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Abstract
The collision of two plane gravitational waves in Einstein’s theory of relativity can be
described mathematically by a Goursat problem for the hyperbolic Ernst equation in a
triangular domain. We use the integrable structure of the Ernst equation to present the
solution of this problem via the solution of a Riemann–Hilbert problem. The formula-
tion of the Riemann–Hilbert problem involves only the prescribed boundary data, thus
the solution is as effective as the solution of a pure initial value problem via the inverse
scattering transform. Our results are valid also for boundary data whose derivatives are
unbounded at the triangle’s corners—this level of generality is crucial for the applica-
tion to colliding gravitational waves. Remarkably, for data with a singular behavior of
the form relevant for gravitational waves, it turns out that the singular integral operator
underlying the Riemann–Hilbert formalism can be explicitly inverted at the boundary.
In this way, we are able to show exactly how the behavior of the given data at the
origin transfers into a singular behavior of the solution near the boundary.
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scattering · Unified transform · Riemann–Hilbert problem

Mathematics Subject Classification 35Q75 · 83C35 · 37K15

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Organization of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 The Riemann surface S(x,y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The map F(x,y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

B Julian Mauersberger
julianma@kth.se

Jonatan Lenells
jlenells@kth.se

1 Department of Mathematics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s13324-019-00347-1&domain=pdf
http://orcid.org/0000-0003-1582-6414


10 Page 2 of 60 J. Lenells, J. Mauersberger

2.3 The contours � and � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Boundary values and function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Collinearly polarized waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 The Euler–Darboux equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Proof of uniqueness and of (4.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Proof of existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Proof of boundary behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Lax pair and eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1 Lax pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Proofs of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1 Proofs of Theorem 1 & 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.1 The Khan–Penrose solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 The Nutku–Halil solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Appendix: Gravitational waves and the hyperbolic Ernst equation . . . . . . . . . . . . . . . . . . . 58
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1 Introduction

Half a century after Einstein presented his theory of relativity, Ernst made the remark-
able discovery that, in the presence of one space-like and one time-like Killing vector,
the entire solution of the vacuum Einstein field equations reduces to solving a single
equation for a complex-valued function E of two variables [10]. This single equation,
now known as the (elliptic) Ernst equation, has proved instrumental in the study and
construction of stationary axisymmetric spacetimes, cf. [21].

It later became clear that a similar reduction of Einstein’s equations is possible also
in the presence of two space-likeKilling vectors, a situation relevant for the description
of two colliding plane gravitational waves [4]. In this case the associated equation is
known as the hyperbolic Ernst equation and can be written in the form

(Re E)

(
Exy − Ex + Ey

2(1 − x − y)

)
= ExEy, (1.1)

where the Ernst potential E(x, y) is a complex-valued function of the two real variables
(x, y) and subscripts denote partial derivatives.

The problem of finding the nonlinear interaction of two plane gravitational waves
following their collision has a distinguished history going back to thework ofKhan and
Penrose [19], Szekeres [36], Nutku and Halil [32], and Chandrasekhar and coauthors
[4,5]; see the monograph [17] for further references and historical remarks. In terms of
the Ernst potential, this collision problem reduces to a Goursat problem for equation
(1.1) in the triangular region D defined by (see Fig. 1)

D = {(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x + y < 1}. (1.2)
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More precisely, the problem can be formulated as follows (see [17] and the
“Appendix”):

⎧⎪⎨
⎪⎩
Given complex-valued functions E0(x), x ∈ (1, 1), and E1(y), y ∈ [0, 1),
find a solution E(x, y) of the hyperbolic Ernst equation (1.1) in D

such that E(x, 0) = E0(x) for x ∈ [0, 1) and E(0, y) = E1(y) for y ∈ [0, 1).
(1.3)

In this paper, we use the integrable structure of equation (1.1) and Riemann–Hilbert
(RH) techniques to analyze the Goursat problem (1.3). We present four main results,
denoted by Theorem 1–4:

• Theorem 1 is a solution representation result: Assuming that the given data satisfy
the following conditions for some n ≥ 2:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E0, E1 ∈ C([0, 1)) ∩ Cn((0, 1)),

xαE0x , yαE1y ∈ C([0, 1)) for some α ∈ [0, 1),
E0(0) = E1(0) = 1,

Re E0(x) > 0 for x ∈ [0, 1),
Re E1(y) > 0 for y ∈ [0, 1),

(1.4)

and the Goursat problem (1.3) has a solution (in the precise sense specified in
Definition 3.1), we give a representation formula for this solution. This formula is
given in terms of the solution of a corresponding RH problem whose formulation
only involves the given boundary data.

• Theorem 2 is a uniqueness result: Assuming that the given data satisfy the condi-
tions (1.4) for some n ≥ 2, we show that the solution of the Goursat problem (1.3)
is unique, if it exists.

• Theorem3 is an existence and regularity result:Assuming that the givendata satisfy
the conditions (1.4) for some n ≥ 2, we show that there exists a unique solution
E of the problem (1.3) whenever the associated RH problem has a solution, and
this E has the same regularity as the given data. In the case of collinearly polarized
waves, this yields existence for general data; for noncollinearly polarized waves,
a small-norm assumption is also needed.

• Theorem 4 provides exact formulas for the singular behavior of the solution E near
the boundary for data satisfying (1.4).

We emphasize that the assumptions (1.4) allow for functions E0(x) and E1(y)whose
derivatives blow up as x and y approach the origin. This level of generality is necessary
for the application to gravitational waves. Indeed, in order for the problem (1.3) to be
relevant in the context of gravitational waves, it turns out that the solution should obey
the conditions (see [17] and the “Appendix”)

lim
x↓0 x

α|Ex (x, y)| = m1Re E1(y)√
1 − y

for each y ∈ [0, 1), (1.5a)
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Fig. 1 The triangular region D
defined in (1.2) and the
boundary conditions relevant for
the Goursat problem (1.3)

D

x

y

1

1

E(x, 0) = E0(x)
E(

0,
y
)

=
E 1

(y
)

lim
y↓0 y

α|Ey(x, y)| = m2Re E0(x)√
1 − x

for each x ∈ [0, 1), (1.5b)

where m1 and m2 are real constants such that m1,m2 ∈ [1,√2) and α = 1/2.
Remarkably, for datawith a singular behavior at the origin of the formgiven in (1.4), the
singular integral operator underlying theRH formalism can be explicitly inverted in the
limit of small x or y. This leads to the characterizationof the boundarybehavior given in
Theorem4. In particular, it implies the following important conclusion for the collision
of gravitational waves: A solution E(x, y) of theGoursat problem for (1.1) fulfills (1.5)
iff the boundary data are such that limx↓0 xα|E0x (x)| and limy↓0 yα|E1y(y)| lie in the
interval [1,√2).

The assumptions Re E0(x) > 0 and Re E1(y) > 0 in (1.4) are natural because in
the context of gravitational waves the real part of the Ernst potential is automatically
strictly positive. The assumption E0(0) = E1(0) in (1.4) expresses the compatibility of
the boundary values at the origin. If E is a solution of (1.1), then so is aE + ib for any
choice of the real constants a and b. Thus, since E(0, 0) �= 0 as a consequence of the
assumption Re E0(x) > 0, there is no loss of generality in assuming that E(0, 0) = 1.

The analysis of a boundary or initial-boundary value problem for an integrable
equation is usually complicated by the fact that not all boundary values are known for
a well-posed problem cf. [13]. This issue does not arise for (1.3) which is a Goursat
problem. This means that the presented solution is as effective as the solution of the
initial value problem via the inverse scattering transform for an equation such as the
KdV or nonlinear Schrödinger equation.

Despite its great importance in the context of gravitational waves, there are few
results in the literature on the Goursat problem (1.3). In fact, rather than solving a
given initial or boundary value problem, most of the literature on the Ernst equation
has dealtwith the generation of newexact solutions via solution-generating techniques,
cf. [17,21,22]. Solving an initial or boundary value problem is much more difficult
than generating particular solutions. In fact, even if a large class of particular solutions
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are known, the problem of determining which of these solutions satisfies the given
initial and boundary conditions remains a highly nonlinear problem, often as difficult
as the original problem. As noted byGriffiths [17, p. 210], “What would bemuchmore
significant would be to find a practical way to determine the solution in the interaction
region for an arbitrary set of initial conditions.”

Regarding the problem of determining the interaction of two colliding plane waves
from arbitrary initial conditions, important first progress wasmade in a series of papers
by Hauser and Ernst, see [18]. Their approach is based on the so-called Kinnersley
H -potential [20] rather than on equation (1.1). In terms of the 2 × 2-matrix valued
Kinnersley potential H(r , s), the problem of determining the spacetime metric in the
interaction region can be formulated as a Goursat problem in the triangular region

� = {(r , s) ∈ R
2 | − 1 ≤ r < s ≤ 1} (1.6)

for the equation (see Eq. (2.10) in [18])

2(s − r)Hrs� − [Hr�, Hs�] = 0, � =
(
0 i
−i 0

)
. (1.7)

Hauser and Ernst were able to relate the solution of this problem to the solution of a
homogeneous Hilbert problem. The analysis of [18] relies, at least implicitly, on the
fact that equation (1.7) admits the Lax pair (see Eq. (3.1) in [18])

Pr = Hr�

2(τ − r)
P, Ps = Hs�

2(τ − s)
P,

where P(r , s, τ ) is a 2 × 2-matrix valued eigenfunction and τ ∈ C is the spectral
parameter.

The authors of [15] have addressed the Goursat problem in the triangle � for the
equation

2(s − r)grs + gr − gs + (r − s)(gr g
−1gs + gsg

−1gr ) = 0, (1.8)

where g(r , s) is a 2× 2-matrix valued function. Equation (1.8) is related to the hyper-
bolic Ernst equation (1.1) as follows: Letting

g(r , s) = s − r

2Re E
( |E |2 Im E
Im E 1

)
,

Eq. (1.8) reduces to the scalar equation

(Re E)

(
Ers − Er − Es

2(r − s)

)
= ErEs, (1.9)

which is related toEq. (1.1) by the change of variables y = (r+1)/2 and x = (1−s)/2.
Through a clever series of steps, the authors of [15] express the solution of (1.8) in
terms of the solution of a RH problem.
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Our approach here is inspired by the works [23,25,31] on the elliptic Ernst equation.
We have also drawn some inspiration from [15] and [18], although in contrast to these
references, we analyze equation (1.1). Two further differences between the present
work and [15] are:

(i) It is assumed in [15] that the solution is C2 on all of � up to and including the
non-diagonal part of the boundary. However, as explained above (see equation
(1.5)), the Ernst potentials relevant for gravitational waves have boundary values
E(x, 0) and E(0, y) whose derivatives are not continuous (actually unbounded)
at the origin. Here we allow for such singularities in Ex (x, 0) and Ey(0, y). These
singularities transfer, in general, into singularities of the associated eigenfunction
solutions of the Lax pair, and the rigorous treatment of all these singularities was
one of the main challenges of the present work.

(ii) The normalization condition for the RH problem derived in [15] involves the
solution itself; hence the solution representation is not effective. We circumvent
this problem by defining the eigenfunctions on a Riemann surface S(x,y) with
branch points at x and 1− y. The Riemann surface S(x,y) is dynamic in the sense
that it depends on the spatial point (x, y). This dependence on (x, y) creates some
technical difficulties which we handle by introducing a map F(x,y) from S(x,y)

to the standard Riemann sphere which takes the two moving branch points to the
two fixed points −1 and 1. After transferring the RH problem to the Riemann
sphere in this way, we can analyze it using techniques from the theory of singular
integral equations.

In the traditional implementation of the inverse scattering transform, the two equa-
tions in the Lax pair are treated separately—usually the spatial part of the Lax pair is
first used to define the scattering data and the temporal part is then used to determine
the time evolution. The Goursat problem (1.3) does not fit this pattern, so a different
approach is required; this is one reason why the solution of the problem (1.3) has
proved elusive. Actually, the approach in [15] was one of the first implementations of
a general framework for the analysis of boundary value problems for integrable PDEs
now known as the unified transform or Fokas method [11] (see also [3,7,12,13,34]). In
this method the two equations in the Lax pair are analyzed simultaneously rather than
separately [14]. The ideas of this method play an important role also in this paper.

It is an interesting open problem to investigate whether existence and uniqueness
results for (1.3) can be obtained also via functional analytic techniques. As was
explained already in Chapter IV of Goursat’s original treatise [16], existence and
uniqueness results for Goursat problems for linear hyperbolic PDEs can be estab-
lished by means of successive approximations and Riemann’s method (see also [6]). It
is possible to extend these ideas to prove existence theorems also for certain nonlinear
Goursat problems [35,38]. However, even in the linear case, these theorems tend to
assume that {E, Ex , Ey, Exy} are all continuous [6,16,35], or at least that the boundary
values are Lipschitz [38]. These conditions fail for the assumptions (1.4) relevant for
gravitational waves.

We recently became aware of some relatively recent works in the physics literature
which also address the initial value problem for two colliding plane gravitationalwaves
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[1,2,33]. Compared with these papers, our work is more mathematical in character and
there appears to be little overlap.

Let us finally point out that many exact solutions describing colliding plane grav-
itational waves are known (see e.g. [5,9,32,37]) and that there is a growing literature
on colliding gravitational waves which are not necessarily plane (see e.g. [26,27]).

1.1 Organization of the paper

We begin by establishing some notation in Sect. 2. Our main results (Theorems 1–4)
are stated in Sect. 3.

In Sect. 4, as preparation for the general case, we analyze the special case in which
the colliding waves have collinear polarization. In this case, the problem reduces to
a problem for the so-called Euler–Darboux equation. We prove a theorem for this
equation (Theorem 5) which is analogous to Theorem 1–4.

In Sect. 5, we discuss the Lax pair of equation (1.1) and analyze the spectral data
as well as the uniqueness of the solution of the corresponding RH problem.

In Sect. 6, we present the proofs of Theorem 1–4.
Section 7 contains two short examples and the “Appendix” contains some back-

ground on the origin of the Goursat problem (1.3) in the context of colliding
gravitational waves.

2 Notation

We introduce notation that will be used throughout the paper.
We let D denote the triangular region defined in (1.2) and displayed in Fig. 1. Given

δ > 0, we let Dδ denote the slightly smaller triangular region obtained by removing
a narrow strip along the diagonal of D as follows (see Fig. 2):

Dδ = {(x, y) ∈ D | x + y < 1 − δ}, (2.1)

The interiors of D and Dδ will be denoted by int D and int Dδ , respectively. The
Riemann sphere will be denoted by Ĉ = C ∪ {∞}.

2.1 The Riemann surfaceS(x,y)

For each (x, y) ∈ D, we let S(x,y) denote the Riemann surface consisting of all points
P := (λ, k) ∈ C

2 such that

λ2 = k − (1 − y)

k − x
(2.2)

together with two points ∞+ = (1,∞) and ∞− = (−1,∞) at infinity and a branch
point x ≡ (∞, x) which make the surface compact. The surface S(x,y) is two-sheeted
in the sense that to each k ∈ Ĉ\{x, 1−y}, there correspond exactly two values of λ.We
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Fig. 2 The triangle Dδ defined
in (2.1)

Dδ

x

y

11 − δ

1

1 − δ

x 1 − y

x 1 − y

−1 1
Re z

Im z

ĈS(x,y)

F(x,y)

Fig. 3 The map F(x,y) : k �→ z = 1+λ
1−λ

is a biholomorphism from the two-sheeted Riemann surface

S(x,y) to the Riemann sphere Ĉ = C ∪ {∞}. It maps the branch points x and 1 − y to z = −1 and z = 1,
respectively, and the upper (lower) sheet to the outside (inside) of the unit circle

introduce a branch cut in the complex k-plane from x to 1−y and, for k ∈ Ĉ\[x, 1−y],
we let k+ and k− denote the corresponding points on the upper and lower sheet of
S(x,y), respectively. By definition, the upper (lower) sheet is characterized by λ → 1
(λ → −1) as k → ∞. Writing λ(x, y, P) for the value of λ corresponding to the
point P ∈ S(x,y), we have

λ(x, y, k+) =
√
k − (1 − y)

k − x
= −λ(x, y, k−), k ∈ Ĉ\[x, 1 − y], (2.3)

where the sign of the square root in (2.3) is chosen so that λ(x, y, k+) has positive
real part.

2.2 Themap F(x,y)

For each point (x, y) ∈ D, S(x,y) is a compact genus zero Riemann surface with
branch points at k = x and k = 1 − y. In order to fix the locations of these branch
points, we introduce a new variable z by
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z = 1 + λ

1 − λ
,

and let F(x,y) : S(x,y) → Ĉ be the map that sends P to z, i.e.,

F(x,y)(P) = 1 + λ(x, y, P)

1 − λ(x, y, P)
, P ∈ S(x,y).

For each (x, y) ∈ D, F(x,y) is a biholomorphism (i.e. a bijective holomorphic function
whose inverse is also holomorphic) fromS(x,y) to Ĉwhichmaps the two branch points
x and 1 − y to z = −1 and z = 1, respectively, see Fig. 3.

2.3 The contours 6 and 0

For each (x, y) ∈ D, we let �0 ≡ �0(x, y) denote the shortest path from 0+ to 0−
in S(x,y), and we let �1 ≡ �1(x, y) denote the shortest path from 1− to 1+ in S(x,y).
More precisely,

�0 = [0, x]+ ∪ [x, 0]−, �1 = [1, 1 − y]− ∪ [1 − y, 1]+, (2.4)

where, for a subset S of the complex plane,weuse the notation S± = {k± ∈ S(x,y) | k ∈
S} to denote the sets in the upper and lower sheets of S(x,y) which project onto S, see
Fig. 4. We write � := �0 ∪ �1 for the union of �0 and �1.

Given (x, y) ∈ D, we let �0 ≡ �0(x, y) and �1 ≡ �1(x, y) denote two clock-
wise nonintersecting smooth contours in the complex z-plane which encircle the real
intervals

F(x,y)(�0) =
[

−
√
1 − y + √

x√
1 − y − √

x
,−

√
1 − y − √

x√
1 − y + √

x

]
(2.5a)

and

F(x,y)(�1) =
[√

1 − x − √
y√

1 − x + √
y
,

√
1 − x + √

y√
1 − x − √

y

]
, (2.5b)

respectively, but which do not encircle zero, see Fig. 5. We let � ≡ �(x, y) denote
the union � := �0 ∪ �1 of �0 and �1.

2.4 Boundary values and function spaces

Let � ⊂ C be a piecewise smooth oriented contour. For an analytic function m :
C\� → Cwhich extends continuously to � from either side, we denote the boundary
values of m from the left and right sides of � by m+ and m−, respectively. Given a
subset S ⊂ R

n , n ≥ 1, we let C(S) denote the space of complex-valued continuous
functions on S. If S is open, we defineCn(S) as the space of complex-valued functions
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Σ0 Σ1

Σ0 Σ1

0+
1+

0−
1−

F(x,y)(Σ0) F(x,y)(Σ1)
Re z

Im z

F(x,y)

Fig. 4 Themap F(x,y) sends the contours�0 and�1 onto the two real intervals F(x,y)(�0) and F(x,y)(�1),
respectively

Re z

Im z

Γ0 Γ1

F(x,y)(Σ0) F(x,y)(Σ1)

Fig. 5 The contour� in the complex z-plane is the union of the loops�0 and�1 which encircle the intervals
F(x,y)(�0) and F(x,y)(�1) respectively

on S which are n times continuously differentiable, i.e., all partial derivatives of order
≤ n exist and are continuous. By B(X ,Y ), we denote the space of bounded linear
maps from a Banach space X to another Banach space Y equipped with the standard
operator norm; if X = Y , we write B(X) ≡ B(X , X).

3 Main results

We adopt the following notion of a Cn-solution of the Goursat problem (1.3).

Definition 3.1 Let E0(x), x ∈ [0, 1), and E1(y), y ∈ [0, 1), be complex-valued func-
tions. A function E : D → R is called a Cn-solution of the Goursat problem for (1.1)
in D with data {E0, E1} if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E ∈ C(D) ∩ Cn(int(D)),

E(x, y) satisfies the hyperbolic Ernst equation (1.1) in int(D),

xαEx , yαEy, xα yαExy ∈ C(D) for some α ∈ [0, 1),
E(x, 0) = E0(x) for x ∈ [0, 1),
E(0, y) = E1(y) for y ∈ [0, 1),
Re E(x, y) > 0 for (x, y) ∈ D.
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We next state the four main results of the paper (Theorem 1–4), which all address
different aspects of the Goursat problem (1.3).

In the formulation of Theorem 1–4, it is assumed that n ≥ 2 is an integer and
that E0(x), x ∈ [0, 1), and E1(y), y ∈ [0, 1), are two complex-valued functions
satisfying the assumptions in (1.4) for a fixed α ∈ [0, 1). The first theorem provides a
representation formula for the solution in terms of the given boundary data via a RH
problem.

Theorem 1 (Representation formula) If E(x, y) is a Cn-solution of the Goursat prob-
lem for (1.1) in D with data {E0, E1}, then this solution can be expressed in terms of
the boundary values E0(x) and E1(y) by

E(x, y) = 1 + (m(x, y, 0))11 − (m(x, y, 0))21
1 + (m(x, y, 0))11 + (m(x, y, 0))21

, (3.1)

where m(x, y, z) is the unique solution of the 2 × 2-matrix RH problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m(x, y, ·) is analytic in C\�,

m(x, y, ·) has continuous boundary values m+ and m− on �,

m+(x, y, z) = m−(x, y, z)v(x, y, z) for all z ∈ �,

m(x, y, z) = I + O(z−1) as z → ∞,

(3.2)

and the jump matrix v(x, y, z) is defined as follows: Let 
0 and 
1 be the unique
solutions of the linear Volterra integral equations


0(x, k
±) = I +

∫ x

0
(U0
0)(x

′, k±)dx ′, x ∈ [0, 1), k ∈ C\[0, 1], (3.3a)


1(y, k
±) = I +

∫ y

0
(V1
1)(y

′, k±)dy′, y ∈ [0, 1), k ∈ C\[0, 1], (3.3b)

where U0 and V1 are defined by

U0(x, k
±) = 1

2Re E0(x)
( E0x (x) λ(x, 0, k±)E0x (x)

λ(x, 0, k±)E0x (x) E0x (x)
)

, (3.4a)

V1(y, k±) = 1

2Re E1(y)

(
E1y(y) 1

λ(0,y,k±)
E1y(y)

1
λ(0,y,k±)

E1y(y) E1y(y)

)
. (3.4b)

Then

v(x, y, z) =
{


0
(
x, F−1

(x,y)(z)
)
, z ∈ �0,


1
(
y, F−1

(x,y)(z)
)
, z ∈ �1,

(x, y) ∈ D. (3.5)

Theorem 2 establishes uniqueness of the Cn-solution.
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Theorem 2 (Uniqueness) The Cn-solution E(x, y) of the Goursat problem for (1.1) in
D with data {E0, E1} is unique, if it exists. In fact, the value of E at a point (x, y) ∈ D
is uniquely determined by the boundary values E0(x ′) and E1(y′) for 0 ≤ x ′ ≤ x and
0 ≤ y′ ≤ y.

Theorem 3 establishes existence of aCn-solution—in the collinear case, for general
data; otherwise under a small-norm assumption.

Theorem 3 (Existence and regularity) For each δ > 0, the following three existence
and regularity results hold:

(a) Suppose the 2 × 2-matrix RH problem (3.2) has a solution for all (x, y) ∈ Dδ .
Then there exists a Cn-solution of the Goursat problem for (1.1) in Dδ with data
{E0|[0,1−δ), E1|[0,1−δ)}.

(b) Whenever the L1-norms of E0x/(Re E0) and E1y/(Re E1) on [0, 1 − δ) are suffi-
ciently small, there exists a Cn-solution of the Goursat problem for (1.1) in Dδ

with data {E0|[0,1−δ), E1|[0,1−δ)}.
(c) If E0, E1 > 0 on [0, 1 − δ), i.e., if the incoming waves are collinearly polarized,

then there exists a Cn-solution of the Goursat problem for (1.1) in Dδ with data
{E0|[0,1−δ), E1|[0,1−δ)}.

Remark 3.2 Part (a) of Theorem 3 shows that the solution E(x, y) exists and has the
same regularity as the given data as long as the associated RH problem has a solution.
By taking δ > 0 arbitrarily small, we see that the same statement holds also in all of
D.

Theorem 4 establishes explicit formulas for the singular behavior of the solution
near the boundary in terms of the given data.

Theorem 4 (Boundary behavior)Letα ∈ (0, 1) and n ≥ 2 be an integer. LetE(x, y) be
aCn-solution of theGoursat problem for (1.1) in D with data {E0, E1}. Let m1,m2 ∈ C

denote the values of these functions at the origin, i.e.,

m1 = lim
x↓0 x

αE0x (x), m2 = lim
y↓0 y

αE1y(y). (3.6)

Then the solution E(x, y) has the following behavior near the boundary:

lim
x↓0 x

αEx (x, y) = m1
e
i
∫ y
0

ImE1y (y′)
ReE1(y′) dy

′
Re E1(y)√

1 − y
for each y ∈ [0, 1), (3.7a)

lim
y↓0 y

αEy(x, y) = m2
e
i
∫ x
0

ImE0x (x ′)
ReE0(x ′) dx

′
Re E0(x)√

1 − x
for each x ∈ [0, 1). (3.7b)

In particular,

lim
x↓0 x

α|Ex (x, y)| = |m1|Re E1(y)√
1 − y

for each y ∈ [0, 1),
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lim
y↓0 y

α|Ey(x, y)| = |m2|Re E0(x)√
1 − x

for each x ∈ [0, 1).

Remark 3.3 Theorem 4 yields the following important result for the collision of plane
gravitational waves: A solution E(x, y) of the Goursat problem for (1.1) fulfills the
gravitationalwave boundary conditions (1.5) if and only if the boundary dataE(x, 0) =
E0(x) and E(0, y) = E1(y) are such that limx↓0 xα|E0x (x)| and limy↓0 yα|E1y(y)|
belong to the real interval [1,√2). In particular, the behavior of Ex (x, 0) and Ey(0, y)
at the origin fully determines whether the functions Ex (x, y) and Ey(x, y) have the
appropriate singular behavior near the edges ∂D ∩ {x = 0} and ∂D ∩ {y = 0}.

4 Collinearly polarized waves

Before turning to the general case, it is useful to first consider the special case in
which the Ernst potential E is strictly positive. In the context of gravitational waves,
this corresponds to the important situationwhen the two collidingwaves have collinear
polarization, see [17].

4.1 The Euler–Darboux equation

If the Ernst potential E is strictly positive, we can write E(x, y) = e−V (x,y), where
V (x, y) is a real-valued function. A simple computation then shows that E satisfies
the Ernst equation (1.1) if and only if V satisfies the linear hyperbolic equation

Vxy − Vx + Vy

2(1 − x − y)
= 0, (4.1)

which is a version of the Euler–Darboux equation [29]. Since (4.1) is a linear equation,
we can, without loss of generality, assume that V is real-valued and that V (0, 0) = 0.

Remark 4.1 (Linear limit) In addition to being a reformulation of (1.1) in the special
case of collinearly polarized waves, equation (4.1) can also be viewed as the linearized
version of (1.1). Indeed, substituting E(x, y) = 1 + εV (x, y) + O(ε2) into (1.1) and
considering the terms of O(ε), we see that (4.1) is the linear limit of (1.1).

The analysis of the Euler–Darboux equation (4.1) presented in this section serves
two purposes. First, it is used to prove the part of Theorem 3 regarding existence in
the collinearly polarized case. Second, it turns out that the more difficult case of non-
collinearly polarized solutions can be analyzed following steps which are conceptually
very similar to—but technically more difficult than—those involved in the analysis
of the collinear case. In fact, the analysis of (1.1) presented in later sections strongly
relies on the insight gained in this section.

We are interested in the following Goursat problem for (4.1) in the triangle D:
Given V0(x), x ∈ [0, 1), and V1(y), y ∈ [0, 1), find a solution V (x, y) of (4.1) in D
such that V (x, 0) = V0(x) for x ∈ [0, 1) and V (0, y) = V1(y) for y ∈ [0, 1). We
introduce a notion of Cn-solution of this problem as follows.
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Definition 4.2 Let V0(x), x ∈ [0, 1), and V1(y), y ∈ [0, 1), be real-valued functions
and α ∈ [0, 1). We define a function V : D → R to be a Cn-solution of the Goursat
problem for (4.1) in D with data {V0, V1} if

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V ∈ C(D) ∩ Cn(int(D)),

V (x, y) satisfies the Euler–Darboux equation (4.1) in int(D),

xαVx , yαVy, xα yαVxy ∈ C(D) for some α ∈ [0, 1),
V (x, 0) = V0(x) for x ∈ [0, 1),
V (0, y) = V1(y) for y ∈ [0, 1).

The following theorem establishes the unique existence of a solution of the Goursat
problem for (4.1) in D. It also provides a representation for the solution in terms of
the boundary data and characterizes the singular behavior near the boundary.

Theorem 5 (Solution of the Euler–Darboux equation in a triangle) Let n ≥ 2 be an
integer. Let V0(x), x ∈ [0, 1), and V1(y), y ∈ [0, 1), be two real-valued functions
such that

⎧⎪⎨
⎪⎩
V0, V1 ∈ C([0, 1)) ∩ Cn((0, 1)),

xαV0x , yαV1y ∈ C([0, 1)) for some α ∈ [0, 1),
V0(0) = V1(0) = 0.

(4.2)

Then there exists a unique Cn-solution V (x, y) of the Goursat problem for (4.1) in
D with data {V0, V1}. Moreover, this solution is given in terms of the boundary values
V0(x) and V1(y) by

V (x, y) = −1

2
m(x, y, 0), (x, y) ∈ D, (4.3)

where m(x, y, z) is the unique solution of the scalar RH problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m(x, y, ·) is analytic in C\�,

m(x, y, ·) has continuous boundary values m+ and m− on �,

m+(x, y, z) = m−(x, y, z) + v(x, y, z) for all z ∈ �,

m(x, y, z) = O(z−1) as z → ∞,

(4.4)

and the jump v(x, y, z) is defined by

v(x, y, z) =
{


0
(
x, F−1

(x,y)(z)
)
, z ∈ �0,


1
(
y, F−1

(x,y)(z)
)
, z ∈ �1,

(4.5)

with


0(x, k
±) =

∫ x

0
λ(x ′, 0, k±)V0x (x

′)dx ′, x ∈ [0, 1), k ∈ C\[0, 1], (4.6a)
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1(y, k
±) =

∫ y

0

1

λ(0, y′, k±)
V1y(y

′)dy′, y ∈ [0, 1), k ∈ C\[0, 1]. (4.6b)

Furthermore, if α ∈ (0, 1) is such that the functions xαV0x and yαV1y are contin-
uous on [0, 1) and

m1 := lim
x↓0 x

αV0x (x), m2 := lim
y↓0 y

αV1y(y), (4.7)

then the solution V (x, y) has the following behavior near the boundary:

lim
x↓0 x

αVx (x, y) = m1√
1 − y

for each y ∈ [0, 1), (4.8a)

lim
y↓0 y

αVy(x, y) = m2√
1 − x

for each x ∈ [0, 1). (4.8b)

Remark 4.3 The scalar RH problem (4.4) has the unique solution

m(x, y, z) = 1

2π i

∫
�

v(x, y, z′)
z′ − z

dz′.

Hence the solution V (x, y) can be expressed in terms of v by

V (x, y) = − 1

4π i

∫
�

v(x, y, z)

z
dz. (4.9)

Collapsing the contour � in (4.9) onto the intervals in (2.5) and changing variables
from z to k leads to the following representation for the solution in terms of Abel type
integrals:

V (x, y) = 1

π

∫ x

0

√
1 − k√

(1 − y − k)(x − k)

(∫ k

0

V0x (x ′)√
k − x ′ dx

′
)
dk

+ 1

π

∫ 1

1−y

√
k√

(k − (1 − y))(k − x)

(∫ 1−k

0

V1y(y′)√
1 − y′ − k

dy′
)
dk (4.10)

for (x, y) ∈ D. Formulas analogous to (4.10) for equation (4.1) have been derived in
[18] and [15].

Remark 4.4 The representation (4.10) can be foundmore directly by formulating a RH
problem for 
 on S(x,y) with jump across �. This is essentially the approach adopted
in [15]. The representation (4.10) has the advantage that it is explicit in its dependence
on V0 and V1, but it has the disadvantage that the integrands are singular at some of the
endpoints of the integration intervals. These singularities complicate the verification
that V satisfies the appropriate regularity and boundary conditions, especially in the
situation relevant for gravitational waves where V0x and V1y are singular at the origin.
For the nonlinear equation (1.1), this becomes a serious complication. For this reason,
we have formulated the RH problems in Theorem 1 and Theorem 5 in terms of the
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contour � (which avoids the problematic endpoints of the intervals in (2.5)) rather
than in terms of a contour running along the real axis. However, the representation
(4.10) allows for applying more classical techniques. This approach is used in [28] to
compute an asymptotic expansion of the solution near the diagonal of D.

Remark 4.5 In [36] there was derived an alternative integral formula for the solution
of the Goursat problem for the Euler–Darboux equation by applying Riemann’s clas-
sical method [6,16]. Whereas the representation (4.10) relies on Abel integrals, the
expression of [36] is given in terms of the Legendre function P−1/2 of order −1/2.

Remark 4.6 In order to emphasize the analogy between (1.1) and its linearized version
(4.1), we will use the same symbols in this section for the various linearized quantities
as we use elsewhere for the corresponding quantities of the nonlinear problem. Many
quantities which are matrices in the noncollinear case reduce to scalar quantities in
the collinear case. For example, in other sections 
 will denote a 2× 2-matrix valued
eigenfunction, but in this section 
 is a scalar-valued eigenfunction.

4.2 Proof of Theorem 5

The proof of Theorem5 is divided into three parts. In the first part, we prove uniqueness
and establish the solution representation formula (4.3). In the second part, we prove
existence. In the third part, we consider the boundary behavior.

4.2.1 Proof of uniqueness and of (4.3)

Let V0(x), x ∈ [0, 1), and V1(y), y ∈ [0, 1) be real-valued functions satisfying (4.2)
for some n ≥ 2 and α ∈ [0, 1). Suppose that V (x, y) is a Cn-solution of the Goursat
problem for (4.1) in D with data {V0, V1}. We will show that V (x, y) can be expressed
in terms of V0 and V1 by (4.3).

Equation (4.1) admits the Lax pair

{

x (x, y, k) = λVx (x, y),


y(x, y, k) = 1
λ
Vy(x, y),

(4.11)

where 
(x, y, k) is an eigenfunction, λ = λ(x, y, k) is defined by (2.2), and k is a
complex spectral parameter. Indeed, using the relations

λx = λ

2(k − x)
= (1 − λ2)λ

2(1 − x − y)
, λy = 1

2(k − x)λ
= (1 − λ2)

2(1 − x − y)λ
,

it is straightforward to check that the compatibility condition 
xy = 
yx of (4.11) is
equivalent to (4.1).

The occurrence of λ in (4.11) implies that the spectral parameter is naturally con-
sidered as an element of the Riemann surface S(x,y). Thus, we will henceforth view

(x, y, ·) as a function defined on S(x,y) and write 
(x, y, P) for the value of 
 at
P = (λ, k) ∈ S(x,y). We emphasize, however, that the partial derivatives 
x (x, y, P)
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Fig. 6 The integration contours in (4.12) (left) and (4.13) (right)

and λx (x, y, P) (resp. 
y(x, y, P) and λy(x, y, P)) are still computed with (y, k)
(resp. (x, k)) held fixed (and λ allowed to change).

The basic idea in what follows is to write (4.11) in the differential form d
 = W ,
where W denotes the one-form W = λVxdx + 1

λ
Vydy, and then define a solution 


of (4.11) by


(x, y, k±) =
∫ (x,y)

(0,0)
W (x ′, y′, k±), (x, y) ∈ D, k ∈ Ĉ\[0, 1].

Since the one-form W is closed, the integral on the right-hand side is independent of
path. However, since W in general is singular on the boundary of D, we need to be
more careful when defining 
. We therefore choose to define 
 using the specific
contour which consists of the horizontal segment from (0, 0) to (x, 0) followed by the
vertical segment from (x, 0) to (x, y) (see the left half of Fig. 6), that is, we define


(x, y, k±) =
∫ x

0
λ(x ′, 0, k±)Vx (x

′, 0)dx ′ +
∫ y

0
λ(x, y′, k±)−1Vy(x, y

′)dy′,

(x, y) ∈ D, k ∈ Ĉ\[0, 1]. (4.12)

Since xαVx , yαVy ∈ C(D), the integrals on the right-hand side of (4.12) are well-
defined. The next lemma establishes several properties of 
.

Lemma 4.7 (Solution of Lax pair equations) The function
(x, y, P) defined in (4.12)
has the following properties:

(a) 
 can be alternatively expressed using the contour consisting of the vertical
segment from (0, 0) to (0, y) followed by the horizontal segment from (0, y) to
(x, y) (see the right half of Fig. 6):
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(x, y, k±) =
∫ y

0
λ(0, y′, k±)−1Vy(0, y

′)dy′ +
∫ x

0
λ(x ′, y, k±)Vx (x

′, y)dx ′,

(x, y) ∈ D, k ∈ Ĉ\[0, 1]. (4.13)

(b) For each k ∈ Ĉ\[0, 1], the function (x, y) �→ 
(x, y, k+) is continuous on D
and is Cn on int D.

(c) For each k ∈ Ĉ\[0, 1], the functions

(x, y) �→ xα
x (x, y, k
+), (x, y) �→ yα
y(x, y, k

+),

(x, y) �→ xα yα
xy(x, y, k
+),

are continuous on D.
(d) 
 obeys the symmetries

{

(x, y, k+) = −
(x, y, k−),


(x, y, k±) = 
(x, y, k̄±),
(x, y) ∈ D, k ∈ Ĉ\[0, 1].

(e) For each (x, y) ∈ D, 
(x, y, P) extends continuously to an analytic function of
P ∈ S(x,y)\�, where � = �0 ∪ �1 is the contour defined in (2.4).

(f) 
(x, y,∞+) = V (x, y) for (x, y) ∈ D.

Proof Let (x, y) ∈ D. In order to prove (a), we need to show that the expression

∫ y

0

[
λ(0, y′, k±)−1Vy(0, y

′) − λ(x, y′, k±)−1Vy(x, y
′)
]
dy′

+
∫ x

0

[
λ(x ′, y, k±)Vx (x

′, y) − λ(x ′, 0, k±)Vx (x
′, 0)

]
dx ′ (4.14)

vanishes. Since xαVx , yαVy, xα yαVxy ∈ C(D), the function λ(·, y′, k±)−1Vy(·, y′) is
absolutely continuous on the compact interval [0, x] for each y′ ∈ (0, y]. Similarly, the
function λ(x ′, ·, k±)Vx (x ′, ·) is absolutely continuous on [0, y] for each x ′ ∈ (0, x].
Hence, we can write (4.14) as

−
∫ y

0

∫ x

0

∂

∂x ′
[
λ(x ′, y′, k±)−1Vy(x

′, y′)
]
dx ′dy′

+
∫ x

0

∫ y

0

∂

∂ y′
[
λ(x ′, y′, k±)Vx (x

′, y′)
]
dy′dx ′. (4.15)

Since V is a solution of (4.1), the Lax pair compatibility condition (λVx )y = (λ−1Vy)x
is satisfied for (x, y) ∈ int D. The assumption xαVx , yαVy, xα yαVxy ∈ C(D) implies
that Vx , Vy, Vxy ∈ L1(Dδ) for each δ > 0. Hence Fubini’s theorem implies that the
expression in (4.15) vanishes. This proves (a). Moreover, if k ∈ Ĉ\[0, 1], then it
follows from (4.12) and (4.13) that 
 is a continuous function of (x, y) ∈ D and a
Cn-function of (x, y) ∈ int D, which proves (b).
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Let k ∈ Ĉ\[0, 1]. Then

xα
x (x, y, k
+) = xαλ(x, y, k+)Vx (x, y). (4.16)

The assumption xαVx ∈ C(D) implies that the right-hand side of (4.16) is a continuous
function of (x, y) ∈ D. Similarly, we see that yα
y(x, y, k+) and

xα yα
xy(x, y, k
+) = xα yαVx (x, y)

2(k − x)λ(x, y, k+)
+ xα yαλ(x, y, k+)Vxy(x, y)

are continuous functions of (x, y) ∈ D. This proves (c).
The symmetries in (d) are a consequence of the symmetries

λ(x, y, k+) = −λ(x, y, k−), λ(x, y, k±) = λ(x, y, k̄±), (4.17)

and the definition (4.12) of 
.
To prove (e), we note that λ(x ′, 0, k+) is an analytic function of k ∈ Ĉ\[x ′, 1] and

λ(x, y′, k+)−1 is an analytic function of k ∈ Ĉ\[x, 1− y′]. It follows that
(x, y, k+)

and 
(x, y, k−) = −
(x, y, k+) are analytic functions of k ∈ Ĉ\[0, 1]. Moreover,
since

λ(x, y, (k + i0)+) = λ(x, y, (k − i0)−), k ∈ (x, 1 − y),

we have


(x, y, (k + i0)+) = 
(x, y, (k − i0)−), (x, y) ∈ D, k ∈ (x, 1 − y).

This shows that the values of 
 on the upper and lower sheets of S(x,y) fit together
across the branch cut; hence 
 extends to an analytic function of P ∈ S(x,y)\�. This
proves (e).

To prove ( f ), we note that λ(x, y,∞+) = 1 for all (x, y) ∈ D, which gives


(x, y,∞+) =
∫ x

0
V0x (x

′)dx ′ +
∫ y

0
Vy(x, y

′)dy′. (4.18)

Let δ > 0. Since V0x ∈ L1((1−δ)), V0 belongs to the Sobolev spaceW 1,1((0, 1−δ)).
Hence V0 is absolutely continuous on (0, 1 − δ). Using that V0 ∈ C([0, 1)), we see
that V0 is absolutely continuous on the compact interval [0, 1 − δ]. Hence,

∫ x

0
V0x (x

′)dx ′ = V (x, 0) − V (0, 0), x ∈ [0, 1 − δ). (4.19)

Moreover, since Vy ∈ L1(Dδ), we have Vy(x, ·) ∈ L1((0, 1 − x − δ)) for a.e. x ∈
[0, 1−δ). Hence V (x, ·) ∈ W 1,1((0, 1− x−δ)) for a.e. x ∈ [0, 1−δ). Since V is also
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continuous on D, we conclude that V (x, ·) is absolutely continuous on the compact
interval [0, 1 − x − δ] for a.e. x ∈ [0, 1 − δ). Hence,

∫ y

0
Vy(x, y

′)dy′ = V (x, y) − V (x, 0), (x, y) ∈ Dδ. (4.20)

Hence, substituting (4.19) and (4.20) into (4.18) yields


(x, y, k±) = V (x, 0) − V (0, 0) + V (x, y) − V (x, 0).

Since V (0, 0) = 0, part ( f ) follows. ��
Lemma 4.8 For each (x, y) ∈ D,

P �→ 
(x, y, P) − 
(x, 0, P) and P �→ 
(x, y, P) − 
(0, y, P) (4.21)

extend continuously to analytic functions S(x,y)\�1 → C and S(x,y)\�0 → C,
respectively.

Remark 4.9 The point P in (4.21) belongs to S(x,y) whereas the maps 
(x, 0, ·) and

(0, y, ·) are defined on S(x,0) and S(0,y), respectively. The interpretation of equation
(4.21) therefore deserves a comment of clarification: If (x, y) and (x̃, ỹ) are two points
in D and F is a map from S(x,y) to some space X , then F naturally induces a map F̃

from S(x̃,ỹ)\
([0, 1]+ ∪ [0, 1]−) to X according to F̃(k±) = F(k±) for k ∈ Ĉ\[0, 1].

We sometimes, as in (4.21) (and also in (3.5)), identify these two maps and simply
write F for F̃ .

Proof of Lemma 4.8 Fix (x, y) ∈ D. Let U be an open set in S(x,y)\�0. Then


(x, y, P) − 
(0, y, P) =
∫ x

0
λ(x ′, y, P)Vx (x

′, y)dx ′, P ∈ U , (4.22)

where the values of 
(0, y, P) and λ(x ′, y, P) in (4.22) are to be interpreted as in
Remark 4.9. Since

P �→ λ(x ′, y, P) =
√
k − (1 − y)

k − x ′

defines an analytic map U → C for each x ′ ∈ [0, x], the map (4.22) is also analytic
for P ∈ U . SinceU was arbitrary, this establishes the desired statement for the second
map in (4.21); the proof for the first map is similar. ��

Let �0, �1, and �∞ denote the three open components of Ĉ\� chosen so that (see
Fig. 7)

−1 ∈ �0, 1 ∈ �1, ∞ ∈ �∞. (4.23)
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Fig. 7 The domains �0, �1,
and �∞ in the complex z-plane Γ0 Γ1

1 0−1
Ω0 Ω1

Ω∞

Lemma 4.10 The complex-valued function m(x, y, z) defined by

m(x, y, z) = −V (x, y) + 

(
x, y, F−1

(x,y)(z)
)−

⎧⎪⎪⎨
⎪⎪⎩



(
x, 0, F−1

(x,y)(z)
)
, z ∈ �0,



(
0, y, F−1

(x,y)(z)
)
, z ∈ �1,

0, z ∈ �∞,

(x, y) ∈ D, (4.24)

satisfies the RH problem (4.4) and the relation (4.3) for each (x, y) ∈ D.

Proof Since F(x,y) is a biholomorphism S(x,y) → Ĉ, we infer from Lemmas 4.7
and 4.8 that m(x, y, ·) is analytic in Ĉ\� and m(x, y, z) = O(z−1) as z → ∞ for
each (x, y) ∈ D. The jump condition in (4.4) holds as a consequence of the definition
(4.5) of v(x, y, z) and the fact that


0(x, k) = 
(x, 0, k), 
1(y, k) = 
(0, y, k).

Finally, since 0 ∈ �∞ and F−1
(x,y)(0) = ∞−, (4.24) and Lemma 4.7 yield

m(x, y, 0) = −V (x, y) + 
(x, y,∞−) = −2V (x, y).

This proves (4.3). ��
We have showed that if V (x, y) is a Cn-solution of the Goursat problem for (4.1)

in D with data {V0, V1}, then V (x, y) can be expressed in terms of V0 and V1 by (4.3).
This also proves that the solution V is unique if it exists, and completes the first part
of the proof.

4.2.2 Proof of existence

The second part of the proof is devoted to proving existence. Let us therefore suppose
that V0(x), x ∈ [0, 1), and V1(y), y ∈ [0, 1) are real-valued functions satisfying
(4.2) for some n ≥ 2. We will construct a solution V (x, y) of the associated Goursat
problem as follows: Using the given data V0 and V1, we define
0(x, P) and
1(x, P)

by (4.6). Thenwe define the jumpmatrix v by (4.5) and letm(x, y, z) denote the unique
solution of the RH problem (4.4). Finally, we show that the function V (x, y) defined
in terms of m(x, y, 0) via (4.3) constitutes a Cn-solution of the Goursat problem in D
with data {V0, V1}. The proof proceeds through a series of lemmas.

Lemma 4.11 (Solution of the x-part) The eigenfunction 
0(x, P) defined in (4.6a)
has the following properties:
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(a) For each k ∈ Ĉ\[0, 1], the function x �→ 
0(x, k+) is continuous on [0, 1) and
is Cn on (0, 1).

(b) 
0 obeys the symmetries

{

0(x, k+) = −
0(x, k−),


0(x, k±) = 
0(x, k̄±),
x ∈ [0, 1), k ∈ Ĉ\[0, 1]. (4.25)

(c) For each x ∈ [0, 1), 
0(x, P) extends continuously to an analytic function of
P ∈ S(x,0)\�0.

(d) 
0(x,∞+) = V0(x) for x ∈ [0, 1).
(e) For each x ∈ (0, 1), 
0x (x, P) is an analytic function of P ∈ S(x,0) except for

a simple pole (at most) at the branch point k = x.
(f) For each x0 ∈ (0, 1) and each compact subset K ⊂ Ĉ\[0, x0],

x �→ (
k �→ 
0(x, k

+)
)

(4.26)

is a continuous map [0, x0) → L∞(K ) and aCn-map (0, x0) → L∞(K ). More-
over, x �→ (k �→ xα
0x (x, k+)) and x �→ (k �→ 
0k(x, k+) are continuous
maps [0, x0) → L∞(K ).

Proof If we note that
0(x, P) is analytic at the points 1± ∈ S(x,0) for each x ∈ [0, 1),
the properties (a)-(d) follow immediately by setting y = 0 in Lemma 4.7. Moreover,
since 
0x (x, k±) = λ(x, 0, k±)V0x (x) for x ∈ (0, 1), property (e) follows from the
definition of λ.

It remains to prove ( f ). Fix x0 ∈ (0, 1) and let K be a compact subset Ĉ\[0, x0].
The function λ(x, 0, ·) is bounded on S(x,0) except for a simple pole at k = x . Hence,
for x1, x2 ∈ [0, x0),

sup
k∈K

∣∣
0(x2, k
+) − 
0(x1, k

+)
∣∣ = sup

k∈K

∣∣∣∣
∫ x2

x1
λ(x, 0, k+)V0x (x)dx

∣∣∣∣
≤
(
sup
k∈K

sup
x∈[0,x0)

|λ(x, 0, k+)|
)∫ x2

x1
|V0x (x)|dx ≤ C

∫ x2

x1
|V0x (x)|dx,

where the right-hand side tends to zero as x2 → x1 because V0x ∈ L1((0, x0)). This
shows that the map (4.26) is continuous [0, x0) → L∞(K ).

If x ∈ (0, x0), then

sup
k∈K

∣∣∣∣
0(x + h, k+) − 
0(x, k+)

h
− 
0x (x, k)

∣∣∣∣
≤ sup

k∈K

∣∣∣∣1h
∫ x+h

x
λ(x ′, 0, k)V0x (x ′)dx ′ − 
0x (x, k)

∣∣∣∣
≤ sup

k∈K

∣∣∣∣λ(ξ, 0, k)V0x (ξ) − λ(x, 0, k)V0x (x)

∣∣∣∣,
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where ξ lies between x and x + h. As h → 0, the right-hand side goes to zero.
Hence (4.26) is differentiable as a map (0, x0) → L∞(K ) and the derivative satisfies

0x (x, k+) = λ(x, 0, k+)V0x (x). The same argument with λk instead of λ implies
continuity of x �→ (k �→ 
0k(x, k)).

The map

x �→ (
k �→ λ(x, 0, k+)

)

is C∞ from (0, x0) to L∞(K ) and V0x is Cn−1 on (0, 1). Hence the map

x �→ (
k �→ λ(x, 0, k+)V0x (x)

)

isCn−1 from (0, x0) to L∞(K ). It follows that (4.26) is aCn-map (0, x0) → L∞(K ).
Moreover, equation (4.16) evaluated at y = 0 implies x �→ xα
0x (x, k+) is con-
tinuous [0, x0) → L∞(K ). This proves ( f ) and completes the proof of the lemma.

��
In the same way that we constructed the eigenfunction 
0(x, k) of the x-part, we

can construct an eigenfunction 
1(y, k) of the y-part.

Lemma 4.12 (Solution of the y-part) The eigenfunction 
1(y, P) defined in (4.6b)
has the following properties:

(a) For each k ∈ Ĉ\[0, 1], the function y �→ 
1(y, k+) is continuous on [0, 1) and
is Cn on (0, 1).

(b) 
1 obeys the symmetries

{

1(y, k+) = −
1(y, k−),


1(y, k±) = 
1(y, k̄±),
y ∈ [0, 1), k ∈ Ĉ\[0, 1]. (4.27)

(c) For each y ∈ [0, 1), 
1(y, P) extends continuously to an analytic function of
P ∈ S(0,y)\�1.

(d) 
1(y,∞+) = V1(y) for y ∈ [0, 1).
(e) For each y ∈ (0, 1), 
1y(y, P) is an analytic function of P ∈ S(0,y) except for

a simple pole at the branch point k = 1 − y.
(f) For each y0 ∈ (0, 1) and each compact subset K ⊂ Ĉ\[1 − y0, 1],

y �→ (
k �→ 
1(y, k

+)
)

(4.28)

is a continuous map [0, y0] → L∞(K ) and a Cn-map (0, y0) → L∞(K ). More-
over, y �→ (k �→ yα
1y(y, k+)) and y �→ (k �→ 
1k(y, k+)) are continuous
maps [0, y0) → L∞(K ).

Proof The proof is analogous to that of Lemma 4.11. ��
Recall from the definition in Sect. 2 that the contour � ≡ �(x, y) consists of two

nonintersecting clockwise loops�0 and�1 which encircle the intervals F(x,y)(�0) and
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Re z

Im z

Γ0 Γ1

ε ε−1−ε−ε−1
F(x,y)(Σ0) F(x,y)(Σ1)

Fig. 8 We choose the loops�0 and�1 in the complex z-plane so that they encircle the intervals [−ε−1, −ε]
and [ε, ε−1], respectively

F(x,y)(�1) respectively, but which do not encircle the origin. We are free to choose
�0 and �1 as long as these requirements are met. It turns out to be convenient to
choose �0 and �1 independent of (x, y). However, we see from (2.5) that the intervals
F(x,y)(�0) and F(x,y)(�1) get arbitrarily close to the origin as (x, y) approaches the
diagonal edge x + y = 1 of D. Hence we cannot take � independent of (x, y) for all
(x, y) ∈ D. However, if we restrict ourselves to points (x, y) which lie in the slightly
smaller triangle Dδ , δ > 0, defined in (2.1), then we can choose � independent of
(x, y).

Thus, fix δ ∈ (0, 1) and choose ε > 0 so small that F(x,y)(�0) and F(x,y)(�1) are
contained in the intervals [−ε−1,−ε] and [ε, ε−1], respectively, for all (x, y) ∈ Dδ .
Fix two smooth nonintersecting clockwise contours �0 and �1 in the complex z-plane
which encircle once the intervals [−ε−1,−ε] and [ε, ε−1], respectively, but which
do not encircle zero, see Fig. 8. Suppose also that �0 and �1 are invariant under the
involutions z �→ z−1 and z �→ z̄. Let � = �0 ∪ �1 and, using this particular choice
of �, define V (x, y) for (x, y) ∈ Dδ by (4.9), i.e.,

V (x, y) = − 1

4π i

∫
�

v(x, y, z)

z
dz, (4.29)

where v(x, y, z) is given by (4.5). We will show that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V ∈ C(Dδ) ∩ Cn(int Dδ),

V (x, y) satisfies the Euler–Darboux equation (4.1) in int(Dδ),

xαVx , yαVy, xα yαVxy ∈ C(Dδ) for some α ∈ [0, 1),
V (x, 0) = V0(x) for x ∈ [0, 1 − δ),

V (0, y) = V1(y) for y ∈ [0, 1 − δ).

(4.30)

Since δ > 0 can be chosen arbitrarily small, thiswill complete the proof of the theorem.
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Consider the family of scalar RH problems given in (4.4) parametrized by the two
parameters (x, y) ∈ Dδ . For each (x, y) ∈ Dδ , the unique solution of (4.4) is given
by

m(x, y, z) = 1

2π i

∫
�

v(x, y, z′)
z′ − z

dz′, (x, y) ∈ Dδ, z ∈ Ĉ\�. (4.31)

Lemma 4.13 The map (x, y) �→ v(x, y, ·) is continuous from Dδ to L∞(�) and Cn

from int Dδ to L∞(�). Moreover, the three maps

(x, y) �→ xαvx (x, y, ·), (x, y) �→ yαvx (x, y, ·), (x, y) �→ xα yαvxy(x, y, ·),
(4.32)

are continuous from Dδ to L∞(�).

Proof The map (x, y) �→ v(x, y, ·) is continuous from Dδ to L∞(�) and Cn from
int Dδ to L∞(�) as a consequence of part ( f ) of Lemmas 4.11 and 4.12. Furthermore,

xαvx (x, y, z) =
⎧⎨
⎩
xα
0x

(
x, F−1

(x,y)(z)
)+ xα
0k

(
x, F−1

(x,y)(z)
)( d

dx F
−1
(x,y)(z)

)
, z ∈ �0,

xα
1k
(
y, F−1

(x,y)(z)
)( d

dx F
−1
(x,y)(z)

)
, z ∈ �1.

Part ( f )ofLemma4.11 implies that the terms xα
0x
(
x, F−1

(x,y)(·)
)
and
0k

(
x, F−1

(x,y)(·)
)

are continuous Dδ → L∞(�0)). Similarly, part ( f ) of Lemma 4.12 implies that the
term 
1k

(
y, F−1

(x,y)(·)
)
is continuous Dδ → L∞(�1)). We conclude that (x, y) �→

xαvx (x, y, ·) is continuous Dδ → L∞(�). The other two maps in (4.32) are treated
in a similar way. ��
Lemma 4.14 The solution m(x, y, z) defined in (4.31) has the following properties:

(a) For each point (x, y) ∈ Dδ , m(x, y, ·) obeys the symmetries

m(x, y, z) = m(x, y, 0) − m(x, y, z−1) = m(x, y, z̄), z ∈ Ĉ\�. (4.33)

(b) For each z ∈ Ĉ\�, the map (x, y) �→ m(x, y, z) is continuous from Dδ toC and
is Cn from int Dδ to C.

(c) For each z ∈ Ĉ\�, the three maps

(x, y) �→ xαmx (x, y, z), (x, y) �→ yαmx (x, y, z),

(x, y) �→ xα yαmxy(x, y, z),

are continuous from Dδ to C.

Proof The symmetries in (4.25) and (4.27) show that v satisfies

{
v(x, y, z) = −v(x, y, z−1),

v(x, y, z) = v(x, y, z̄),
z ∈ �, (x, y) ∈ Dδ. (4.34)
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These symmetries imply that m(x, y, 0) − m(x, y, z−1) and m(x, y, z̄) satisfy the
same RH problem as m(x, y, z). Hence, by uniqueness, (4.33) holds. This proves (a).

For each z ∈ Ĉ\�, the map

f �→
∫

�

f (z′)
z′ − z

dz′

is a bounded linear map L∞(�) → C. Hence properties (b) and (c) follow immedi-
ately from (4.31) and Lemma 4.13. ��

Given a contour γ ⊂ C, we use the notation N (γ ) to denote an open tubular
neighborhood of γ . We extend the definition (4.5) of v to a tubular neighborhood
N (�) = N (�0) ∪ N (�1) of � as follows, see Fig. 9:

v(x, y, z) =
{


0
(
x, F−1

(x,y)(z)
)
, z ∈ N (�0),


1
(
y, F−1

(x,y)(z)
)
, z ∈ N (�1),

(x, y) ∈ Dδ. (4.35)

We choose N (�) so narrow that it does not intersect the intervals [−ε−1,−ε] and
[ε, ε−1]. Then, for each (x, y) ∈ Dδ , v(x, y, ·) is an analytic function of z ∈ N (�).
Using the notation z(x, y, P) := F(x,y)(P), we can write (4.35) as

v(x, y, z(x, y, P)) =
{


0(x, P), P ∈ F−1
(x,y)

(
N (�0)

)
,


1(y, P), P ∈ F−1
(x,y)

(
N (�1)

)
,

(x, y) ∈ Dδ. (4.36)

We define functions f0(x, y, z) and f1(x, y, z) for (x, y) ∈ Dδ by

f0(x, y, z) = mx (x, y, z) + zx
(
x, y, F−1

(x,y)(z)
)
mz(x, y, z), z ∈ Ĉ\�,

f1(x, y, z) = my(x, y, z) + zy
(
x, y, F−1

(x,y)(z)
)
mz(x, y, z), z ∈ Ĉ\�.

Moreover, we let n0(x, y, z) and n1(x, y, z) denote the functions given by

n0(x, y, z) =
{
f0(x, y, z) + 
0x

(
x, F−1

(x,y)(z)
)
, z ∈ �0,

f0(x, y, z), z ∈ �1 ∪ �∞,
(4.37a)

and

n1(x, y, z) =
{
f1(x, y, z) + 
1y

(
y, F−1

(x,y)(z)
)
, z ∈ �1,

f1(x, y, z), z ∈ �0 ∪ �∞.
(4.37b)

Lemma 4.15 For each (x, y) ∈ int Dδ , it holds that

(a) n0(x, y, z) is an analytic function of z ∈ Ĉ\{−1} and has at most a simple pole
at z = −1.
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Re z

Im z

N(Γ0) N(Γ1)

ε ε−1−ε−ε−1

Fig. 9 The tubular neighborhood N (�) = N (�0) ∪ N (�1) of the contour � in the complex z-plane

(b) n1(x, y, z) is an analytic function of z ∈ Ĉ\{1} and has at most a simple pole at
z = 1.

(c) n0(x, y,∞) = 0 and n0(x, y, 0) = −2Vx (x, y).
(d) n1(x, y,∞) = 0 and n1(x, y, 0) = −2Vy(x, y).

Proof Let (x, y) ∈ int Dδ . The function

zx
(
x, y, F−1

(x,y)(z)
) = −1 − z

1 + z

z

1 − x − y
(4.38)

is analytic for z ∈ Ĉ\{−1,∞} with simple poles at z = −1 and z = ∞. Equation
(4.31) implies that mz(x, y, z) = O(z−2) and mx (x, y, z) = O(z−1) as z → ∞.
Hence f0(x, y, z) is analytic at z = ∞. It follows that f0(x, y, z) is analytic for all
z ∈ Ĉ\(� ∪ {−1}) with a simple pole at z = −1 at most. Now f0 has continuous
boundary values on � and satisfies the following jump condition across �:

f0+(x, y, z) = f0−(x, y, z) + vx (x, y, z) + zx
(
x, y, F−1

(x,y)(z)
)
vz(x, y, z), z ∈ �.

(4.39)

Differentiating (4.36) with respect to x and y and evaluating the resulting equations
at k = F−1

(x,y)(z), we find, for (x, y) ∈ int Dδ ,

{
vx (x, y, z) + zx

(
x, y, F−1

(x,y)(z)
)
vz(x, y, z) = 
0x (x, F

−1
(x,y)(z)),

vy(x, y, z) + zy
(
x, y, F−1

(x,y)(z)
)
vz(x, y, z) = 0,

z ∈ N (�0),

(4.40)

and

{
vx (x, y, z) + zx

(
x, y, F−1

(x,y)(z)
)
vz(x, y, z) = 0,

vy(x, y, z) + zy
(
x, y, F−1

(x,y)(z)
)
vz(x, y, z) = 
1y(x, F

−1
(x,y)(z)),

z ∈ N (�1).

(4.41)
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Using the first equations in (4.40) and (4.41) in (4.39), we conclude that f0 is analytic
across �1 and has the following jump across �0:

f0+(x, y, z) = f0−(x, y, z) + 
0x (x, F
−1
(x,y)(z)), z ∈ �0. (4.42)

Consequently, n0 is analytic across�. Furthermore, by Lemma 4.11,
0x (x, F
−1
(x,y)(z))

is analytic for z ∈ Ĉ\{−1} with at most a simple pole at z = −1. It follows that n0
satisfies (a). The proof of (b) is similar and relies on the second equations in (4.40)
and (4.41).

Using (4.38) in the definition (4.37a) of n0, we can write

n0(x, y, z) = f0(x, y, z) = mx (x, y, z) − 1 − z

1 + z

z

1 − x − y
mz(x, y, z), z ∈ �∞.

(4.43)

Since mz(x, y, z) = O(z−2) and mx (x, y, z) = O(z−1) as z → ∞, this gives
n0(x, y,∞) = 0. On the other hand, evaluating (4.43) at z = 0, we find n0(x, y, 0) =
mx (x, y, 0) = −2Vx (x, y). This proves (c); the proof of (d) is analogous. ��

Equation (4.24) suggests that we define a function 
(x, y, P) for (x, y) ∈ Dδ and
P ∈ F−1

(x,y)(�∞) ⊂ S(x,y) by


(x, y, P) = V (x, y) + m(x, y, F(x,y)(P)). (4.44)

Lemma 4.16 The function 
 defined in (4.44) satisfies the Lax pair equations

{

x (x, y, P) = λ(x, y, P)Vx (x, y),


y(x, y, P) = 1
λ(x,y,P)

Vy(x, y),
(4.45)

for (x, y) ∈ int Dδ and P ∈ F−1
(x,y)(�∞).

Proof The analyticity structure of n0 established in Lemma 4.15 implies that there
exists a function C(x, y) independent of z such that

n0(x, y, z) = C(x, y)

z + 1
, z ∈ Ĉ. (4.46)

We determine C(x, y) by evaluating (4.46) at z = 0. By Lemma 4.15 (d), this gives
C(x, y) = −2Vx (x, y). It follows that

n0 = −2Vx (x, y)

z + 1
, (x, y) ∈ Dδ, z ∈ Ĉ. (4.47)

Note that we did not exclude that n0 is free of singularities. In this case we have
C = −2Vx = 0 by Lemma 4.15.
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Differentiating (4.44) with respect to x and using (4.43) and (4.47), we find, for
P ∈ F−1

(x,y)(�∞),


x (x, y, P) = Vx (x, y) + f0(x, y, z(x, y, P)) = Vx (x, y) − 2Vx (x, y)

z(x, y, P) + 1
.

Since

1 − 2

z + 1
= λ,

this yields the first equation in (4.45). A similar argument gives the second equation
in (4.45). This proves the lemma. ��
Lemma 4.17 The real-valued function V : D → Rdefined by (4.29)has the properties
listed in (4.30).

Proof The function V (x, y) = − 1
2m(x, y, 0) is real-valued by (4.33). Moreover, by

part (b) of Lemma 4.14, the map (x, y) �→ m(x, y, 0) is continuous from Dδ to C

and is Cn from int Dδ to C. Hence V ∈ C(Dδ) ∩ Cn(int Dδ). Similarly, part (c) of
Lemma 4.14 implies that xαVx , yαVy, xα yαVxy ∈ C(Dδ).

Let P = (λ, k) be a point in F−1
(x,y)(�∞) ⊂ S(x,y). For each fixed k ∈ Ĉ with k+ ∈

F−1
(x,y)(�∞), the map (x, y) → 
(x, y, k+) is Cn from int Dδ to C. By Lemma 4.16,

it satisfies the Lax pair equations (4.45). Since n ≥ 2, it follows that

0 = 
xy(x, y, P) − 
yx (x, y, P)

= λyVx + λVxy + λx

λ2
Vy − 1

λ
Vxy

= 1

2λ(k − x)
(Vx + Vy) +

(
λ − 1

λ

)
Vxy

= 1

2λ(k − x)

(
Vx + Vy − 2(1 − x − y)Vxy

)
, (x, y) ∈ int Dδ.

It follows that V (x, y) satisfies Euler–Darboux equation (4.1) for (x, y) ∈ int Dδ .
Finally, we show that V (x, 0) = V0(x) for x ∈ [0, 1− δ); the proof that V (0, y) =

V1(y) for y ∈ [0, 1− δ) is similar. By definitions (4.29) and (4.5) of V and v, we have

V (x, 0) = − 1

4π i

∫
�

v(x, 0, z)

z
dz = − 1

4π i

∫
�0


0(x, F
−1
(x,0)(z))

z
dz, x ∈ [0, 1 − δ).

But 
0(x, F
−1
(x,0)(z)) is analytic for z ∈ Ĉ\[−ε−1,−ε] by Lemma 4.11, so using

Cauchy’s formula to compute the contributions from z = 0 and z = ∞, we find

V (x, 0) = − 1

2

0
(
x, F−1

(x,0)(0)
)+ 1

2

0
(
x, F−1

(x,0)(∞)
)

= − 1

2

0(x, ∞−) + 1

2

0(x, ∞+) = 
0(x, ∞+) = V0(x), x ∈ [0, 1 − δ).
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This completes the proof of the lemma. Since δ > 0 was arbitrary, it also completes
the proof of existence. ��

4.2.3 Proof of boundary behavior

Let V0(x), x ∈ [0, 1), and V1(y), y ∈ [0, 1) be real-valued functions satisfying (4.2)
for some n ≥ 2 and some α ∈ (0, 1). Suppose V (x, y) is a Cn-solution of the Goursat
problem for (4.1) in D with data {V0, V1} and define m1,m2 ∈ R by (4.7). By (4.9),
we have

V (x, y) = − 1

4π i

∫
�0


0
(
x, F−1

(x,y)(z)
)

z
dz − 1

4π i

∫
�1


1
(
y, F−1

(x,y)(z)
)

z
dz.

Hence

Vx (x, y) = − 1

4π i

∫
�0


0x
(
x, F−1

(x,y)(z)
)

z
dz

− 1

4π i

∫
�0


0k
(
x, F−1

(x,y)(z)
)

z

( d

dx
F−1

(x,y)(z)
)
dz

− 1

4π i

∫
�1


1k
(
y, F−1

(x,y)(z)
)

z

( d

dx
F−1

(x,y)(z)
)
dz. (4.48)

Now

k = F−1
(x,y)(z) = − x(z − 1)2 + (y − 1)(z + 1)2

4z
,

so

d

dx
F−1

(x,y)(z) = − (z − 1)2

4z
,

d

dy
F−1

(x,y)(z) = − (z + 1)2

4z
. (4.49)

It follows from Lemmas 4.11 and 4.12 that the last two integrals on the right-hand
side of (4.48) remain bounded as x ↓ 0. Moreover,

lim
x↓0 x

α
0x
(
x, F−1

(x,y)(z)
) = lim

x↓0 x
αλ(x, 0, F−1

(x,y)(z))V0x (x) = m1λ(0, 0, F−1
(0,y)(z)).

Using that F−1
(0,y)(z) = − (y−1)(z+1)2

4z , we find

λ(0, 0, F−1
(0,y)(z)) =

√
1

(z + 1)2

(
z − 1 − √

y

1 + √
y

)(
z − 1 + √

y

1 − √
y

)
, (4.50)
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where the square roots have positive (negative) real part for |z| > 1 (|z| < 1). Thus

lim
x↓0 x

α
0x
(
x, F−1

(x,y)(z)
) = −m1

z + 1

√(
z − 1 − √

y

1 + √
y

)(
z − 1 + √

y

1 − √
y

)
,

where the square root has a branch cut along the interval [ 1−
√
y

1+√
y ,

1+√
y

1−√
y ] and the branch

is fixed so that the root has positive real part for z < 0. Hence

lim
x↓0 x

αVx (x, y) = m1

4π i

∫
�0

1

z + 1

√(
z − 1 − √

y

1 + √
y

)(
z − 1 + √

y

1 − √
y

)
dz

z

= − m1

2
Res
z=−1

1

z + 1

√(
z − 1 − √

y

1 + √
y

)(
z − 1 + √

y

1 − √
y

)
1

z

= − m1

2

−2√
1 − y

= m1√
1 − y

.

This proves (4.8a); the proof of (4.8b) is similar. Thus the proof of Theorem 5 is
complete.

5 Lax pair and eigenfunctions

In this section we introduce a Lax pair for (1.1) and define appropriate eigenfunctions
in preparation for the proofs of Theorems 1–4.

5.1 Lax pair

The hyperbolic Ernst equation (1.1) admits the Lax pair

{

x (x, y, k) = U(x, y, k)
(x, y, k),


y(x, y, k) = V(x, y, k)
(x, y, k),
(5.1)

where k is the spectral parameter, the function 
(x, y, k) is a 2 × 2-matrix valued
eigenfunction, and the 2 × 2-matrix valued functions U(x, y, k) and V(x, y, k) are
defined as follows:

U = 1

E + Ē

( Ēx λĒx
λEx Ex

)
, V = 1

E + Ē

( Ēy 1
λ
Ēy

1
λ
Ey Ey

)
,

with λ given by (2.2). This Lax pair is easily obtained from the Lax pair for the elliptic
Ernst equation [30,31] by making small modifications (the same Lax pair is used in
[33]).
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We write (5.1) in terms of differential forms as

d
 = W
, (5.2)

where W is the closed one-form

W = Udx + Vdy. (5.3)

As in Sect. 4, we will view the map
(x, y, ·) as being defined on the Riemann surface
S(x,y) and write 
(x, y, P) for the value of 
 at P = (λ, k) ∈ S(x,y).

5.2 Spectral analysis

Suppose that E0(x), x ∈ [0, 1), and E1(y), y ∈ [0, 1) are real-valued functions satis-
fying (1.4) for some n ≥ 2. Let U0 and V1 be given by (3.4), i.e., U0 and V1 denote
the functions U and V evaluated at y = 0 and x = 0, respectively. Let 
0(x, P) and

1(y, P) be the eigenfunctions defined in terms of E0 and E1 via the Volterra integral
equations (3.3).

Lemma 5.1 (Solution of the x-part) The eigenfunction 
0(x, P) defined via the
Volterra integral equation (3.3) has the following properties:

(a) For each k ∈ Ĉ\[0, 1], the function x �→ 
0(x, k+) is continuous on [0, 1) and
is Cn on (0, 1). Furthermore, for each x ∈ [0, 1), the function k �→ 
0(x, k+)

is analytic on Ĉ\[0, 1].
(b) 
0 obeys the symmetries

{

0(x, k+) = σ3
0(x, k−)σ3,


0(x, k±) = σ1
0(x, k̄±)σ1,
x ∈ [0, 1), k ∈ Ĉ\[0, 1]. (5.4)

(c) For each x ∈ [0, 1), 
0(x, P) extends continuously to an analytic function of
P ∈ S(x,0)\�0.

(d) The value of 
0 at P = ∞+ is given by


0(x,∞+) = 1

2

(E0(x) 1
E0(x) −1

)(
1 1
1 −1

)
, x ∈ [0, 1). (5.5)

(e) The determinant of 
0 is given by

det
0(x, P) = Re E0(x), x ∈ [0, 1), P ∈ S(x,0)\�0. (5.6)

(f) For each x0 ∈ (0, 1) and each compact subset K ⊂ Ĉ\[0, x0],

x �→ (
k �→ 
0(x, k

+)
)

(5.7)

is a continuous map [0, x0) → L∞(K ) and a Cn-map (0, x0) → L∞(K ).
Moreover, the map x �→ (

k �→ xα
0x (x, k+)
)
is continuous [0, x0) → L∞(K ).
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Remark 5.2 Some of the properties listed in Lemma 5.1 can be found in [33].

Proof We first use successive approximations to show that the integral equation


0(x, k
+) = I +

∫ x

0
U0(x

′, k+)
0(x
′, k+)dx ′, x ∈ [0, 1), (5.8)

has a unique solution for each k ∈ Ĉ\[0, 1]. Let K be a compact subset of Ĉ\[0, 1].
Let 
(0)

0 = I and define 

( j)
0 (x, k+) for j ≥ 1 inductively by



( j+1)
0 (x, k+) =

∫ x

0
U0(x

′, k+)

( j)
0 (x ′, k+)dx ′, x ∈ [0, 1), k ∈ K .

Then



( j)
0 (x, k+) =

∫
0≤x1≤···≤x j≤x

U0(x j , k
+)U0(x j−1, k

+) · · ·U0(x1, k
+)dx1 · · · dx j .

(5.9)

The function λ(x, 0, k+) is analytic for k ∈ Ĉ\[x, 1]; in particular, it is a bounded
function of k ∈ K for each fixed x ∈ [0, 1). In view of the assumptions (1.4), this
implies

‖U0(x, k
+)‖L1([0,x]) < C(x), x ∈ [0, 1), k ∈ K ,

where the function C(x) is bounded on each compact subset of [0, 1). Thus

|
( j)
0 (x, k+)| ≤ 1

j ! ‖U0(·, k+)‖ j
L1([0,x]) ≤ 1

j !C(x) j , x ∈ [0, 1), k ∈ K . (5.10)

Hence the series


0(x, k
+) =

∞∑
j=0



( j)
0 (x, k+) (5.11)

converges absolutely and uniformly for k ∈ K and x in compact subsets of [0, 1) to
a continuous solution 
0(x, k+) of (5.8). The fact that x �→ 
0(x, k+) ∈ Cn((0, 1))
follows from differentiating x �→ 


( j)
0 (x, k+) and applying estimates similar to (5.10)

to the derivative. Differentiating (with respect to k) under the integral sign in (5.9),
we see that k �→ 


( j)
0 (x, k+) is analytic on int K for each j ; the uniform convergence

then proves that k �→ 
0(x, k+) is analytic on int K . A similar argument applies to the
integral equation defining 
0(x, k−). We conclude that the functions 
0(x, k+) and

0(x, k−) are well-defined for x ∈ [0, 1) and k ∈ Ĉ\[0, 1] and are analytic functions
of k ∈ Ĉ\[0, 1] for each fixed x .
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We next show uniqueness. Assume that 
̃0 is another solution of the Volterra
equation (5.8) such that x �→ 
0(x, k±) is continuous on [0, 1), respectively, and let
� = 
0 − 
̃0. Then � is a solution of the homogeneous equation

�(x, k±) =
∫ x

0
U0(x

′, k±)�(x ′, k±)dx ′.

Iterating this yields

�(x, k±) =
∫ x

0
U0(x j , k

±)

∫ x j

0
U0(x j−1, k

±) · · ·
∫ x2

0
U0(x1, k

±)�(x1, k
±) dx1 . . . dxn

=
∫
0≤x1≤···≤x j≤x

U0(x j , k
±)U0(x j−1, k

±) · · ·U0(x1, k±)�(x1, k
±)dx1 · · · dx j .

Hence, as in the proof of existence, we get the estimate

|�(x, k±)| ≤ sup
x ′∈[0,x]

|�(x ′, k±)|
‖U0(·, k±)‖ j

L1([0,x])
j ! → 0, j → ∞,

which yields � = 0. This proves (a).
The symmetries (4.17) of λ show that

U0(x, k
+) = σ3U0(x, k

−)σ3, U0(x, k
+) = σ1U0(x, k̄+)σ1.

Hence σ3
0(x, k−)σ3 and σ1
0(x, k̄+)σ1 satisfy the same Volterra equation as

0(x, k+). By uniqueness, all three functions must be equal. This proves (b).

We next show that 
0(x, k±) can be continuously extended across the branch
cut to an analytic function on S(x,0)\�0. Since U0(x, k±) has continuous boundary
values on the interval (x, 1), the above argument (applied with a K that reaches up to
the boundary) shows that 
0(x, k±) also has continuous boundary values on (x, 1).
Moreover, since

λ(x, 0, (k + i0)+) = λ(x, 0, (k − i0)−), k ∈ (x, 1),

the boundary functions 
(x, 0, (k + i0)+) and 
(x, 0, (k − i0)−) satisfy the same
integral equation, so by uniqueness they are equal:


(x, y, (k + i0)+) = 
(x, y, (k − i0)−), (x, y) ∈ D, k ∈ (x, 1).

Hence the values of 
0 on the upper and lower sheets of S(x,0) fit together across the
branch cut (x, 1), showing that
0 extends to an analytic function of P ∈ S(x,0)\

(
�0∪

{1}). But λ(x, 0, P) is bounded in a neighborhood of the branch point 1, hence the
possible singularity of 
0(x, P) at this point must be removable. This shows that 
0
satisfies (c).
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Since λ(x, y,∞+) = 1, 
0(x,∞+) satisfies the equation


0x (x,∞+) = 1

2Re E0(x)
(E0x (x) E0x (x)
E0x (x) E0x (x)

)

0(x,∞+), x ∈ [0, 1).

This equation has the two linearly independent solutions

(E0(x)
E0(x)

)
and

(
1

−1

)
.

Hence there exists a constant matrix A such that


0(x,∞+) =
(E0(x) 1
E0(x) −1

)
A, x ∈ [0, 1).

We determine A by evaluating this equation at x = 0 and using that E0(0) = 1 and

0(0,∞+) = I . This yields (5.5) and proves (d).

The proof of (e) relies on the general identity

(ln det B)x = tr (B−1Bx ),

where B = B(x) is a differentiable matrix-valued function taking values inGL(n,C).
We find

(ln det
0)x = tr (
−1
0 U0
0) = trU0 = Re E0x

Re E0 = (ln Re E0)x .

This relation is valid at least for small x because 
0(0, k±) = I is invertible. In fact,
since Re E0(x) > 0 for x ∈ [0, 1) by assumption (1.4), it extends to all of [0, 1) and
we infer that, for P ∈ S(x,0)\�0,

det
0(x, P) = C(P)Re E0(x), x ∈ [0, 1),

where C(P) ∈ C is independent of x . Evaluation at x = 0 gives C(P) = 1. This
proves (e).

It remains to prove ( f ). Fix x0 ∈ (0, 1) and let K be a compact subset of Ĉ\[0, x0].
The function λ(x, 0, ·) is bounded on S(x,0) except for a simple pole at k = x . Hence,

sup
k∈K

∣∣
0(x2, k
+) − 
0(x1, k

+)
∣∣ = sup

k∈K

∣∣∣∣
∫ x2

x1
(U0
0)(x, k

+)dx

∣∣∣∣
≤
(
sup
k∈K

sup
x∈[0,x0)

|xαU0(x, k
+)|
)
sup
k∈K

(∫ x2

x1
|x−α
0(x, k

+)|dx
)

≤ C sup
k∈K

(∫ x2

x1
|x−α
0(x, k

+)|dx
)

, x1, x2 ∈ [0, x0),
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where the right-hand side tends to zero as x2 → x1, because

sup
k∈K

(∫ x2

x1
|x−α
0(x, k

+)|dx
)

≤
∞∑
j=0

1

j ! supk∈K
‖U0(·, k+)‖ j

L1([0,x0])

∫ x2

x1
x−αdx

≤ eC(x0)(x1−α
2 − x1−α

1 )

1 − α
,

whereC(x0) is chosen as in the proof of (a). This shows that themap (5.7) is continuous
[0, x0) → L∞(K ). If x ∈ (0, x0), then

sup
k∈K

∣∣∣∣
0(x + h, k+) − 
0(x, k+)

h
− 
0x (x, k

+)

∣∣∣∣
≤ sup

k∈K

∣∣∣∣1h
∫ x+h

x
(U0
0)(x

′, k+)dx ′ − 
0x (x, k
+)

∣∣∣∣
≤ sup

k∈K

∣∣∣∣(U0
0)(ξ, k+) − (U0
0)(x, k
+)

∣∣∣∣,
where ξ lies between x and x + h. As h → 0, the right-hand side goes to zero.
Hence (5.7) is differentiable as a map (0, x0) → L∞(K ) and the derivative satisfies

0x (x, k+) = U0(x, k+)
0(x). Furthermore, the map

x �→ (
k �→ λ(x, 0, k+)

)

is C∞ from (0, x0) to L∞(K ) and E0 is Cn on (0, 1). Hence the map

x �→ (
k �→ U0(x, k

+)
)

is Cn−1 from (0, x0) to L∞(K ). It follows that (5.7) is a Cn-map (0, x0) → L∞(K ).
Finally, since

xα
0x (x, k
+) = xαU0(x, k

+)
0(x, k
+)

we see that x �→ xα
0x (x, k+) is continuous [0, x0) → L∞(K ). This proves ( f )
and completes the proof of the lemma. ��
Lemma 5.3 (Solution of the y-part) The eigenfunction 
1(y, P) is well-defined for
y ∈ [0, 1) and P ∈ S(0,y)\�1 and has the following properties:

(a) For each k ∈ Ĉ\[0, 1], the function y �→ 
1(y, k+) is continuous on [0, 1) and
is Cn on (0, 1). Furthermore, for each y ∈ [0, 1), the function k �→ 
1(y, k+)

is analytic on Ĉ\[0, 1].
(b) 
1 obeys the symmetries

{

1(y, k+) = σ3
1(y, k−)σ3,


1(y, k±) = σ1
1(y, k̄±)σ1,
y ∈ [0, 1), k ∈ Ĉ\[0, 1]. (5.12)



The hyperbolic Ernst equation in a triangular domain Page 37 of 60 10

(c) For each y ∈ [0, 1), 
1(y, P) is an analytic function of P ∈ S(0,y)\�1.
(d) The value of 
1 at P = ∞+ is given by


1(y,∞+) = 1

2

(E1(y) 1
E1(y) −1

)(
1 1
1 −1

)
, y ∈ [0, 1). (5.13)

(e) The determinant of 
1 is given by

det
1(y, P) = Re E1(y), y ∈ [0, 1), P ∈ S(0,y)\�1. (5.14)

(f) For each y0 ∈ (0, 1) and each compact subset K ⊂ Ĉ\[1 − y0, 1],

y �→ (
k �→ 
1(y, k

+)
)

(5.15)

is a continuous map [0, y0) → L∞(K ) and a Cn-map (0, y0) → L∞(K ).
Moreover, the map y �→ (

k �→ yα
1y(y, k+)
)
is continuous [0, y0) → L∞(K ).

Proof The proof is similar to that of Lemma 5.1. ��

5.3 Uniqueness

The following lemma ensures uniqueness of the solution of the RH problem (3.2). The
proof relies on the fact that the determinant of the jump matrix v defined in (3.5) is
constant on each of the subcontours �0 and �1.

Lemma 5.4 Suppose that E0(x), x ∈ [0, 1), and E1(y), y ∈ [0, 1) are real-valued
functions satisfying (1.4) for some n ≥ 2. Then, for each (x, y) ∈ D, the solution
m(x, y, ·) of the RH problem (3.2) is unique, if it exists. Moreover,

detm(x, y, z) = 1, (x, y) ∈ D, z ∈ �∞. (5.16)

Proof Fix (x, y) ∈ D. By (5.6), (5.14), and the definition (3.5) of v, we have

det v(x, y, z) =
{
Re E0(x) > 0, z ∈ �0,

Re E1(y) > 0, z ∈ �1.

Hence

√
det v(x, y, z) =

{
c0(x), z ∈ �0,

c1(y), z ∈ �1,
(x, y) ∈ D,
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where the two functions c0(x) > 0 and c1(y) > 0 are independent of z. The function
m(x, y, ·) is a solution of the RH problem (3.2) if and only if the function m̃(x, y, ·)
defined by

m̃(x, y, z) =

⎧⎪⎨
⎪⎩
c0(x)m(x, y, z), z ∈ �0,

c1(y)m(x, y, z), z ∈ �1,

m(x, y, z), z ∈ �∞,

satisfies the RH problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m̃(x, y, ·) is analytic in C\�,

m̃(x, y, ·) has continuous boundary values m̃+ and m̃− on �,

m̃+(x, y, z) = m̃−(x, y, z)ṽ(x, y, z) for all z ∈ �,

m̃(x, y, z) = I + O(z−1) as z → ∞,

where

ṽ(x, y, z) =
{

1
c0(x)

v(x, y, z), z ∈ �0,
1

c1(y)
v(x, y, z), z ∈ �1.

But det ṽ(x, y, z) = 1 for all z ∈ �; hence the solution m̃(x, y, ·) is unique anddet m̃ =
1. It follows that the solutionm is unique and that detm(x, y, z) = det m̃(x, y, z) = 1
for z ∈ �∞. ��

6 Proofs of main results

In this section, we use the lemmas from the previous section to prove Theorem 1–4.

6.1 Proofs of Theorem 1 & 2

Let E0(x), x ∈ [0, 1), and E1(y), y ∈ [0, 1) be complex-valued functions satisfying
(1.4) for some n ≥ 2. Suppose E(x, y) is a Cn-solution of the Goursat problem for
(1.1) in D with data {E0, E1}. We will show that E(x, y) can be uniquely expressed in
terms of E0 and E1 by (3.1).

The idea in what follows is to introduce a solution 
 of (5.1) as the solution of the
integral equation


(x, y, k±) = I +
∫ (x,y)

(0,0)
(W
)(x ′, y′, k±).
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However, since W in general is singular on the boundary of D, we need to be more
careful with the definition. We therefore instead define 
 as the solution of


(x, y, k+) = 
0(x, k
+) +

∫ y

0
(V
)(x, y′, k+)dy′, (x, y) ∈ D, k ∈ Ĉ\[0, 1].

(6.1)

Lemma 6.1 (Solution of Lax pair equations) The function 
(x, y, P) defined in (6.1)
has the following properties:

(a) 
(x, y, k±) is a well-defined 2 × 2-matrix valued function of (x, y) ∈ D and
k ∈ Ĉ\[0, 1] which also satisfies the alternative Volterra integral equation:


(x, y, k+) = 
1(y, k
+) +

∫ x

0
(U
)(x ′, y, k+)dx ′, (x, y) ∈ D, k ∈ Ĉ\[0, 1]. (6.2)

(b) For each k ∈ Ĉ\[0, 1], the function (x, y) �→ 
(x, y, k+) is continuous on D
and is Cn on int D.

(c) For each k ∈ Ĉ\[0, 1], the functions

(x, y) �→ xα
x (x, y, k
+), (x, y) �→ yα
y(x, y, k

+),

(x, y) �→ xα yα
xy(x, y, k
+),

are continuous on D.
(d) 
 obeys the symmetries

{

(x, y, k+) = σ3
(x, y, k−)σ3,


(x, y, k±) = σ1
(x, y, k̄±)σ1,
(x, y) ∈ D, k ∈ Ĉ\[0, 1]. (6.3)

(e) For each point (x, y) ∈ D, 
(x, y, P) extends continuously to an analytic
function of P ∈ S(x,y)\�, where � = �0 ∪ �1 is the contour defined in (2.4).

(f) The value of 
 at P = ∞+ is given by


(x, y,∞+) = 1

2

(E(x, y) 1
E(x, y) −1

)(
1 1
1 −1

)
, (x, y) ∈ D. (6.4)

(g) The determinant of 
 is given by

det
(x, y, P) = Re E(x, y) > 0, (x, y) ∈ D, P ∈ S(x,y)\�. (6.5)

Proof By Lemma 5.1 the lemma holds for y = 0, i.e., the function 
(x, 0, P) is
well-defined and the properties (a)-(d) are satisfied when x = 0 or y = 0. In order to
see that
 is well-defined also for (x, y) in the interior of D, we note that (6.1) implies


(x, y, k+) = 
(x, 0, k+) +
∫ y

0
V(x, y′, k+)
(x, y′, k+)dy′,

(x, y) ∈ D, k ∈ Ĉ\[0, 1]. (6.6)
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The same type of successive approximation argument already used in the proof of
Lemma 5.1 shows that the Volterra equation (6.6) has a unique solution for each
fixed x ∈ (0, 1) and each k ∈ Ĉ\[0, 1], and that this solution 
(x, y, P) extends
continuously to an analytic function of P ∈ S(x,y)\�. This proves (b).

In order to prove (a), it remains to deduce the alternative representation (6.2). Note
that 
y = V
 by definition and


x (x, y, k
+) = 
x (x, 0, k

+) +
∫ y

0
Vx
(x, y′, k+) + V
x (x, y

′, k±)dy′.

Since E is a solution of the Goursat problem, we have

Vx = Uy + [U,V],

and, moreover, 
x (x, 0, k+) = U
(x, 0, k+). Now a straightforward calculation
shows


x (x, y, k
+) = U
(x, y, k+) +

∫ y

0
V
x (x, y

′, k±) − VU
(x, y′, k+)dy′.

Thus the function 
̃ = 
x−U
 is the unique solution of theVolterra integral equation


̃(x, y, k+) =
∫ y

0
V
̃(x, y′, k+)dy′

giving 
̃ = 0. This implies 
x = U
. Consequently, 
, defined by (6.1), is an
eigenfunction for the Lax pair equations (5.1). The difference between (6.1) and (6.2)
is given by


0(x, k
+) − 
1(y, k

+) +
∫ y

0
V
(x, y′, k+)dy′ −

∫ x

0
U
(x ′, y, k+)dx ′

=
∫ y

0

∫ x

0
(V
)x (x

′, y′, k+)dx ′dy′ −
∫ x

0

∫ y

0
(U
)y(x

′, y′, k+)dy′dx ′

=
∫ x

0

∫ y

0
(V
)x (x

′, y′, k+) − (U
)y(x
′, y′, k+)dy′dx ′

and (V
)x = (U
)y is the compatibility condition for the Lax pair. Hence the two
representations (6.1) and (6.2) are equal. This proves (a).

The symmetries (4.17) of λ show that

W (x, y, k+) = σ3W (x, y, k−)σ3, W (x, y, k+) = σ1W (x, y, k̄+)σ1.

Since λ(x, y,∞+) = 1, 
(x, y,∞+) satisfies the equation


y(x, y,∞+) = 1

2Re E(x, y)

(Ey(x, y) Ey(x, y)
Ey(x, y) Ey(x, y)

)

(x, y,∞+), (x, y) ∈ D.
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Using the above equations and arguing as in the proof of Lemma 5.1, the statements
(c), (d), (e), ( f ), and (g) follow from equation (6.6) and the corresponding statements
in Lemma 5.1. ��

Part (g) of Lemma 6.1 implies that the inverse matrix
(x, y, P)−1 is well-defined
for (x, y) ∈ D and P ∈ S(x,y)\�.

Lemma 6.2 For each (x, y) ∈ D,

P �→ 
(x, y, P)
(x, 0, P)−1 and P �→ 
(x, y, P)
(0, y, P)−1 (6.7)

are analytic functions of P ∈ S(x,y)\�1 and P ∈ S(x,y)\�0, respectively.

Proof LetU be an open set in S(x,y)\�1. Multiplying (6.6) by 
(x, 0, P)−1 from the
right, we find


(x, y, P)
(x, 0, P)−1 = I +
∫ y

0
V(x, y′, P)
(x, y′, P)
(x, 0, P)−1dy′,

(x, y) ∈ D, k ∈ Ĉ\[0, 1]. (6.8)

where the values of 
(x, 0, P) and λ(x, y′, P) in (6.8) are to be interpreted as in
Remark 4.9. Since

P �→ λ(x, y′, P)−1 =
√

k − x

k − (1 − y′)

is an analytic map U → C for each y′, so is V(x, y′, ·). It follows that the solution

(x, y, P)
(x, 0, P)−1 of (6.8) also is analytic for P ∈ U . This establishes the
desired statement for the first map in (6.7); the proof for the second map is similar. ��

Let �0, �1, and �∞ denote the three components of Ĉ\� defined in (4.23) and
displayed in Fig. 7.

Lemma 6.3 The 2 × 2-matrix valued function m(x, y, z) defined for (x, y) ∈ D by

m(x, y, z) = 

(
x, y, ∞+)−1



(
x, y, F−1

(x,y)(z)
)×

⎧⎪⎪⎨
⎪⎪⎩



(
x, 0, F−1

(x,y)(z)
)−1

, z ∈ �0,



(
0, y, F−1

(x,y)(z)
)−1

, z ∈ �1,

I , z ∈ �∞,

(6.9)

satisfies the RH problem (3.2) and the relation (3.1) for each (x, y) ∈ D.

Proof Since F(x,y) is a biholomorphism S(x,y) → Ĉ, we infer from Lemma 6.1
together with Lemma 6.2 that m(x, y, ·) is analytic in C\� and that m(x, y, z) → I
as z → ∞ for each (x, y) ∈ D. The jump condition in (3.2) holds as a consequence
of the definition (3.5) of v(x, y, z) and the fact that


0(x, k) = 
(x, 0, k), 
1(y, k) = 
(0, y, k).
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Finally, since 0 ∈ �∞ and F−1
(x,y)(0) = ∞−, the first symmetry in (6.3) yields

m(x, y, 0) = 

(
x, y,∞+)−1


(x, y,∞−) = 

(
x, y,∞+)−1

σ3

(
x, y,∞+)σ3.

(6.10)

Substituting in the expression (6.4) for 

(
x, y,∞+), the (11) and (21) entries of

(6.10) give

(m(x, y, 0))11 = 1 + E(x, y)E(x, y)

E(x, y) + E(x, y)
, (m(x, y, 0))21 = (1 − E(x, y))(1 + E(x, y))

E(x, y) + E(x, y)
.

Solving these two equations for E and Ē , we find (3.1). ��
We have showed that if E(x, y) is a Cn-solution of the Goursat problem for (1.1)

in D with data {E0, E1}, then E(x, y) can be expressed in terms of the function m
defined in (6.9) via equation (3.1). By Lemma 5.4, this function m(x, y, z) is the
unique solution of the RH-problem (3.2) whose formulation involves only the values
E0(x ′) and E1(y′) for 0 ≤ x ′ ≤ x and 0 ≤ y′ ≤ y. As a consequence, the value of
the solution E at (x, y) is uniquely determined by the values E0(x ′) and E1(y′) for
0 ≤ x ′ ≤ x and 0 ≤ y′ ≤ y, if it exists. This completes the proofs of Theorem 1 and 2.

6.2 Proof of Theorem 3

This subsection is devoted to proving Theorem 3 regarding existence. Let us therefore
suppose that E0(x), x ∈ [0, 1), and E1(y), y ∈ [0, 1) are real-valued functions satisfy-
ing (1.4) for some n ≥ 2. Define 
0(x, P) and 
1(y, P) in terms of E0 and E1 via the
Volterra equations (3.3). Then 
0 and 
1 have the properties listed in Lemma 5.1 and
Lemma 5.3. Let δ ∈ (0, 1) and let Dδ be the triangle defined in (2.1). As in the proof of
Theorem 5, choose ε > 0 so small that F(x,y)(�0) and F(x,y)(�1) are contained in the
intervals [−ε−1,−ε] and [ε, ε−1], respectively, for all (x, y) ∈ Dδ . Fix two smooth
nonintersecting clockwise contours �0 and �1 in the complex z-plane which encircle
the intervals [−ε−1,−ε] and [ε, ε−1], respectively, but which do not encircle zero, see
Fig. 8. Suppose �0 and �1 are invariant under the involutions z �→ z−1 and z �→ z̄.
Let � = �0 ∪�1 and consider the family of RH problems given in (3.2) parametrized
by the two parameters (x, y) ∈ Dδ . We will show that if (3.2) has a (unique) solution
m(x, y, z) for each (x, y) ∈ Dδ , then the function E(x, y) defined in terms of m via
equation (3.1) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E ∈ C(Dδ) ∩ Cn(int Dδ),

E(x, y) satisfies the hyperbolic Ernst equation (1.1) in int(Dδ),

xαEx , yαEy, xα yαExy ∈ C(Dδ) for some α ∈ [0, 1),
E(x, 0) = E0(x) for x ∈ [0, 1 − δ),

E(0, y) = E1(y) for y ∈ [0, 1 − δ).

Re E(x, y) > 0 for (x, y) ∈ Dδ.

(6.11)
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We next list some facts about Cauchy integrals that we will use throughout the
proof. If h ∈ L2(�), then the Cauchy transform Ch is defined by

(Ch)(z) = 1

2π i

∫
�

h(z′)
z′ − z

dz′, z ∈ C\�, (6.12)

We denote the nontangential boundary values of C f from the left and right sides of
� by C+ f and C− f respectively. Then C+ and C− are bounded operators on L2(�)

and C+ − C− = I . Let w(x, y, z) = v(x, y, z) − I . We define the operator Cw :
L2(�) + L∞(�) → L2(�) by

Cw( f ) = C−( f w). (6.13)

Then

‖Cw‖B(L2(�)) ≤ C‖w‖L∞(�), (6.14)

where C = ‖C−‖B(L2(�)).
We henceforth assume that the RH problem (3.2) has a solution for all (x, y) ∈ Dδ

or, equivalently, that I − Cw ∈ B(L2(�)) is bijective for each (x, y) ∈ Dδ .
For each (x, y) ∈ Dδ , we have v ∈ C(�) and v, v−1 ∈ I + L2(�) ∩ L∞(�). The

theory of singular integral equations then implies that the solution of the RH problem
(3.2) is given by (see e.g. [8] or [24, Proposition 5.8])

m = I + C(μw), (6.15)

where the 2 × 2-matrix valued function μ(x, y, ·) is defined by

μ = I + (I − Cw)−1Cw I ∈ I + L2(�).

Equation (6.15) can be written more explicitly as

m(x, y, z) = I + 1

2π i

∫
�

(μw)(x, y, s)ds

s − z
, (x, y) ∈ Dδ, z ∈ Ĉ\�. (6.16)

Lemma 6.4 The map

(x, y) �→ w(x, y, ·) (6.17)

is continuous from Dδ to L∞(�) and Cn from int Dδ to L∞(�). Moreover, the three
maps

(x, y) �→ xαwx (x, y, ·), (x, y) �→ yαwx (x, y, ·), (x, y) �→ xα yαwxy(x, y, ·),
(6.18)

are continuous from Dδ to L∞(�).
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Proof For N ≥ 0, let CN (K ) denote the Banach space of functions on K with con-
tinuous partial derivatives of order ≤ N equipped with the usual norm

‖ f ‖CN (K ) = sup
|α|≤N

‖Dα f ‖L∞(K ).

By part ( f ) of Lemma 5.1 the map

(x, y) �→ 
0(x, ·) : Dδ → C(K ) (6.19)

is continuous for any compact set K not intersecting �. Moreover, assuming
F−1

(x,y)(�) ⊂ K , the map

(x, y) �→ ( f �→ f (F−1
(x,y)(·))) : Dδ → B(C(K ),C(�)) (6.20)

is continuous, because

sup
‖ f ‖C(K )=1

sup
z∈�

∣∣ f (F−1
(x,y)(z)) − f (F−1

(x ′,y′)(z))
∣∣→ 0

as (x ′, y′) → (x, y) by uniform continuity of f ∈ C(K ) on the compact set K . It
follows that the composed map

(x, y) �→ 
0(x, F
−1
(x,y)(·)) : int Dδ → C(�0)

also is continuous. A similar argument shows that

(x, y) �→ 
1(y, F
−1
(x,y)(·)) : Dδ → C(�1)

is continuous. Recalling the definition (3.5) of v, this shows that the map (6.17) is
continuous from Dδ to L∞(�).

If a sequence of holomorphic functions fn converges uniformly on an open set �

then the sequence of derivatives f ′
n converges uniformly on compact subsets of �.

Fix N ≥ n and let K be a compact subset of S(x,0)\�0. Then part ( f ) of Lemma 5.1
implies that the map

(x, y) �→ 
0(x, ·) : int Dδ → CN (K ) (6.21)

is Cn . On the other hand, the map

(x, y) �→ ( f �→ f (F−1
(x,y)(·))) : int Dδ → B(CN (K ),C(�)) (6.22)

is Cn . Indeed, the map is continuous because

sup
‖ f ‖CN (K )

=1
sup
z∈�

∣∣ f (F−1
(x,y)(z)) − f (F−1

(x ′,y′)(z))
∣∣→ 0
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as (x ′, y′) → (x, y) by uniform continuity of f on the compact set K . Moreover, the
map has a continuous partial derivative with respect to x because

sup
‖ f ‖CN (K )

=1
sup
z∈�

∣∣∣∣
f (F−1

(x+h,y)(z)) − f (F−1
(x,y)(z))

h
− d

dx
f (F−1

(x,y)(z))

∣∣∣∣→ 0

as h → 0 by the mean-value theorem and the uniform continuity of the first partial
derivatives of f . Similar arguments show that all partial derivatives of order ≤ n exist
and are continuous. We conclude that the composed map

(x, y) �→ 
0(x, F
−1
(x,y)(·)) : int Dδ → C(�0)

built from (6.21) and (6.22) is Cn . A similar argument shows that

(x, y) �→ 
1(y, F
−1
(x,y)(·)) : int Dδ → C(�1)

is Cn . Recalling the definition (3.5) of v, this shows that the map (6.17) is Cn as a
map from int Dδ to L∞(�). If z ∈ �0, we have

wx (x, y, z) = 
0x (x, F
−1
(x,y)(z)) + 
0k(x, F

−1
(x,y)(z))

d

dx
F−1

(x,y)(z),

where d
dx F

−1
(x,y)(z) denotes the derivative of the k-projection of F−1

(x,y)(z), which is
given by

d

dx
F−1

(x,y)(z) = − (z − 1)2

4z
.

Thus part ( f ) of Lemma 5.1 and of Lemma 5.3 imply that (x, y) �→ xαwx (x, y, ·) is
a continuous map Dδ → L∞(�). The maps (x, y) �→ yαwy(x, y, ·) and (x, y) �→
xα yαwxy(x, y, ·) can be treated similarly. ��
Lemma 6.5 The map

(x, y) �→ μ(x, y, ·) − I (6.23)

is continuous from Dδ to L2(�) and Cn from int Dδ to L2(�). Moreover, the three
maps

(x, y) �→ xαμx (x, y, ·), (x, y) �→ yαμx (x, y, ·), (x, y) �→ xα yαμxy(x, y, ·),
(6.24)

are continuous from Dδ to L2(�).
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Proof In view of the definition of μ, the map (6.23) is given by

(x, y) �→ (I − Cw(x,y,·))−1C−(w(x, y, ·)).

We note that the map

f �→ I − C f : L∞(�) → B(L2(�)) (6.25)

is smooth by the estimate

‖C f ‖B(L2(�)) ≤ C‖ f ‖L∞(�),

and that the linear map

f �→ C− f : L2(�) → L2(�) (6.26)

is bounded. Since (6.23) can be viewed as a composition of maps of the form (6.17),
(6.25), and (6.26) together with the smooth inversion map I − Cw �→ (I − Cw)−1, it
follows that (6.23) is continuous Dδ → L2(�) andCn from int Dδ to L2(�). Similarly,
(x, y) �→ xαμx (x, y, ·) can be viewed as composition of the continuous maps (6.25),
(6.26), I − Cw �→ (I − Cw)−1, (6.17), and (6.24), and is hence continuous. The maps
(x, y) �→ yαμy(x, y, ·) and (x, y) �→ xα yαμxy(x, y, ·) can be treated analogously.

��
Lemma 6.6 The solution m(x, y, z) of the RH problem (3.2) defined in (6.16) has the
following properties:

(a) For each point (x, y) ∈ Dδ , m(x, y, ·) obeys the symmetries

m(x, y, z) = m(x, y, 0)σ3m(x, y, z−1)σ3 = σ1m(x, y, z̄)σ1, z ∈ Ĉ\�.

(6.27)

(b) For each z ∈ Ĉ\�, the map (x, y) �→ m(x, y, z) is continuous from Dδ to C2×2

and is Cn from int Dδ to C2×2.
(c) For each z ∈ Ĉ\�, the three maps

(x, y) �→ xαmx (x, y, z), (x, y) �→ yαmx (x, y, z),

(x, y) �→ xα yαmxy(x, y, z),

are continuous from Dδ to C2×2.

Proof The symmetries in (5.4) and (5.12) show that v satisfies

{
v(x, y, z) = σ3v(x, y, z−1)σ3,

v(x, y, z) = σ1v(x, y, z̄)σ1,
z ∈ �, (x, y) ∈ Dδ. (6.28)
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These symmetries imply that σ3m(x, y, 0)−1m(x, y, z−1)σ3 and σ1m(x, y, z̄)σ1 sat-
isfy the same RH problem as m(x, y, z). The symmetries in (6.27) follow by
uniqueness.

Properties (b) and (c) follow from (6.15) together with the Lemmas 6.4 and 6.5. ��
As in the proof of Theorem 5, we extend the definition (3.5) of v to an open tubular

neighborhood N (�) = N (�0) ∪ N (�1) of � as follows, see Fig. 9:

v(x, y, z) =
{


0
(
x, F−1

(x,y)(z)
)
, z ∈ N (�0),


1
(
y, F−1

(x,y)(z)
)
, z ∈ N (�1),

(x, y) ∈ Dδ. (6.29)

We choose N (�) so narrow that it does not intersect the intervals [−ε−1,−ε] and
[ε, ε−1]. Then, for each (x, y) ∈ Dδ , v(x, y, ·) is an analytic function of z ∈ N (�).
Using the notation z(x, y, P) := F(x,y)(P), we can write (6.29) as

v(x, y, z(x, y, P)) =
{


0(x, P), P ∈ F−1
(x,y)

(
N (�0)

)
,


1(y, P), P ∈ F−1
(x,y)

(
N (�1)

)
,

(x, y) ∈ Dδ. (6.30)

We define functions f0(x, y, z) and f1(x, y, z) for (x, y) ∈ Dδ by

f0(x, y, z) = [mx (x, y, z) + zx
(
x, y, F−1

(x,y)(z)
)
mz(x, y, z)

]
m(x, y, z)−1, z ∈ Ĉ\�,

f1(x, y, z) = [my(x, y, z) + zy
(
x, y, F−1

(x,y)(z)
)
mz(x, y, z)

]
m(x, y, z)−1, z ∈ Ĉ\�.

Moreover, we let n0(x, y, z) and n1(x, y, z) denote the functions given by

n0(x, y, z) =
{
f0(x, y, z) + m(x, y, z)U0

(
x, F−1

(x,y)(z)
)
m(x, y, z)−1, z ∈ �0,

f0(x, y, z), z ∈ �1 ∪ �∞,
(6.31a)

and

n1(x, y, z) =
{
f1(x, y, z) + m(x, y, z)V1

(
y, F−1

(x,y)(z)
)
m(x, y, z)−1, z ∈ �1,

f1(x, y, z), z ∈ �0 ∪ �∞.
(6.31b)

Lemma 6.7 For each (x, y) ∈ Dδ , it holds that

(a) n0(x, y, z) is an analytic function of z ∈ Ĉ\{−1} and has at most a simple pole
at z = −1.

(b) n1(x, y, z) is an analytic function of z ∈ Ĉ\{1} and has at most a simple pole at
z = 1.

(c) n0(x, y,∞) = 0 and n0(x, y, 0) = mx (x, y, 0)m(x, y, 0)−1.
(d) n1(x, y,∞) = 0 and n1(x, y, 0) = my(x, y, 0)m(x, y, 0)−1.

Proof By (4.38) the function zx
(
x, y, F−1

(x,y)(z)
)
is analytic for z ∈ Ĉ\{−1,∞} with

simple poles at z = −1 and z = ∞. Equation (6.15) implies that mx (x, y, z) =
O(z−1) andmz(x, y, z) = O(z−2) as z → ∞. Hence f0(x, y, z) is analytic at z = ∞.
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It follows that f0(x, y, z) is analytic for all z ∈ Ĉ\(� ∪ {−1}) with a simple pole at
z = −1 at most. Now f0 satisfies the following jump condition across �:

f0+(x, y, z) = f0−(x, y, z) + m−(x, y, z)
[
vx (x, y, z) + zx

(
x, y, F−1

(x,y)(z)
)
vz(x, y, z)

]
× v(x, y, z)−1m−(x, y, z)−1, z ∈ �. (6.32)

Differentiating (6.30) with respect to x and y and evaluating the resulting equations
at k = F−1

(x,y)(z), we find

{
vx (x, y, z) + zx

(
x, y, F−1

(x,y)(z)
)
vz(x, y, z) = 
0x (x, F

−1
(x,y)(z)),

vy(x, y, z) + zy
(
x, y, F−1

(x,y)(z)
)
vz(x, y, z) = 0,

z ∈ N (�0),

(6.33)

and
{

vx (x, y, z) + zx
(
x, y, F−1

(x,y)(z)
)
vz(x, y, z) = 0,

vy(x, y, z) + zy
(
x, y, F−1

(x,y)(z)
)
vz(x, y, z) = 
1y(x, F

−1
(x,y)(z)),

z ∈ N (�1).

(6.34)

Using the first equations in (6.33) and (6.34) in (6.32), we conclude that f0 is analytic
across �1 and has the following jump across �0:

f0+(x, y, z) = f0−(x, y, z) + m−(x, y, z)U0
(
x, F−1

(x,y)(z)
)
m−(x, y, z)−1, z ∈ �0.

(6.35)

Thus n0 is analytic across �. Furthermore, since λ(x, y, k) is analytic on S(x,y) except
for a simple pole at the branch point k = x , the function U0

(
x, F−1

(x,y)(z)
)
is analytic

for z ∈ Ĉ\{−1} with a simple pole at z = −1. It follows that n0 satisfies (a). The
proof of (b) is similar and relies on the second equations in (6.33) and (6.34).

Using (4.38) in the definition (6.31a) of n0, we can write, for z ∈ �∞,

n0(x, y, z) = f0(x, y, z) =
[
mx (x, y, z) − 1 − z

1 + z

z

1 − x − y
mz(x, y, z)

]
m(x, y, z)−1.

(6.36)

Since mx (x, y, z) = O(z−1) and mz(x, y, z) = O(z−2) as z → ∞, it follows that
n0(x, y,∞) = 0. On the other hand, evaluating (6.36) at z = 0, we find

n0(x, y, 0) = mx (x, y, 0)m(x, y, 0)−1.

This proves (c); the proof of (d) is analogous. ��
Let m̂(x, y) denote the function m(x, y, z) evaluated at z = 0, that is,

m̂(x, y) = m(x, y, 0).
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Evaluating the first symmetry in (6.27) at z = ∞, we find

I = m̂(x, y)σ3m̂(x, y)σ3. (6.37)

The unit determinant condition (5.16) implies that det m̂ = 1. Hence equation (6.37)
reduces to

adj(m̂) = σ3m̂σ3,

where adj denotes the adjugatematrix,which shows that m̂11 = m̂22.A straightforward
algebraic computation then yields

m̂(x, y) = 
̃(x, y)−1σ3
̃(x, y)σ3, (x, y) ∈ Dδ, (6.38)

where the 2 × 2-matrix valued function 
̃(x, y) is defined by


̃(x, y) = 1

2

(E(x, y) 1
E(x, y) −1

)(
1 1
1 −1

)
(6.39)

and the functions E(x, y) and E(x, y) are defined by

E = 1 + m̂11 − m̂21

1 + m̂11 + m̂21
, Ē = −1 − m̂11 + m̂21

1 − m̂11 − m̂21
. (6.40)

The second symmetry in (6.27) evaluated at z = 0 implies

m̂11 = m̂22, m̂12 = m̂21. (6.41)

Recalling the relations m̂11 = m̂22 and det m̂ = 1, it follows that Ē is the complex
conjugate of E . The next lemma shows, among other things, that E is free of singular-
ities.

Lemma 6.8 The function E(x, y) defined in (6.40) has the following properties:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E ∈ C(Dδ) ∩ Cn(int Dδ),

xαEx , yαEy, xα yαExy ∈ C(Dδ),

E(x, 0) = E0(x) for x ∈ [0, 1 − δ),

E(0, y) = E1(y) for y ∈ [0, 1 − δ).

Re E(x, y) > 0 for (x, y) ∈ Dδ.

Proof By Lemma 6.6, the map (x, y) �→ m̂(x, y) is continuous from Dδ to C and is
Cn from int Dδ to C. The first equation in (6.40) shows that E(x, y) also has these
regularity properties except possibly on the set

{(x, y) ∈ Dδ | (m̂(x, y))11 + (m̂(x, y))21 = −1} (6.42)
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where the denominator vanishes. In the sameway, the second equation in (6.40) shows
that E(x, y) is regular away from the set

{(x, y) ∈ Dδ | (m̂(x, y))11 + (m̂(x, y))21 = 1}. (6.43)

Since the sets (6.42) and (6.43) are disjoint and closed in Dδ , we conclude that E ∈
C(Dδ) ∩ Cn(int Dδ). That xαEx , yαEy, xα yαExy ∈ C(Dδ) follows by differentiating
(6.40) and applying Lemma 6.6.

We next show that Re E > 0 on Dδ . Equation (6.40) yields

E + Ē = 4m̂21

(m̂11 + m̂21)2 − 1
.

In light of the relations m̂11 = m̂22 and det m̂ = 1, this gives

Re E = 2(1 + m̂11)

|1 + m̂11 + m̂12|2 . (6.44)

On the other hand, the relations m̂11 = m̂22 and det m̂ = 1 together with (6.41) yield
m̂11 ∈ R and m̂2

11 − |m̂12|2 = 1. We infer that m̂11 ∈ (−∞,−1] ∪ [1,∞). For
(x, y) = (0, 0) we have m(0, 0, z) = I for all z, because the jump matrix v is the
identity matrix. In particular, m̂11(0, 0) = 1. By continuity, this gives (m̂(x, y))11 ≥ 1
for all (x, y) ∈ Dδ . In view of (6.44), it follows that Re E(x, y) > 0 on Dδ .

Finally, we show that E(x, 0) = E0(x) for x ∈ [0, 1 − δ); the proof that E(0, y) =
E1(y) for y ∈ [0, 1 − δ) is similar. For y = 0, the definition (3.5) of v yields

v(x, 0, z) =
{


0
(
x, F−1

(x,0)(z)
)
, z ∈ �0,

I , z ∈ �1,
x ∈ [0, 1 − δ). (6.45)

It follows from part (c) of Lemma 5.1 that the 2× 2-matrix valued function m0(x, z)
defined for x ∈ [0, 1 − δ) by

m0(x, z) = 
0
(
x,∞+)−1 ×

{
I , z ∈ �0,


0
(
x, F−1

(x,0)(z)
)
, z ∈ �1 ∪ �∞,

(6.46)

satisfies the RH problem (3.2) associated with (x, y) = (x, 0) for each x ∈ [0, 1− δ).
Furthermore, since 0 ∈ �∞ and F−1

(x,y)(0) = ∞−, the first symmetry in (5.4) yields

m0(x, 0) = 
0
(
x,∞+)−1


0
(
x,∞−) = 
0

(
x,∞+)−1

σ3
0
(
x,∞+)σ3. (6.47)

Substituting in the expression (5.5) for
0
(
x,∞+), the (11) and (21) entries of (6.47)

give

(m0(x, 0))11 = 1 + E0(x)E0(x)
E0(x) + E0(x)

, (m0(x, 0))21 = (1 − E0(x))(1 + E0(x))
E0(x) + E0(x)

.
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Solving these two equations for E0 and Ē0, we find

E0(x) = 1 + (m0(x, 0))11 − (m0(x, 0))21
1 + (m0(x, 0))11 + (m0(x, 0))21

. (6.48)

But by uniqueness of the solution of the RH problem (3.2), we have m0(x, z) =
m(x, 0, z); hence, comparing (6.48) with (3.1), we deduce that E(x, 0) = E0(x) for
x ∈ [0, 1 − δ). ��

It only remains to show that E(x, y) satisfies the hyperbolic Ernst equation (1.1) in
int(Dδ). The proof of this relies on the construction of an eigenfunction 
 of the Lax
pair. Equations (6.4) and (6.9) suggest that we define 
(x, y, P) for (x, y) ∈ Dδ and
P ∈ F−1

(x,y)(�∞) ⊂ S(x,y) by


(x, y, P) = 
̃(x, y)m(x, y, F(x,y)(P)), (6.49)

where 
̃(x, y) is the function defined in (6.39).

Lemma 6.9 The function 
 defined in (6.49) satisfies the Lax pair equations

{

x (x, y, P) = U(x, y, P)
(x, y, P),


y(x, y, P) = V(x, y, P)
(x, y, P),
(6.50)

for (x, y) ∈ int Dδ and P ∈ F−1
(x,y)(�∞).

Proof The analyticity structure of n0 established in Lemma6.7 implies that there exists
a 2 × 2-matrix valued function C(x, y) independent of z such that

n0(x, y, z) = C(x, y)

z + 1
, z ∈ Ĉ. (6.51)

We determine C(x, y) by evaluating (6.51) at z = 0. By Lemma 6.7, this gives
C(x, y) = m̂x (x, y)m̂(x, y)−1. It follows, together with (4.38) and (6.31), that

n0 = m̂x (x, y)m̂(x, y)−1

z + 1
=
(
mx − 1 − z

1 + z

z

1 − x − y
mz

)
m−1 (6.52)

for (x, y) ∈ Dδ and z ∈ �∞.
Differentiating (6.49) with respect to x and using (6.52), we find, for P ∈

F−1
(x,y)(�∞),


x (x, y, P) = 
̃x (x, y)m(x, y, z(x, y, P)) + 
̃(x, y)(mx + zxmz)

= 
̃x (x, y)m(x, y, z(x, y, P)) + 
̃(x, y)
m̂x (x, y)m̂(x, y)−1

z + 1
m(x, y, z(x, y, P))

=
(


̃x (x, y)
̃(x, y)−1 + 
̃(x, y)
m̂x (x, y)m̂(x, y)−1

z(x, y, P) + 1

̃(x, y)−1

)

(x, y, P)
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Substituting in the expressions (6.39) and (6.38) for 
̃ and m̂ in terms of E , Ē , and
recalling that

1 − 2

z + 1
= λ,

this yields the first equation in (6.50). A similar argument gives the second equation
in (6.50). ��
Lemma 6.10 The complex-valued function E : D → R defined by (3.1) satisfies the
hyperbolic Ernst equation (1.1) in int(Dδ).

Proof Fix a point P = (λ, k) in F−1
(x,y)(�∞) ⊂ S(x,y). By Lemma 6.8, the map

(x, y) �→ 
(x, y, P) is Cn from int Dδ to C and satisfies the Lax pair equations
(6.50). Since n ≥ 2, it follows that 
 satisfies


xy(x, y, P) − 
yx (x, y, P) = 0, (x, y) ∈ int Dδ.

The (21)-entry of this equation reads

(1 − x − y)λ

2(Re E(x, y))2(1 − k − y)

{
(Re E)

(
Exy − Ex + Ey

2(1 − x − y)

)
− ExEy

}
= 0.

It follows that E(x, y) satisfies (1.1) for (x, y) ∈ int Dδ . This completes the proof of
the lemma. ��

Lemma 6.10 completes the proof of part (a) of Theorem 3.
The following lemma proves part (b).

Lemma 6.11 There exists a constant cδ > 0 such that if

‖E0x/Re E0‖L1([0,1−δ)), ‖E1y/Re E1‖L1([0,1−δ)) < cδ, (6.53)

then the linear operator I − Cw(x,y,·) ∈ B(L2(�)) is bijective for each (x, y) ∈ Dδ .

Proof It follows from (5.10) and (5.11) that, by choosing cδ sufficiently small, equation
(6.53) gives

|
0(x, k
±) − I | < ‖C−‖−1

B(L2(�))

and an analogous estimate holds for |
1(y, k±) − I |. This yields

‖w(x, y, ·)‖L∞(�) < ‖C−‖−1
B(L2(�))

(6.54)

for all (x, y) ∈ Dδ whenever (6.53) holds. Equation (6.54) implies

‖Cw‖B(L2(�)) ≤ ‖C−‖B(L2(�))‖w‖L∞(�) < 1
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for all (x, y) ∈ Dδ . Hence I −Cw(x,y,·) is invertible inB(L2(�)) for each (x, y) ∈ Dδ .
��

For part (c) assume E0, E1 > 0 and write V0 = − log E0, V1 = − log E1. Then there
exists a Cn-solution V (x, y) of the Goursat problem for the Euler–Darboux equation
(4.1) with data {V0, V1} by Theorem 5. Hence E = e−V is aCn-solution of the Goursat
problem for (1.1) with data {E0, E1}. This completes the proof of part (c) and hence
of Theorem 3.

6.3 Proof of Theorem 4

Let E0(x), x ∈ [0, 1), and E1(y), y ∈ [0, 1), be complex-valued functions satisfying
(1.4) for some n ≥ 2 and some α ∈ (0, 1). Suppose E(x, y) is a Cn-solution of the
Goursat problem for (1.1) in D with data {E0, E1} and define m1,m2 ∈ C by (3.6).
We will prove (3.7a); the proof of (3.7b) is similar.

By (3.1), we have

xαEx (x, y) = 2xα m̂21(x, y)m̂11x (x, y) − (1 + m̂11(x, y))m̂21x (x, y)

(1 + m̂11(x, y) + m̂21(x, y))2
, (6.55)

where, as before, m̂(x, y) = m(x, y, 0). Thus, in order to compute limx↓0 xαEx (x, y),
it is enough to compute m̂(0, y) and limx↓0 xαm̂x (x, y). Since m = I + C(μw) and

mx = C(μxw) + C(μwx ), (6.56)

this means that we are interested in the values of

w(0, y, z), μ(0, y, z), lim
x↓0 x

αwx (x, y, z), lim
x↓0 x

αμx (x, y, z).

Lemma 6.12 We have

w(0, y, z) =
{
0, z ∈ �0,


1
(
y, F−1

(0,y)(z)
)− I , z ∈ �1,

y ∈ [0, 1), (6.57)

μ(0, y, z) =
{


1
(
y,∞+)−1


1
(
y, F−1

(0,y)(z)
)
, z ∈ �0,


1
(
y,∞+)−1

, z ∈ �1,
y ∈ [0, 1), (6.58)

and

m̂(0, y) = 
1
(
y,∞+)−1

σ3
1
(
y,∞+)σ3, y ∈ [0, 1). (6.59)

Proof Equation (6.57) is immediate from (3.5). Moreover, by (6.9),

m(0, y, z) = 
1
(
y,∞+)−1 ×

{
I , z ∈ �1,


1
(
y, F−1

(0,y)(z)
)
, z ∈ �0 ∪ �∞.

(6.60)
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Equation (6.58) follows from (6.60) and the fact that μ(x, y, z) = m−(x, y, z) for
(x, y) ∈ D and z ∈ �. Since 0 ∈ �0 and F−1

(0,y)(0) = ∞−, equation (6.59) follows by
setting z = 0 in (6.60) and using the first symmetry in (5.12). ��
Lemma 6.13 For y ∈ [0, 1), we have

lim
x→0

xαwx (x, y, z) =

⎧⎪⎨
⎪⎩

1
2

(
m̄1 m̄1λ(0, 0, F−1

(0,y)(z))

m1λ(0, 0, F−1
(0,y)(z)) m1

)
, z ∈ �0,

0, z ∈ �1,

(6.61)

and

lim
x↓0 x

αμx (x, y, z) = �(y, z), z ∈ �1, (6.62)

where the function �(y, z) is defined by

�(y, z) = − 1√
1 − y


1
(
y,∞+)−1

z + 1

1
(
y, 0
) ( 0 m̄1

m1 0

)

1
(
y, 0
)−1

.

Proof It follows from (3.5) and (4.49) that limx→0 xαwx (x, y, z) = 0 for z ∈ �1 and
that, for z ∈ �0,

lim
x→0

xαwx (x, y, z) = lim
x→0

xα

{

0x (x, F

−1
(x,y)(z)) + 
0k(x, F

−1
(x,y)(z))

d

dx
F−1

(x,y)(z)

}

= lim
x→0

xα
0x (x, F
−1
(x,y)(z)) = lim

x→0
xαU0(x, F

−1
(x,y)(z)).

Recalling the definition (3.4a) of U0, (6.61) follows.
To prove (6.62), we note that differentiation of the relation μ = I + Cwμ gives

μx = (I − Cw)−1C−(μwx ). (6.63)

We first compute limx↓0 C−(μxαwx ). Equations (6.58) and (6.61) imply, for z ∈ �1,

{
C−
[
lim
x→0

xαμ(x, y, ·)wx (x, y, ·)
]}

(z) = 
1
(
y,∞+)−1

2π i

×
∫

�0


1
(
y, F−1

(0,y)(z
′)
) 1
2

( m̄1 m̄1λ(0, 0, F−1
(0,y)(z

′))
m1λ(0, 0, F−1

(0,y)(z
′)) m1

)
dz′

z′ − z

= −
1
(
y,∞+)−1 Res

z′=−1


1(y, F
−1
(0,y)(z

′))λ(0, 0, F−1
(0,y)(z

′))
(

0 m̄1
m1 0

)

2(z′ − z)
=: �̃(y, z).

(6.64)
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Recalling the expression (4.50) for λ(0, 0, F−1
(0,y)(z)) and using that F−1

(0,y)(−1) = 0,
we find

�̃(y, z) = −

1
(
y,∞+)−1


1(y, 0)

(
0 m̄1
m1 0

)

(z + 1)
√
1 − y

.

In view of (6.63), it only remains to show that (I − Cw)� = �̃. We have, for z ∈ �1,

(Cw(0,y,·)�)(z) = 1

2π i

∫
�1

�(y, z′)
(

1
(
y, F−1

(0,y)(z
′)
)− I

)
z′ − z−

dz′

= −

1
(
y, ∞+)−1


1
(
y, 0
) ( 0 m̄1

m1 0

)

1
(
y, 0
)−1

2π i
√
1 − y

∫
�1


1
(
y, F−1

(0,y)(z
′)
)− I

z′ − z−
dz′

z′ + 1
.

Deforming the contour to infinity and using that

Res
z′=−1


1
(
y, F−1

(0,y)(z
′)
)− I

z′ − z

1

z′ + 1
= −
1(y, 0) − I

z + 1
,

a residue computation gives

(Cw(0,y,·)�)(z) =

1
(
y,∞+)−1


1
(
y, 0
) ( 0 m̄1

m1 0

)

1
(
y, 0
)−1

√
1 − y


1(y, 0) − I

z + 1
.

Simple algebra now shows that (I − Cw)� = �̃. ��

Lemma 6.14 For y ∈ [0, 1), we have


1(y, 0) =
⎛
⎜⎝e

∫ y
0

E1y (y′)
2ReE1(y′) dy

′
0

0 e
∫ y
0

E1y (y′)
2ReE1(y′) dy

′

⎞
⎟⎠ . (6.65)

Proof Since 0 is a real branch point of the Riemann surface �(0,y), the symmetries
(5.12) of 
1 imply that


1(y, 0
+) = 
1(y, 0

−) = σ3
1(y, 0
+)σ3 and 
1(y, 0) = σ1
1(y, 0)σ1.

Hence 
1(y, 0) has the form


1(y, 0) =
(
f (y) 0
0 f (y)

)
,
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where f (y) is a function of y. Since λ(0, y, 0) = ∞, we can determine f (y) by
solving the equation


1y(y, 0) = 1

2Re E1(y)
(E1y(y) 0

0 E1y(y)
)


1(y, 0),

which is a consequence of (5.1). This gives the desired statement. ��
The following lemma completes the proof of Theorem 4.

Lemma 6.15 For y ∈ [0, 1), we have

lim
x↓0 x

αEx (x, y) = m1
e
i
∫ y
0

ImE1y (y′)
ReE1(y′) dy

′
Re E1(y)√

1 − y
. (6.66)

Proof We first compute limx↓0 xαmx (x, y, 0). Proceeding as in the proof of (6.62),
we find

C[ lim
x→0

xαμ(x, y, ·)wx (x, y, ·)
]
(0) = −
1

(
y,∞+)−1


1(y, 0)√
1 − y

(
0 m̄1
m1 0

)
,

(6.67)

and

C[ lim
x→0

xαμx (x, y, ·)w(x, y, ·)](0) = 
1
(
y,∞+)−1


1
(
y, 0
)

√
1 − y

(
0 m̄1
m1 0

)

1
(
y, 0
)−1

× (
1(y, 0) − σ3
1(y,∞+)σ3
)
, (6.68)

where the derivation of (6.68) employs Lemma 6.12 and Lemma 6.13 as well as the
residue calculation

− 1

2π i

∫
�1


1(y, F
−1
(0,y)(z)) − I

z

dz

z + 1
= 
1(y, 0) − σ3
1(y,∞+)σ3.

Adding (6.67) and (6.68) and recalling (6.56), we obtain

lim
x→0

xαmx (x, y, 0) = − 1√
1 − y


1
(
y,∞+)−1


1
(
y, 0
) ( 0 m̄1

m1 0

)

× 
1
(
y, 0
)−1

σ3
1(y,∞+)σ3. (6.69)

Substituting (5.13), (6.59), (6.65), and (6.69) into (6.55), long but straightforward
computations yield (3.7a). ��
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7 Examples

We consider two examples of exact solutions—one with collinear polarization and
one with noncollinear polarization. For each example, we verify explicitly that the
formulas (3.7) of Theorem 4 on the behavior near the boundary are satisfied.

7.1 The Khan–Penrose solution

The Khan–Penrose [19] solution is given by the potential

E(x, y) = 1 + √
x
√
1 − y + √

y
√
1 − x

1 − √
x
√
1 − y − √

y
√
1 − x

, (x, y) ∈ D.

Straightforward computations show that m1 = 1 = m2 and

lim
x↓0

√
xEx (x, y) =

√
1 − y

(1 − √
y)2

= m1
e
i
∫ y
0

ImE1y (y′)
ReE1(y′) dy

′
Re E1(y)√

1 − y
= Re E1(y)√

1 − y
,

lim
y↓0

√
yEy(x, y) =

√
1 − x

(1 − √
x)2

= m2
e
i
∫ x
0

ImE0x (x ′)
ReE1(x ′) dx

′
Re E0(x)√

1 − x
= Re E0(x)√

1 − x
.

7.2 The Nutku–Halil solution

One version of the Nutku–Halil [32] solution is given by

E(x, y) = 1 − i
√
x
√
1 − y + i

√
y
√
1 − x

1 + i
√
x
√
1 − y − i

√
y
√
1 − x

, (x, y) ∈ D.

In this case, m1 = −i = −m2 and we compute

lim
x↓0

√
xEx (x, y) = i

√
1 − y

(i + √
y)2

= m1
e
i
∫ y
0

ImE1y (y′)
ReE1(y′) dy

′
Re E1(y)√

1 − y
,

lim
y↓0

√
yEy(x, y) = − i

√
1 − x

(i − √
x)2

= m2
e
i
∫ x
0

ImE0x (x ′)
ReE1(x ′) dx

′
Re E0(x)√

1 − x
.
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Appendix: Gravitational waves and the hyperbolic Ernst equation

It is shown in Eq. (11.7) in [17] that the Ernst potential E satisfies

2(Re E) (2Euv −UuEv −UvEu) = 4EuEv.

where e−U (u,v) = f (u) + g(v) and f (u) and g(v) are monotonically decreasing for
positive argument and f (0) = g(0) = 1/2. (Note that Griffiths writes Z for the Ernst
potential.) As suggested by Szekeres [36], it is possible to use ( f , g) as coordinates.
This leads to the equation

2(Re E)

(
2E f g + E f + Eg

f + g

)
= 4E f Eg, (A.1)

where ( f , g) belongs to the triangular region

{
( f , g) ∈ R

2
∣∣∣∣ f ≤ 1

2
, g ≤ 1

2
, f + g > 0

}
.

The change of variables x = 1
2 − g, y = 1

2 − f transforms (A.1) into (1.1).
In order for the solution to describe gravitational waves, the following boundary

condition must be satisfied (Eq. (7.15) in [17]; see also (11.23) in [17] but in (11.23)
equation ( f , g) approaches the corner whereas in (7.15) the two edges are approached;
also in (7.15) there is a factor ( f + g) missing; this factor comes from (7.9))

lim
g→ 1

2

[(1
2

− g
)
( f + g)

|Eg|2
(E + Ē)2

]
= k2

2
,

lim
f → 1

2

[(1
2

− f
)
( f + g)

|E f |2
(E + Ē)2

]
= k1

2
,

for some constants k1, k2 ∈ [ 12 , 1). In terms of (x, y), these conditions become

lim
x→0

x(1 − x − y)|Ex |2
(E + Ē)2

= k2
2

,

lim
y→0

y(1 − x − y)|Ey |2
(E + Ē)2

= k1
2

,

http://creativecommons.org/licenses/by/4.0/
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for some constants k1, k2 ∈ [ 12 , 1). That is, since Re E > 0,

lim
x→0

√
x
√
1 − x − y

|Ex (x, y)|
Re E(x, y)

= √2k2 = m1, y ∈ [0, 1),

lim
y→0

√
y
√
1 − x − y

|Ey(x, y)|
Re E(x, y)

= √2k1 = m2, x ∈ [0, 1),

for some constants m1,m2 ∈ [1,√2). If we assume that E ∈ C(D), these conditions
become

lim
x→0

√
x
√
1 − y

|Ex (x, y)|
Re E1(y) = √2k2 = m1, y ∈ [0, 1),

lim
y→0

√
y
√
1 − x

|Ey(x, y)|
Re E0(x) = √2k1 = m2, x ∈ [0, 1).

These are the conditions given in (1.5) with α = 1/2. In particular,

E0x (x) = m1 + o(1)√
x

i.e. E0(x) ∼ 2m1
√
x, x ↓ 0,

E1y(y) = m2 + o(1)√
y

i.e. E1(y) ∼ 2m2
√
y, y ↓ 0,

where m1,m2 ∈ [1,√2).
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