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Abstract
A method for the decomposition of data functions sampled on a finite fragment of
rectangular lattice is described. The symmetry of a square lattice in a 2-dimensional
real Euclidean space is either given by the semisimple Lie group SU (2) × SU (2)
or equivalently by the Lie algebra A1 × A1, or by the simple Lie group O(5) or
its Lie algebra called C2 or equivalently B2. In this paper we consider the first of
these possibilities which is applied to data which is given in 2 orthogonal directions—
hence the method is a concatenation of two 1-dimensional cases. The asymmetry
we underline here is a different density of discrete data points in the two orthogonal
directions which cannot be studied with the simple Lie group symmetry.

Keywords SU (2) × SU (2) group · Decomposition matrix · Fourier transform

1 Introduction

The method of decomposition matrices enables multidimensional digital data pro-
cessing through calculation of the Fourier expansion of digital data, with potentially
significantly faster processing and the use of more ideal symmetry lattices for sam-
pling data for specific applications. The method for triangular lattices based on the
semisimple Lie group of SU (3) and G(2) has already beed developed [2,3]. Since
most of digital data is given on rectangular lattices, in this paper we describe the
method for the first case of rectangular lattices, namely those based on the semisimple
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Lie group SU (2) × SU (2). The other possibility, that we will focus on in the future
is the case when the symmetry is given by Lie group Sp(4) or O(5). While trian-
gular lattices may be more optimal for specific applications, typically digital data is
analyzed using rectangular or square lattices. There is a wide range of examples and
applications including digital images and video processing, and time series involving
time-frequency signal analysis and processing [7].

The square lattice in 2 dimensional real Euclidean space displays two symmetries.
Thefirst of these is the symmetry denoted by the semisimpleLie group SU (2)×SU (2),
or equivalently denoted by the Lie algebra A1 × A1. The second case is the symmetry
derived from the simple Lie group O(5), or from its Lie algebra. In this paper we
consider the first of these symmetries because it can conveniently treat data, which are
given on rectangular fragments of the square lattice. In contrast, the symmetry of the
simple Lie group would not allow this since there, the density of lattice points have
to be the same in both directions. The second symmetry is particularly suitable when
the data is given on a triangle which is half of a square. Of particular interest here
are the cases when the structure of each rectangle is far from that of the square. We
can take such a structure rescaled to the square, and then the density of points will
be much smaller in one than in the others. In the A1 × A1 case an orthogonal system
of functions is still allowed on such an asymmetric lattice which can be used in the
Fourier decomposition.

2 Weyl groups of A1 and A1 × A1

The 1-dimensional case is well known in the literature, its special functions are the
Chebyshev polynomials or the trigonometric functions sin and cos [6]. We examine
that case here in order to fix the notation and terminology used in this paper, as well
as to display the correspondence with the content of subsequent sections.

The fundamental region F in 1D is a closed segment [0, 1] = [0, ω]. We can fix the
density of the points by choosing a positive integer M . The intersection of the segment
of some density specified by M and the basic tile F is denoted by FM . The number
of equidistant points in FM is equal to M + 1. Moreover, any choice of nonnegative
integers s0 and s1, such that M = s0+s1 is used to find points of FM . Namely, x ∈ FM

is written as

x = s1
s0 + s1

ω (1)

The symmetry group in this case is the Weyl group of A1 consisting of two elements
that are 1 and r(x) = −x , with r2 = 1.

In the orthogonal direction the fundamental region is still a segment between 0 and
1, but the number of points is given by M ′ + 1, where M ′ is a positive number of
our choice. Subsequently we are interested mainly in those cases where M is much
smaller thanM ′. The reflection symmetry transforms x to−x and in the other direction
y to −y, hence the reflection symmetry group is of order 4, containing the elements
1, rx , ry, rxy = ryx . We say that the reflection symmetry group is the Weyl group of
A1 × A1 or equivalently of SU (2) × SU (2).
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Fig. 1 The fragments of the A1 × A1 lattice for M = 2, M ′ = 5 and M = 4, M ′ = 5

3 The data points in A1 × A1

The fundamental region F in 2D is a cartesian product [0, 1] × [0, 1]. The vertices of
F are the points (0, 0), (1, 0) = ω1, (0, 1) = ω2 and (1, 1) = ω1 + ω2. As in the 1D
case, we can fix the density of the points in F by choosing positive integers M and M ′.
The set of such points, including the points on the boundary of F we denote by FM,M ′ .
If we set M = s0 + s1 and M ′ = s′

0 + s′
1, si , s

′
i ∈ Z

≥0, then a point (x, y) ∈ FM,M ′ is
written as

(x, y) =
(

s1
s0 + s1

ω1,
s′
1

s′
0 + s′

1
ω2

)
(2)

The number of points on FM,M ′ is (M + 1)(M ′ + 1). The reflection symmetries are
acting on the points in the following way r1(x, y) = (−x, y) and r2(x, y) = (x,−y)
and r1r2(x, y) = (−x,−y). Moreover r21 = 1, r22 = 1 and r1r2 = r2r1.

Example 1 Let us take M = 4, M ′ = 5. The fundamental region F4,4 consists of 30
points. Note that F4,5 contains all the points of F2,5 which has 18 points (see Fig. 1).

4 The special functions of A1 × A1

The characters of irreducible representations of Lie group are the special functions
that have all properties that we need, except, that they are more complicated than their
alternatives that we are going to use here, namely the C- and S-functions.

It is convenient to use the ω-basis which in the orthonormal basis {e1, e2} has the
form

ωi = 1√
2
ei i = 1, 2.

There are four families of special functions, namely C-, S-, CS- and SC-functions
that are orthogonal on FM,M ′ .
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CCa,b(x, y) = e2π i〈(a,b),(x,y)〉 + e2π i〈(−a,b),(x,y)〉 + e2π i〈(a,−b),(x,y)〉

+ e2π i〈(−a,−b),(x,y)〉 (3)

SSa,b(x, y) = e2π i〈(a,b),(x,y)〉 − e2π i〈(−a,b),(x,y)〉 − e2π i〈(a,−b),(x,y)〉

+ e2π i〈(−a,−b),(x,y)〉 (4)

CSa,b(x, y) = e2π i〈(a,b),(x,y)〉 + e2π i〈(−a,b),(x,y)〉 − e2π i〈(a,−b),(x,y)〉

+ e2π i〈(−a,−b),(x,y)〉 (5)

SCa,b(x, y) = e2π i〈(a,b),(x,y)〉 − e2π i〈(−a,b),(x,y)〉 + e2π i〈(a,−b),(x,y)〉

+ e2π i〈(−a,−b),(x,y)〉, (6)

where the inner product is 〈(a, b), (x, y)〉 = ax
2 + by

2 and (x, y) ∈ FM,M ′ . If either
x or y are equal to 0, the sums have only two terms. If x and y are both equal to 0,
then Ca,b(0, 0) = 4 and Sa,b(0, 0) = CSa,b(0, 0) = SCa,b(0, 0) = 0. The functions
in the ω-basis are the following:

Ca,b(x, y) = Ca(x)Cb(y) = 4 cos(πax) cos(πby),

Sa,b(x, y) = Sa(x)Sb(y) = −4 sin(πax) sin(πby),

CSa,b(x, y) = Ca(x)Sb(y) = 4i cos(πax) sin(πby),

SCa,bx, y) = Sa(x)Cb(y) = 4i sin(πax) cos(πby),

where Cμ(t) = eπ iμt + e−π iμt , Sμ(t) = eπ iμt − e−π iμt , μ ∈ Z
≥0, t ∈ R.

All four families of functions are orthogonal on the fundamental region FM,M ′ .
They differ mainly by their behaviour at the boundary of the fundamental region so
we need to describe four subsets of points, namely FM,M ′ , F̃M,M ′ , Fcs

M,M ′ and Fsc
M,M ′

for each of the family of special functions

FM,M ′ =
{
s1
M

ω1 + s′
1

M ′ ω2 | s0 + s1 = M, s′
0 + s′

1 = M ′, s0, s1, s′
0, s

′
1 ∈ Z

≥0
}

,

F̃M,M ′ =
{
s1
M

ω1 + s′
1

M ′ ω2 | s0 + s1 = M, s′
0 + s′

1 = M ′, s0, s1, s′
0, s

′
1 ∈ Z

>0
}

,

Fcs
M,M ′ =

{
s1
M

ω1 + s′
1

M ′ ω2 | s0 + s1 = M, s′
0 + s′

1 = M ′, s0, s1 ∈ Z
≥0, s′

0, s
′
1 ∈ Z

>0
}

,

Fsc
M,M ′ =

{
s1
M

ω1 + s′
1

M ′ ω2 | s0 + s1 = M, s′
0 + s′

1 = M ′, s0, s1 ∈ Z
>0, s′

0, s
′
1 ∈ Z

≥0
}

.

Figure 2 shows all subsets for M = 2 and M ′ = 4.
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Fig. 2 The set of points on the fundamental region F for M = 2, M ′ = 4

The orthogonality relations are

〈Cλ(x),Cλ′(x)〉M,M ′ =
∑

xi∈FM,M ′
εxi Cλ(xi)Cλ′(xi) = 16MM ′|Stab(λ)|δλ,λ′ ,

λ ∈ �M,M ′ =
{
t1
M

ω1 + t ′1
M ′ ω2 | t0 + t1 = M, t ′0 + t ′1 = M ′, t0, t1, t ′0, t ′1 ∈ Z

≥0
}

,

〈Sλ(x), Sλ′(x)〉M,M ′ =
∑

xi∈F̃M,M ′

Sλ(xi)Sλ′(xi) = 16MM ′δλ,λ′ ,

λ ∈ �̃M,M ′ =
{
t1
M

ω1 + t ′1
M ′ ω2 | t0 + t1 = M, t ′0 + t ′1 = M ′, t0, t1, t ′0, t ′1 ∈ Z

>0
}

,

〈CSλ(x),CSλ′(x)〉M,M ′ =
∑

xi∈Fcs
M,M ′

εxi Cλ(xi)Cλ′(xi) = 16MM ′|Stab(λ)|δλ,λ′ ,

λ ∈ �cs
M,M ′

=
{
t1
M

ω1 + t ′1
M ′ ω2 | t0 + t1 = M, t ′0 + t ′1 = M ′, t0, t1 ∈ Z

≥0, t ′0, t ′1 ∈ Z
>0

}
,

〈SCλ(x), SCλ′(x)〉M,M ′ =
∑

xi∈Fsc
M,M ′

εxi Cλ(xi)Cλ′(xi) = 16MM ′|Stab(λ)|δλ,λ′

λ ∈ �sc
M,M ′

=
{
t1
M

ω1 + t ′1
M ′ ω2 | t0 + t1 = M, t ′0 + t ′1 = M ′, t0, t1 ∈ Z

>0, t ′0, t ′1 ∈ Z
≥0

}
.

The values for orders of orbit of εxi and orders of stabilizer Stab(λ) of λ are given in
Table 1

5 Splitting data into congruence classes

The congruence classes were introduced for the first time in [4] as a general-
ization of the notion of the triality of SU (3) multiplets in particle physics. Let

X = s1
s0+s1

ω1 + s′1
s′0+s′1

ω2 be an element of FM,M ′ . The points X ∈ FM,M ′ can be
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Table 1 Orders of orbits of εxi
and stabilizers Stab(λ) for
A1 × A1

εxi |Stab(λ)|
[s0, s1, s′0, s′1] 4 [t0, t1, t ′0, t ′1] 1

[0, s1, s′0, s′1] 2 [0, t1, t ′0, t ′1] 2

[s0, 0, s′0, s′1] 2 [t0, 0, t ′0, t ′1] 2

[s0, s1, 0, s′1] 2 [t0, t1, 0, t ′1] 2

[s0, s1, s′0, 0] 2 [t0, t1, t ′0, 0] 2

[s0, 0, 0, s′1] 1 [t0, 0, 0, t ′1] 4

[0, s1, 0, s′1] 1 [0, t1, 0, t ′1] 4

[s0, 0, s′0, 0] 1 [t0, 0, t ′0, 0] 4

[0, s1, s′0, 0] 1 [0, t1, t ′0, 0] 4

There is an assumption that s0, s1, s
′
0, s

′
1 ∈ Z

>0 and t0, t1, t
′
0, t

′
1 ∈

Z
>0

split into four congruence classes denoted here by Ki j , where i, j = {0, 1}. The
general rule is

s1 = i mod 2, s′
1 = j mod 2.

There are two ways to split any set of A1 × A1 data into 4 congruence classes
on FM,M ′ . The first way is rather straightforward: one defines the congruence classes
of points of FM,M ′ and considers separately the data function on the points of each
congruence class. In this way the entire problem is split into 4 smaller problems to
be solved. The advantage of such a splitting is the fact that the special functions
of a given congruence class are pairwise orthogonal among themselves. In addition
they are orthogonal to special functions of other congruence classes. Another way
to split a set of A1 × A1 data was described in [5], which showed how any data
function f (x, y), 0 ≤ x, y ≤ 1 on FM,M ′ can be written as a sum of 4 compo-
nents, each belonging to one congruence class only (see equations (36) and (37) in
[5]).

f (x, y) = f00(x, y) + f10(x, y) + f01(x, y) + f11(x, y), (7)

where

f00(x, y) = 1
4 { f (x, y) + f (x + 1, y) + f (x, y + 1) + f (x + 1, y + 1)},

f10(x, y) = 1
4 { f (x, y) − f (x + 1, y) + f (x, y + 1) − f (x + 1, y + 1)},

f01(x, y) = 1
4 { f (x, y) + f (x + 1, y) − f (x, y + 1) − f (x + 1, y + 1)},

f11(x, y) = 1
4 { f (x, y) − f (x + 1, y) − f (x, y + 1) + f (x + 1, y + 1)}.

(8)

The four data components are defined by means of center elements of the Lie group
SU (2) × SU (2). The components from each congruence class are defined by means
of the whole data function with shifting of its arguments using the center element of
the Lie group.
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Bothmethods can be generalized to any other semisimple Lie groupwith the excep-
tion of G2, F4 and E8 because they have only trivial center. Having the data split into
the congruence classes, we can describe the Fourier series for each congruence class
using the special functions orthogonal on that class.

6 Fourier decomposition of functions on FM,M′

Suppose we have any data f (x, y) given on the points of FM,M ′ . Using the Fourier
transform on FM,M ′ one can express a data function f (x, y) sampled on the points of
FM,M ′ as the finite series of (M + 1)(M ′ + 1) coefficients dλ multiplied by special
functions �λ

f (x, y) =
∑
λ

dλ�λ(x, y) , (x, y) ∈ FM,M ′ λ ∈ �M,M ′ , (9)

where �λ can be any of four families of special functions defined in Sect. 4. Our task
is to calculate the coefficients dλ.

Orthogonality of special functions allows one to invert the formula (9) and get the
coefficients dλ of the expansion as a product of the decomposition matrix multiplied
by the column of values of the data sampled on the points of FM,M ′

dλ =
∑

xi∈FM,M ′
D[M,M ′]

(λ)(xi )
f (xi ).

The decomposition matrix has the following form

D[M,M ′] =
(
D[M,M ′]

(λ)(xi )

)
=

(
εxi �λ(xi )

16MM ′|Stab(λ)|

)
.

The crucial property of the decomposition matrix is its independence of the data
given on FM,M ′ . Such a matrix can be calculated once and used again and again with
different sets of data as long as the data analyzed is on FM,M ′ .

Example 2 The decomposition matrix for M = 2, M ′ = 3 is the following
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
96

1
48 − 1

48
1
96

1
48 − 1

24
1
24 − 1

48 − 1
96

1
48 − 1

48
1
96

1
48 − 1

48 − 1
48

1
48 − 1

24
1
24

1
24 − 1

24
1
48 − 1

48 − 1
48

1
48

− 1
48 − 1

48
1
48

1
48

1
24

1
24 − 1

24 − 1
24 − 1

48 − 1
48

1
48

1
48

1
96

1
48

1
48

1
96 − 1

48 − 1
24 − 1

24 − 1
48

1
96

1
48

1
48

1
96

1
48 − 1

24
1
24 − 1

48 0 0 0 0 − 1
48

1
24 − 1

24
1
48

− 1
24

1
24

1
24 − 1

24 0 0 0 0 1
24 − 1

24 − 1
24

1
24

1
24

1
24 − 1

24 − 1
24 0 0 0 0 − 1

24 − 1
24

1
24

1
24

− 1
48 − 1

24 − 1
24 − 1

48 0 0 0 0 1
48

1
24

1
24

1
48

− 1
96

1
48 − 1

48
1
96 − 1

48
1
24 − 1

24
1
48 − 1

96
1
48 − 1

48
1
96

1
48 − 1

48 − 1
48

1
48

1
24 − 1

24 − 1
24

1
24

1
48 − 1

48 − 1
48

1
48

− 1
48 − 1

48
1
48

1
48 − 1

24 − 1
24

1
24

1
24 − 1

48 − 1
48

1
48

1
48

1
96

1
48

1
48

1
96

1
48

1
24

1
24

1
48

1
96

1
48

1
48

1
96

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Example 3 Consider the M = 2 and M ′ = 4 case. The idea of this example is to show
the possible enlargement of the decomposition matrix, without the need to recalculate
all of the matrix elements from the beginning. First we calculate the decomposition
matrix for M = M ′ = 2, then we enlarge the matrix to M = 2, M ′ = 4.

Proposition 1 Let’s denote by D[M,M ′]
(λ)(x) the elements labeled by (λ)(x) of the decom-

position matrix D[M,M ′] which corresponds to any integer numbers M and M ′.
The elements of a matrix D[M,M ′] which belong also to the larger matrix D[M̃,M̃ ′],
M ≤ M̃, M ′ ≤ M̃ ′ can be found by the formula

D[M̃,M̃ ′]
(λ)(x) = MM ′

M̃ M̃ ′
| Stab[M,M ′](λ)|
| Stab[M̃,M̃ ′](λ)|

D[M,M ′]
(λ)(x) . (10)



Decomposition matrices for the square lattices of the Lie... 2107

For M = M ′ = 2

λ\x (1, 1)
(
1, 1

2

)
(1, 0)

( 1
2 , 1

) ( 1
2 ,

1
2

) ( 1
2 , 0

)
(0, 1)

(
0, 1

2

)
(0, 0)

(2, 2) 1
64 − 1

32
1
64 − 1

32
1
16 − 1

32
1
64 − 1

32
1
64

(2, 1) − 1
32 0 1

32
1
16 0 − 1

16 − 1
32 0 1

32

(2, 0) 1
64

1
32

1
64 − 1

32 − 1
16 − 1

32
1
64

1
32

1
64

(1, 2) − 1
32

1
16 − 1

32 0 0 0 1
32 − 1

16
1
32

(1, 1) 1
16 0 − 1

16 0 0 0 − 1
16 0 1

16

(1, 0) − 1
32 − 1

16 − 1
32 0 0 0 1

32
1
16

1
32

(0, 2) 1
64 − 1

32
1
64

1
32 − 1

16
1
32

1
64 − 1

32
1
64

(0, 1) − 1
32 0 1

32 − 1
16 0 1

16 − 1
32 0 1

32

(0, 0) 1
64

1
32

1
64

1
32

1
16

1
32

1
64

1
32

1
64

For M = 2, M ′ = 4

λ\x (1, 1)
(
1, 3

4

) (
1, 1

2

) (
1, 1

4

)
(1, 0)

( 1
2 , 1

) ( 1
2 , 3

4

) ( 1
2 , 1

2

) ( 1
2 , 1

4

) ( 1
2 , 0

)
(0, 1)

(
0, 3

4

) (
0, 1

2

) (
0, 1

4

)
(0, 0)

(2, 4) 1
128 − 1

64
1
64 − 1

64
1

128 − 1
64

1
32 − 1

32
1
32 − 1

64
1
128 − 1

64
1
64 − 1

64
1

128

(2, 3) − 1
64

1
32

√
2

0 − 1
32

√
2

1
64

1
32 − 1

16
√
2

0 1
16

√
2

− 1
32 − 1

64
1

32
√
2

0 − 1
32

√
2

1
64

(2, 2) 1
64 0 − 1

32 0 1
64 − 1

32 0 1
16 0 − 1

32
1
64 0 − 1

32 0 1
64

(2, 1) − 1
64 − 1

32
√
2

0 1
32

√
2

1
64

1
32

1
16

√
2

0 − 1
16

√
2

− 1
32 − 1

64 − 1
32

√
2

0 1
32

√
2

1
64

(2, 0) 1
128

1
64

1
64

1
64

1
128 − 1

64 − 1
32 − 1

32 − 1
32 − 1

64
1

128
1
64

1
64

1
64

1
128

(1, 4) − 1
64

1
32 − 1

32
1
32 − 1

64 0 0 0 0 0 1
64 − 1

32
1
32 − 1

32
1
64

(1, 3) 1
32 − 1

16
√
2

0 1
16

√
2

− 1
32 0 0 0 0 0 − 1

32
1

16
√
2

0 − 1
16

√
2

1
32

(1, 2) − 1
32 0 1

16 0 − 1
32 0 0 0 0 0 1

32 0 − 1
16 0 1

32

(1, 1) 1
32

1
16

√
2

0 − 1
16

√
2

− 1
32 0 0 0 0 0 − 1

32 − 1
16

√
2

0 1
16

√
2

1
32

(1, 0) − 1
64 − 1

32 − 1
32 − 1

32 − 1
64 0 0 0 0 0 1

64
1
32

1
32

1
32

1
64

(0, 4) 1
128 − 1

64
1
64 − 1

64
1

128
1
64 − 1

32
1
32 − 1

32
1
64

1
128 − 1

64
1
64 − 1

64
1

128

(0, 3) − 1
64

1
32

√
2

0 − 1
32

√
2

1
64 − 1

32
1

16
√
2

0 − 1
16
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7 Concluding remarks

The discrete transform in any dimension provides the values of the data at the discrete
points by the corresponding values at the points of the special functions in the Fourier
series. However, if one chooses to replace the discrete values of the special functions in
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a Fourier series, by their continuous values, one gets what has been called a continuous
approximation of the discrete values [1].

The two methods for splitting data described in Sect. 5 have yet to be compared in
practical important large data sets.

The Fourier transform on a square lattice based on C2 symmetry is quite different
than the one studied here. One of the practical restrictions is that the distances between
square lattice points are the same in the same directions. In our case we are aiming
for the situation where along the one A1 direction the density of points is relatively
small, and along the other A1 direction the density of points is much larger. This is
the freedom that using the simple Lie group doesn’t have.

In practical applications for the A1×A1 asymmetric cases the decompositionmatrix
may be very large. It may be useful to develop it as separate computer software.

The method which we apply here, and in the previous papers of the series [2,3],
can be generalized to any dimension in principle. In 3D we would have the lattice of
A3, B3 and C3, as well as the four lattices based on semisimple Lie algebras, namely
A1×A1×A1, A1×A2, A1×C2 and A1×G2.Wewill consider those cases elsewhere.
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