Next suppose that (3) holds. Then

|c(F0, α)| � rαα! 12

for every r ∈ Rd+. By (3.14) and (3.32) we get

|c(F, α)| = |c(F0, α)|ς−1
α α!− 1

2 � rας−1
α � rα R2αα!− 1

2 .

Since r ∈ Rd+ can be chosen arbitrarily small we get

|c(F, α)| � rα
0 α!− 1

2

for every r0 ∈ Rd+. This implies that F ∈ A0,�1(C
d). That is, we have proved that (3)

implies (1), and the result follows. ��
Next we prove Proposition 3.10.

Proof of Proposition 3.10 Suppose (3.3) holds, and let r1, r2 ∈ Rd+ be such that r0 <

r1 < r2 < r . Then Lemma 3.18 gives

|c(F, α)| �
(

2r1
2τ + 1

) 2τ+1
2 ·α

α!−τ .

By Lemma 3.14 and (3.32) we get

|c(F0, α)| �
(

2r1
2τ + 1

) 2τ+1
2 ·α

α!−τ 〈α〉dα!t−2α
1

�
(

2r2
2τ + 1

) 2τ+1
2 ·α

α!−(τ−1)t−2α
1 =

(

2R2

2τ − 1

) 2τ−1
2 ·α

α!−(τ−1),

when

R2 = 2τ − 1

2

(

2r2
2τ + 1

) 2τ+1
2τ−1

t
− 4

2τ−1
1 .

This proves (1).
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Suppose instead that r0, R0, r1, r2 ∈ Rd+ are such that (3.6) hold and r0 < r1 <

r2 < r , and that F0 ∈ A(Cd) satisfies (3.4). Also let F = �A(F0 · χ). Then

(

2R0

2τ − 1

) 2τ−1
2

<

(

2r1
2τ + 1

) 2τ+1
2

t−2
2 .

By combining the latter estimate with Lemma 3.18 we get

|c(F0, α)| �
(

2r1
2τ + 1

) 2τ+1
2 ·α

t−2α
2 α!1−τ

Hence Lemma 3.14 and (3.32) give

|c(F, α)| �
(

2r1
2τ + 1

) 2τ+1
2 ·α

α!−τ

and Lemma 3.18 again implies that (3.3) holds with r2 in place of r0. This gives the
result. ��
Proof of Theorems 3.5–3.7 First suppose σ ∈ ( 12 , 1), and let σ0 = σ

2σ−1 and τ = 1
2σ .

Then

2σ

σ + 1
= 2

2τ + 1
and

2σ0
σ0 − 1

= 2

2τ − 1
.

Theorem 3.5 now follows from these observations and Proposition 3.10 in the case
τ ∈ ( 12 , 1).

In the same way, Theorem 3.6 follows by choosing τ = 1 in Proposition 3.10.
Finally, suppose σ ∈ (0, 1

2 ), and let σ0 = σ
1−2σ and τ = 1

2σ . Then

2σ

σ + 1
= 2

2τ + 1
and

2σ0
σ0 + 1

= 2

2τ − 1
,

and Theorem 3.7 follows from these observations and Proposition 3.10 in the case
τ > 1. ��

Next we prove Propositions 3.11 and 3.12 and thereby Theorem 3.8.

Proof of Propositions 3.11 and 3.12 Let r , r j , R j ∈ Rd+, j = 0, 1, 2, 3, be such that

r0 < r1 < r2 < r3 < r and R j = s

(

1 − 2s

r j

) 1−2s
2s

.

First suppose that F ∈ A(Cd) satisfies (3.7) and let F0 be the formal power series
expansion with coefficients given by (3.32). Then F = �A(F0 · χ).
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By Lemma 3.19 we get

|c(F, α)| � e−(R1,1|α1|
1
2s +···+R1,d |αd | 1

2s ).

Hence Lemma 3.14 and (3.32) give

|c(F0, α)| � α!t−2α
1 e−(R1,1|α1|

1
2s +···+R1,d |αd | 1

2s )

� e−(R2,1|α1|
1
2s +···+R2,d |αd | 1

2s ).

In the last inequality we have used the fact that s < 1
2 , which implies that R2 < R1

and

t−2α
1 α! � e(R1,1−R2,1)|α1|

1
2s +···+(R1,d−R2,d )|αd | 1

2s
.

By applying Lemma 3.19 again it follows that F0 satisfies (3.8) with r3 in place of
r0. This gives (1).

Suppose instead that F0 ∈ A(Cd) satisfies (3.8) and let F = �A(F0 · χ). Then
Lemma 3.19 gives

|c(F0, α)| � e−(R1,1|α1|
1
2s +···+R1,d |αd | 1

2s ),

and it follows from Lemma 3.14 and (3.32) that

|c(F, α)| � α!−1t2α2 e−(R1,1|α1|
1
2s +···+R1,d |αd | 1

2s )

� e−(R1,1|α1|
1
2s +···+R1,d |αd | 1

2s ).

By applying Lemma 3.19 again we deduce (3.7) with r2 in place of r0, and Proposition
3.11 follows.

Proposition 3.12 is a straight-forward consequence of (3.32). The details are left
for the reader. ��

4 Characterizations of Pilipović spaces

In this sectionwe combineLemma2.10withTheorems3.2–3.8 to get characterizations
of Pilipović spaces.

We beginwith the following characterization ofH�1 . The result is a straight-forward
combination of Lemma 2.10 and Theorem 3.2. The details are left for the reader.

Proposition 4.1 Let φ be as in (2.7), r ∈ Rd+, χr be the characteristic function for
Dr (0) and let s > 0. Then the following conditions are equivalent:

(1) f ∈ H�1(R
d);
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(2) f = V ∗
φ F for some F ∈ E ′

s(R
2d);

(3) f = V ∗
φ F for some F ∈ E ′(R2d) ∩ L∞(R2d);

(4) f = V ∗
φ F for some F ∈ E ′(R2d) ∩ L∞(R2d) which satisfies

F(x, ξ) = F0(x − iξ)e−i〈x,ξ〉χ(x, ξ) (4.1)

for some r ∈ Rd+, χ = χr and F0 ∈ A(Dr (0)).

Remark 4.2 It is clear that χ in Proposition 4.1 can be chosen as any χ ∈ R∞(Cd)

with suitable support properties.

Remark 4.3 In (2.32) there is a factor e
1
2 (|x |2+|ξ |2) which is absent in (4.1). We notice

that this factor is not needed in (4.1) becauseR∞
t1,t2(C

d) is invariant under multiplica-
tions of such functions.

The next results follow from Lemma 2.10 and Theorems 3.4–3.8. The details are
left for the reader.

Proposition 4.4 Let φ be as in (2.7) and χ ∈ R∞(Cd). Then the following conditions
are equivalent:

(1) f ∈ H0,�1(R
d);

(2) f = V ∗
φ F for some F ∈ E ′(R2d) ∩ L∞(R2d) which satisfies (4.1) for some

F0 ∈ A(Cd).

Proposition 4.5 Let φ be as in (2.7), χ ∈ R∞(Cd), σ ∈ ( 12 , 1) and let

σ0 = σ

2σ − 1
.

Then the following conditions are equivalent:

(1) f ∈ H�σ (Rd) ( f ∈ H0,�σ (Rd));
(2) f = V ∗

φ F for some F ∈ E ′(R2d) ∩ L∞(R2d) which satisfies (4.1) for some

F0 ∈ A′
0,�σ0

(Cd) (F0 ∈ A′
�σ0

(Cd)).

Proposition 4.6 Let φ be as in (2.7), χ ∈ R∞(Cd) and let σ = 1
2 . Then the following

conditions are equivalent:

(1) f ∈ H�σ (Rd) ( f ∈ H0,�σ (Rd));
(2) f = V ∗

φ F for some F ∈ E ′(R2d) ∩ L∞(R2d) which satisfies (4.1) for some

F0 ∈ A′
0,1/2(C

d) (F0 ∈ A0,1/2(Cd)).
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Proposition 4.7 Let φ be as in (2.7), χ ∈ R∞(Cd), σ ∈ (0, 1
2 ) and let

σ0 = σ

1 − 2σ
.

Then the following conditions are equivalent:

(1) f ∈ H�σ (Rd) ( f ∈ H0,�σ (Rd));
(2) f = V ∗

φ F for some F ∈ E ′(R2d) ∩ L∞(R2d) which satisfies (4.1) for some

F0 ∈ A�σ0
(Cd) (F0 ∈ A0,�σ0

(Cd)).

Proposition 4.8 Let φ be as in (2.7), χ ∈ R∞(Cd) and let s ∈ (0, 1
2 ). Then the

following conditions are equivalent:

(1) f ∈ Hs(Rd) ( f ∈ Hs(Rd));
(2) f = V ∗

φ F for some F ∈ E ′(R2d) ∩ L∞(R2d) which satisfies (4.1) for some

F0 ∈ As(Cd) (F0 ∈ A0,s(Cd)).
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9. Pilipović, S.: Tempered ultradistributions. Boll. U.M.I. 7, 235–251 (1988)

http://creativecommons.org/licenses/by/4.0/


20 Page 34 of 34 E. Nabizadeh et al.

10. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Academic Press, London New York
(1979)

11. Toft, J.: The Bargmann transform on modulation and Gelfand–Shilov spaces, with applications to
Toeplitz and pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 3, 145–227 (2012)

12. Toft, J.: Images of function and distribution spaces under the Bargmann transform. J. Pseudo-Differ.
Oper. Appl. 8, 83–139 (2017)

13. Toft, J.: Paley-Wiener properties for spaces of power series expansions. Complex Var. Elliptic Equ.
(2019). https://doi.org/10.1080/17476933.2019.1681414

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1080/17476933.2019.1681414

	Paley–Wiener properties for spaces of entire functions
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Pilipović spaces
	2.2 Spaces of entire functions and the Bargmann transform
	2.3 Hilbert spaces of power series expansions and analytic functions
	2.4 A test function space introduced by Gröchenig

	3 Paley–Wiener properties for Bargmann–Pilipović spaces
	3.1 Main results
	3.2 Preparing results and their proofs
	3.3 Proofs of main results

	4 Characterizations of Pilipović spaces
	Acknowledgements
	References




