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Abstract
Apropermathematicalmodel given by nonlinear Poisson–Nernst–Planck (PNP) equa-
tions which describe electrokinetics of charged species is considered. The model is
generalized with entropy variables associating the pressure and quasi-Fermi electro-
chemical potentials in order to adhere to the law of conservation of mass. Based on a
variational principle for suitable free energy, the generalized PNP system is endowed
with the structure of a gradient flow. The well-posedness theorems for the mixed
formulation (using the entropy variables) of the gradient-flow problem are provided
within the Gibbs simplex and supported by a-priori estimates of the solution.
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1 Introduction

To describe electrokinetic transport occurring in micro-structures in many physical,
chemical, and biological applications, a proper mathematical model adhering to the
law of conservation of mass is suggested following the approach [5,9]. The reference
cross-diffusion system of elliptic-parabolic type is described by nonlinear Poisson–
Nernst–Planck (PNP) equations for concentrations of charged species and overall
electrostatic potential. For physical consistency, they are generalized with entropy
variables associating the pressure and quasi-Fermi electro-chemical potentials.

Based on a suitable free energy (see thermodynamic principles in [24]), in [20]
a variational principle was established within the Gibbs simplex, thus preserving the
totalmass balance and non-negative species concentrations. In [18,19], the generalized
PNP problemwas stated in two-phasemedium composed of pore and particle parts and
taking into account for nonlinear interface reactions which are of primary importance
in applications. Its rigorous asymptotic analysis was carried our in [7,8]. For a broad
class of other relevant transport equationswe refer to [6,12,15,22], to [13] for stochastic
systems, and to [17,25] for variational principles.

Based on the entropy variables and following the thermodynamic formalism for
cross-diffusion systems introduced in [11,16], in the current work we endow the gen-
eralized PNP problem with the structure of a gradient flow and analyze it. Within
the entropy approach, the question of global solvability of related diffusion problems
was investigated in [1,2,4]. For the general theory of linear and quasilinear parabolic
equationswe refer to [21]. However, the key issue of the entropy approach requires uni-
formly strongly elliptic property of the governing system. Unfortunately, the ellipticity
fails under coupling cross-diffusive phenomena for the PNP problem, thus implying
the degenerate case. For a study of degenerate elliptic operators, see [23].

In Sect. 3 we present well-posedness analysis following from the regularization
approach by [26]. We set the entropy variables as independent ones. In the fully cou-
pled case, the non-negativity of species concentrations might be lost during the time
evolution. Otherwise, when the electro-chemical potentials are well-defined, then the
species concentrations are expressed by a normalized canonical ensemble of Fermi–
Dirac statistics, thus yielding the non-negativity and the total mass balance. Moreover,
in the decoupled case, in Sect. 4 we prove directly well-posedness of the static equilib-
rium for the underlying problem.A rigorous derivation of energy and entropy estimates
is collected in Appendix A.

2 Generalized PNP problem

We start with the geometry configuration. Let Ω ⊂ R
d (with natural d ∈ N) be

a connected domain with the Lipschitz boundary ∂Ω and the normal vector ν =
(ν1, . . . , νd)

� outward to Ω . Here and in what follows the upper symbol � stands
for transposition swapping columns and rows. We split ∂Ω into two disjoint parts
ΓD and ΓN corresponding to mixed Dirichlet–Neumann boundary conditions. By this
consideration we associate Ω to a pore space with a bath boundary ΓD, which is
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Table 1 List of symbols

Symbol Unit Name Property

kB ≈ 1.38e−23
(
J
K

)
Boltzmann constant Positive

u ≈ 1.66e−27 (kg) Unified atomic mass unit Positive constant

θ (K) Absolute temperature Positive constant

ρi ,C
(
kg
m3

)
Mass concentration of species i = 1, . . . , n positive

βi

(
m3

kg

)
Volume factors of species i = 1, . . . , n positive

Ji
(

kg
m2 s

)
Diffusion fluxes of species i = 1, . . . , n vector

μi (J) Electro-chemical potentials i = 1, . . . , n

Di j ,D
(
m2

J s

)
Diffusivity matrices i, j = 1, . . . , n elliptic

p (Pa) Pressure

zi (C) Electric charges of species i = 1, . . . , n constant

φ (V) Electrostatic potential

A
(
F kg
m

)
Electric permittivity matrix Elliptic

g
(
Ckg
m2

)
Electric displacement

complement to a solid space (bearing in mind possibly disconnected set of micro-
particles) with the boundary ΓN.

For time t ∈ R+ and spatial coordinates x = (x1, . . . , xd)� ∈ R
d , we look for

an unknown distribution over the cylinder (0, T ) × Ω (with the final time T > 0)
of mass concentrations ρ(t, x) = (ρ1, . . . , ρn)

� (natural n ≥ 2) of charged species
(ions) with electric charges z = (z1, . . . , zn)�, electro-chemical potentials μ(t, x) =
(μ1, . . . , μn)

�, the overall electrostatic potential φ(t, x), and the pressure p(t, x)
according to the generalization that was introduced in [5]. For convenience, all the
physical variables and parameters of the model are gathered in Table 1.

Our modeling is based on the general law of cross-diffusion

∂
∂t ρi = div Ji , i = 1, . . . , n, (1a)

where the vector-valued diffusion fluxes Ji (t, x) = ((Ji )1, . . . , (Ji )d)� are given by
the constitutive law (see [5])

J�
i =

n∑
j=1

ρ j∇μ�
j D

i j , i = 1, . . . , n, (1b)

with coupling by means of diffusivity matricesDi j ∈ R
d×d , i, j = 1, . . . , n. Here and

in what follows div stands for the divergence, and ∇ for the gradient. Inserting (1b)
into (1a) implies a strongly nonlinear equation with respect to ρ and μ. The fluxes
have to fulfill the mass conservation law:
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n∑
i=1

Ji = 0. (1c)

The electrostatic potential φ is described by the Poisson equation

− div(∇φ�A) −
n∑

k=1

zkρk = 0, (1d)

where the electric permittivity A ∈ R
d×d . The Navier–Stokes equation (see e.g. [14])

with zero flow velocity results in the force balance

u∇ p = −
n∑

i=k

zkρk∇φ. (1e)

The species concentrations should be physically consistent within a Gibbs simplex
requiring non-negativity and preserving the total mass C > 0:

n∑
i=1

ρi = C, ρi ≥ 0, i = 1, . . . , n. (1f)

Introducing the Lagrangian function of a free energy (see [20])

E(ρ, φ, p) = ∫
Ω

{∑n
i=1

(
kBθρi (ln(βiρi ) − 1) + ziρiφ

) − 1
2∇φ�A∇φ

+ u
C p

(∑n
i=1 ρi − C

)}
dx + ∫

ΓN
gφ dSx (2a)

the governing laws (1) are completed with the thermodynamic equilibrium expressed
by functional derivatives

μi = δE
δρi

= kBθ ln(βiρi ) + ziφ + u
C p, i = 1, . . . , n, (2b)

implying the Gibbs–Duhem equation for the electro-chemical potentials. It is worth
noting that substitution of (2b) and (1b) into the diffusion equation (1a) leads to the
gradient-flow structure

∂
∂t ρi = div

( n∑
j=1

ρ j∇
(

δE
δρ j

)�
Di j

)
, i = 1, . . . , n.

Since p + K is defined by (1e) up to an additive constant K , all the μi + u
C K are

determined by (2b) up to the same constant. Taking the gradient of (2b) and using the
force balance (1e) leads to formulas [which will be useful later on to calculate the flux
in (1b)] for i = 1, . . . , n
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ρi∇μi = kBθ∇ρi + Υi (ρ)∇φ, Υi (ρ) := ρi

(
zi − 1

C

n∑
k=1

zkρk

)
, (2c)

where the functions Υ1, . . . , Υn are uniformly bounded within the Gibbs simplex

|Υi (ρ)| ≤ ρi (|zi | + Z), Z :=
n∑

k=1

|zk |, for ρ satisfying (1f). (2d)

Moreover, equating the variation δE
δφ

of the function E in (2a) to zero leads to the Gauss
law in the form of Poisson equation (1d) and the inhomogeneous Neumann boundary
condition below in (3c) for φ. From the optimization viewpoint, the pressure p enters
(2a) as a Lagrange multiplier to the equality constraint in (1f) implying δE

δ p = 0.
The elliptic-parabolic system of nonlinear equations in (1)–(2) is endowed with the

standard initial condition
ρ = ρ0 as t = 0 (3a)

and mixed Dirichlet–Neumann boundary conditions

ρ = ρ0, φ = φ0 at ΓD (3b)

∇φ�Aν = g, J�
i ν = 0, i = 1, . . . , n, at ΓN, (3c)

for given data functions g ∈ L∞(0, T ; L2(ΓN)), φ0 ∈ L∞(0, T ; H1(Ω)), and ρ0 =
(ρ0

1 , . . . , ρ
0
n )

� ∈ H1(0, T ; L2(Ω))n ∩ C([0, T ]; H1(Ω))n such that

n∑
i=1

ρ0
i = C, ρ0

i > 0, i = 1, . . . , n. (3d)

It is worth remarking that an inhomogeneous condition for the normal diffusion flux
in (3c) would be well-posed only when it depends nonlinearly on ρ, this case was
investigated in [18–20].

In order to guarantee the flux balance identity (1c), it suffices to assume

n∑
i=1

Di j = D, j = 1, . . . , n, (4a)

with an elliptic matrix D ∈ R
d×d . Indeed, substituting into (1c) the constitutive equa-

tions (1b) together with the expression for ρi∇μi from (2c) and using the assumption
(4a), after summation of the fluxes Ji over i = 1, . . . , n we have

n∑
i=1

J�
i =

n∑
i, j=1

ρ j∇μ�
j D

i j =
n∑
j=1

ρ j∇μ�
j D =

n∑
j=1

(
kBθ∇ρ j + Υ j (ρ)∇φ

)�D = 0

since
∑n

j=1(∇ρ j ) = ∇C = 0 and
∑n

j=1 Υ j (ρ) = 0 in (2c) due to the total mass
balance in (1f). The assumption (4a) is related to quasi-stochastic matrices. In fact,
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rearranging the d-by-d matrix entries Di j = (Di j
kl )

d
k,l=1 into the n-by-n matrices

Dkl = (Di j
kl )

n
i, j=1, their sum in every column according to (4a) is equal to the same

entry of D = (Dkl)
d
k,l=1, i.e.

n∑
i=1

Di j
kl = Dkl for all j = 1, . . . , n. (4b)

Such matrices Dkl with non-negative entries are called column quasi-stochastic.
The standard assumptions for solvability are the ellipticity and boundedness con-

ditions for diffusivities: there exist 0 < d ≤ d such that

d
n∑

k=1

|∇ρk |2 ≤
n∑

i, j=1

∇ρ�
j D

i j∇ρi ,

n∑
i, j=1

∇ρ�
j D

i j∇ρi ≤ d
n∑

k=1

|∇ρ�
k ∇ρk |, (4c)

and for the permittivity: there exist 0 < a ≤ a such that

a|∇φ|2 ≤ ∇φ�A∇φ, ∇φ�A∇φ ≤ a|∇φ�∇φ|. (4d)

Based on (1)–(4) now we give a weak variational formulation of the generalized
PNP problem by excluding the entropy variables μ and p with the help of (2c). Find
a pair of functions

ρ ∈ L∞(0, T ; L2(Ω))n ∩ L2(0, T ; H1(Ω))n, φ ∈ L∞(0, T ; H1(Ω)) (5a)

that satisfy the non-negativity and the total mass balance (1f), the Dirichlet condition
(3b), and the following variational equations for i = 1, . . . , n

−
∫ T

0

∫

Ω

ρi
∂ρi
∂t dxdt +

∫

Ω

ρ0
i ρi (0) dx

+
∫ T

0

∫

Ω

n∑
j=1

(
kBθ∇ρ j + Υ j (ρ)∇φ

)�Di j∇ρi dxdt = 0, (5b)

∫

Ω

(
∇φ�A∇φ −

n∑
k=1

zkρkφ

)
dx =

∫

ΓN

gφ dSx (5c)

for all test functions ρ = (ρ1, . . . , ρn)
� ∈ H1(0, T ; L2(Ω))n ∩ L2(0, T ; H1(Ω))n

and φ ∈ H1(Ω) such that ρ(T ) = 0; ρ = 0 and φ = 0 at ΓD. The well-posedness to
(5), (3b), and (1f) was investigated earlier in [18–20].

When solving problem (5), (3b), the key issue concerns fulfilling explicitly condi-
tions (1f). In the following sections we consider the redundant entropy variable μ as
independent one, thus allowing to include conditions (1f) implicitly in the problem
formulation.
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3 Entropy formulation of the PNP problem

When (5), (3b) is solved, multiplying (1e) with the gradient of a smooth test function
and integrating the result over the domain, the pressure can be determined as a solution
(defined up to a constant K ) to the elliptic equation

p ∈ L∞(0, T ; H1(Ω)),

∫

Ω

(
u∇ p +

n∑
k=1

zkρk∇φ

)�
∇ p dx = 0 (6a)

for all test functions p ∈ H1(Ω). The next step is to recover μ from (2b). Taking
∇μ, multiplying it with the gradient of suitable test functions, and integrating over
the cylinder, the corresponding electro-chemical potentials

μi ∈ L2(0, T ; H1(Ω)), i = 1, . . . , n, (6b)

can be looked for as solutions to the mutually independent equations

∫ T

0

∫

Ω

(
∇μi − kBθ

∇ρi
ρi

− zi∇φ − u
C ∇ p

)� ∇μi dxdt = 0 (6c)

holding for all test functions μi ∈ L2(0, T ; H1(Ω)), and satisfying the Dirichlet
boundary condition

μi = kBθ ln(βiρ
0
i ) + ziφ

0 + u
C p at ΓD. (6d)

In general, this elliptic problem is degenerate, because the operator of (6c) is
unbounded due to the presence of factor 1

ρi
. To remedy, we give the following two

conditional assertions, which will be justified in Theorem 1 later on.

Proposition 1 (Existence of entropy variableμ) If the solution of the generalized PNP
problem (5), (3b), and (1f) satisfies one of the following two conditions:

(i) there exist time T0 > 0 (possibly small) and a constant ρ > 0 such that

ρi (t, x) ≥ ρ for all (t, x) ∈ (0, T0) × Ω, (6e)

(ii) the inclusion ∇ρi
ρi

∈ L2((0, T0) × Ω)n holds, (6f)

then the problem (6b)–(6d) for this index i ∈ {1, . . . , n} is uniquely solvable within
this time (0, T0).

Conversely, any solution to the system (6b)–(6d) satisfies (2b).

Proof Indeed, if either condition (i) or condition (ii) is satisfied, then existence and
uniqueness of the solution to (6b)–(6d) stated in Proposition 1 follows immediately
from a general fact on elliptic systems. ��
Remark 1 Since by the very definition of a solution, ρi ∈ L2(0, T0; H1(Ω)), see (5a),
condition (i) in Proposition 1 implies condition (ii).



610 J. R. G. Granada, V. A. Kovtunenko

From (2b) we get

ρi = 1
βi
exp

(
1

kBθ
(μi − ziφ − u

C p)
)

, (7a)

and summing up these equations over i = 1, . . . , n, due to the total mass balance∑n
i=1 ρi = C we can express the pressure as

p = kBθ
u C ln

(
1
C

n∑
i=1

1
βi
exp

( 1
kBθ

(μi − ziφ)
)
)

. (7b)

Excluding p from (7a) with the help of (7b), we bring the species concentrations in
the form of a canonical ensemble of Fermi–Dirac statistics

ρi = Pi (μ − zφ) := C
1
βi

exp
(

1
kBθ

(μi−ziφ)
)

∑n

k=1
1
βk

exp
(

1
kBθ

(μk−zkφ)
) , i = 1, . . . , n. (7c)

The normalized probabilities obey the inherent behavior

n∑
i=1

Pi (μ − zφ) = C, Pi (μ − zφ) ≥ 0, i = 1, . . . , n. (7d)

Then the non-negativity and the total mass balance (1f) follow straightforwardly from
the properties (7d). By this we observe that μi − ziφ → −∞ would lead to the
limit ρi = 0 in (7c). This is an admissible behavior, as an example, for the function
(μi − ziφ)(x) = − ln | ln |x|| as x → 0, which agrees with the H1-spatial regularity
of μ and φ stated in (5a) and (6b). In spite of the fact that μ + K is defined up to
an additive constant K , the concentrations ρi = Pi (μ + K − zφ) in (7c) are defined
uniquely.

Based on (7), we reformulate the generalized PNP problem as follows. Find a triple
of functions

ρ ∈ L∞((0, T ) × Ω)n, φ ∈ L∞(0, T ; H1(Ω)), μ ∈ L2(0, T ; H1(Ω))n (8a)

that satisfy the Fermi–Dirac statistics (7c), the Dirichlet condition (3b), and the fol-
lowing variational equations for i = 1, . . . , n

−
∫ T

0

∫

Ω

ρi
∂ρi
∂t dxdt +

∫

Ω

ρ0
i ρi (0) dx

+
∫ T

0

∫

Ω

n∑
j=1

ρ j∇μ�
j D

i j∇ρi dxdt = 0, (8b)

∫

Ω

(∇φ�A∇φ −
n∑

k=1

zkρkφ
)
dx =

∫

ΓN

gφ dSx (8c)
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for all test functions ρ = (ρ1, . . . , ρn)
� ∈ H1(0, T ; L2(Ω))n ∩ L2(0, T ; H1(Ω))n

and φ ∈ H1(Ω) such that ρ(T ) = 0; ρ = 0 and φ = 0 at ΓD.
The nonlinear parabolic equations (8b) imply a degenerate system because its

operator loses the ellipticity property compared to (5b). Firstly, because of the cross-
diffusion structure induced by matrices Di j . Second, due to the presence of the factor
ρ j , which is not uniformly positive in general. These facts do not allow to apply the
boundedness-by-entropy method [16].

Nevertheless, the well-posedness results established in [18,19] guarantee existence
of a solution pair (ρ, φ) for the generalized PNP problem in the form of (5), (3b) that
satisfies the total mass balance in (1f). From (5b) using (2c) the time derivative ∂ρ

∂t can
be defined in L2(0, T ; H−1(Ω))n as a continuous linear functional

∫ T

0

〈
∂ρi
∂t , ρi

〉
Ω

dt = −
∫ T

0

∫

Ω

n∑
j=1

ρ j∇μ�
j D

i j∇ρi dxdt, i = 1, . . . , n, (8b’)

where H−1(Ω) stands for the dual space to functions ρi ∈ H1(Ω) such that ρi = 0 on
ΓD, with the duality pairing 〈 · , · 〉Ω between them. In fact, ρ is a continuous function
of time, see [3, Remark 1, p. 509]. Since the strongly positive initial distributionρ0 > 0
is assumed in (3d), then by the continuity it follows local in time fulfillment of the
condition (6e) in Proposition 1. Within uniformly positive ρ ≥ ρ > 0, the electro-
chemical potentialμ in (2b) obeying the regularity (6b) exists, and the triple (ρ, φ,μ)

solves the equivalent problem (8), (7c), and (3b). This leads to the following local
existence theorem.

Theorem 1 (Local existence for cross-diffusion entropy system) There exists a time
interval (0, T0) (with T0 > 0maybe small), where the cross-diffusion entropy problem
given by (8), (7c), and (3b) has a solution (ρ, φ,μ). By this, (ρ, φ) solve the problem
(5), (3b), and μ is from (2b).

For such T0, the local a-priori estimates hold for all (t, x) ∈ (0, T0) × Ω

0 < ρ ≤ ρi < C, ‖∇μi‖L2((0,T0)×Ω) ≤ 1
ρ
Kμ
1 (T0) + Kμ

2 (T0), (8d)

for i = 1 . . . , n, with constant Kμ
1 (T0), K

μ
2 (T0) ≥ 0. For arbitrary final time T > 0,

the global a-priori estimates hold with constant Kφ > 0

0 ≤ ρi ≤ C, i = 1 . . . , n, ‖∇φ‖L2(Ω) ≤ Kφ. (8e)

Proof Here we justify the a-priori estimates. In (8e), the bounds of ρ follow from
(7c) and (7d), and the bound of φ is proved in Appendix A, Lemma 1. In (8d), the
strict bounds of ρ are the consequence of continuity due to the strongly positive initial
distribution (3d), and below we prove the estimate of μ.

The lower bound of ρi in (8d) allows us to apply Proposition 1. Based on this fact,
we substitute p from (6a) and μi = μi into (6c) to obtain

∫ T0

0

∫

Ω

(∇μi − kBθ
∇ρi
ρi

− Υi (ρ)
ρi

∇φ
)�∇μi dxdt = 0,
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where the functions Υi are defined by (2c). With the help of the Cauchy–Schwarz
inequality, from the above equality we get

‖∇μi‖L2((0,T0)×Ω) ≤ kBθ
ρ

‖∇ρi‖L2((0,T0)×Ω) + (|zi | + Z)‖∇φ‖L2((0,T0)×Ω),

where the upper bound of Υi (ρ) is from (2d). Applying the estimate of ∇φ from (8e)
and the bound of ∇ρ proved in [18–20] for arbitrary T > 0

‖∇ρi‖L2((0,T )×Ω) ≤ K ρ
1 (T ) + K ρ

2 (T )‖∇φ‖L2((0,T )×Ω), i = 1 . . . , n, (8f)

with K ρ
1 (T ), K ρ

1 (T ) > 0, we obtain the estimate for ∇μi in (8d) with the bounds
Kμ
1 (T ) = kBθ

(
K ρ
1 (T0)+K ρ

2 (T0)T0Kφ

)
and Kμ

2 (T ) = (|zi |+Z)T0Kφ , thus finishing
the proof. ��

For global in time solvability, we require a stronger than (4a) assumption

Di j = δi jD, i, j = 1, . . . , n, (9a)

with the Kronecker δi j = 1 for i = j , and zero otherwise. The assumption (9a)
implies (4a) and imposes decoupling in (8b) as well as (5b). In this case, existence
of a solution (ρ, φ) to (5), (3b) satisfying both conditions in (1f) globally in time is
proved in [18,19]. Therefore, the existence of the regular entropy variableμ from (2b)
is sufficient to state the following theorem (see a relevant work [10]).

Theorem 2 (Conditional global existence for decoupled entropy system) Fix an arbi-
trary final time T > 0. Let (ρ, φ) be a solution of problem (5), (3b) under the
decoupling assumption (9a). If the electro-chemical potentialμ solving problem (6b)–
(6d) exists, then the triple (ρ, φ,μ) solves the decoupled entropy system (8), (7c), and
(3b).

The global a-priori estimates (8e) hold. If the Dirichlet data in (3b) are constant,
i.e.

ρ0
i = 1

βi
, i = 1 . . . , n, at ΓD, (9b)

then the estimate with a constant Kμ(T ) > 0 holds (see Appendix A, Lemma 2)

‖√ρi ∇μi‖L2((0,T )×Ω) ≤ Kμ(T ), i = 1 . . . , n. (9c)

In the next section we investigate an equilibrium state when T ↗ ∞.

4 Equilibrium state

Let limT→∞ g(T , x) =: g∞(x) ∈ L2(ΓN) in (3c), and the limit in (3b)

lim
T→∞(ρ0, φ0)(T , x) = (ρ(0,∞), φ(0,∞)) (10a)
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be constant independent of x and satisfying according to (3d) the properties

n∑
i=1

ρ
(0,∞)
i = C, ρ

(0,∞)
i ≥ 0, i = 1, . . . , n. (10b)

We consider a stationary counterpart of the entropy system (8), (7c), and (3b) under
the decoupling assumption (9a). Find a triple of functions

ρ∞(x) ∈ L∞(Ω)n, φ∞(x) ∈ H1(Ω), μ∞(x) ∈ H1(Ω)n (11a)

that satisfy the Fermi–Dirac statistics

ρ∞
i = Pi (μ

∞ − zφ∞), i = 1, . . . , n, (11b)

the Dirichlet condition

ρ∞ = ρ(0,∞), φ∞ = φ(0,∞) at ΓD, (11c)

and the following variational equations for i = 1, . . . , n

∫

Ω

ρ∞
i (∇μ∞

i )�D∇μi dx = 0, (11d)

∫

Ω

(
(∇φ∞)�A∇φ −

n∑
k=1

zkρ
∞
k φ

)
dx =

∫

ΓN

g∞φ dSx (11e)

for all μ ∈ H1(Ω)n and φ ∈ H1(Ω) such that μ = 0 and φ = 0 at ΓD.

Theorem 3 (Existence of equilibrium)A solution of problem (11) exists, which is given
by the following relations

μ∞ = 0, ρ∞
i = Pi (−zφ∞) = C

1
βi

exp
(
− zi

kBθ
φ∞)

∑n

k=1
1
βk

exp
(
− zk

kBθ
φ∞

) , i = 1, . . . , n, (12a)

with the unique solution φ∞(x) ∈ H1(Ω) satisfying the Dirichlet condition

φ∞ = φ(0,∞) at ΓD (12b)

and the quasilinear variational equation for the electrostatic potential

∫

Ω

(
(∇φ∞)�A∇φ −

n∑
k=1

zk Pk(−zφ∞)φ
)
dx =

∫

ΓN

g∞φ dSx (12c)

for all test functions φ ∈ H1(Ω) such that φ = 0 at ΓD.
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Proof We transform (11b) to the form (2b)

μ∞
i = kBθ ln(βiρ

∞
i ) + ziφ

∞ + u
C p∞.

Consider the function

μ
(0,∞)
i := kBθ ln(βiρ

(0,∞)
i ) + ziφ

(0,∞) + u
C p∞

defined in Ω . Then it holds for i = 1, . . . , n

μ∞
i − μ

(0,∞)
i = kBθ ln

(
ρ∞
i

ρ
(0,∞)
i

)
+ zi (φ

∞ − φ(0,∞)), (13a)

and due to the assumption of constant (ρ(0,∞), φ(0,∞)) in (10a)

∇μ
(0,∞)
i = u

C ∇ p∞, i = 1, . . . , n. (13b)

By virtue of the Dirichlet conditions (11c) we haveμ∞
i −μ

(0,∞)
i = 0 at ΓD and hence

can substitute (13a) for the test functionμi into (11d). Summing over i = 1, . . . , n and
taking into account that d|∇μ∞

i |2 ≤ (∇μ∞
i )�D∇μ∞

i with some d > 0 by ellipticity
of D in (9a), we obtain

0 ≤ d
∫

Ω

n∑
i=1

ρ∞
i |∇μ∞

i |2 dx ≤
∫

Ω

n∑
i=1

ρ∞
i (∇μ∞

i )�D∇μ∞
i dx

=
∫

Ω

n∑
i=1

ρ∞
i (∇μ∞

i )�D∇μ
(0,∞)
i dx = u

C

∫

Ω

n∑
i=1

ρ∞
i (∇μ∞

i )�D∇ p∞ dx = 0.

Here we used the equality (13b) and the flux conservation (1c) implying
∑n

i=1 ρ∞
i

(∇μ∞
i )�D = 0. This identity is sufficed by μ∞ = 0, which is also necessary when

ρ∞ > 0. Henceforth, ρ∞
i = Pi (−zφ∞) according to (11b), thus implying (12a), and

(11e) turns into (12c).
The solvability of problem (12b), (12c) is proved in Appendix A, Lemma 1. ��
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A Appendix

Here we present auxiliary lemmas proving global a-priori estimates. The proof utilizes
the standard boundary trace theorem and Poincare inequality as follows

‖φ‖2L2(ΓN)
≤ Ktr‖φ‖2H1(Ω)

, ‖φ‖2H1(Ω)
= ‖φ‖2L2(Ω)

+ ‖∇φ‖2L2(Ω)
, (14a)

‖φ‖2L2(Ω)
≤ KP‖∇φ‖2L2(Ω)

for φ = 0 at ΓD. (14b)

In Theorem 1, (8e) and in Theorem 3 there was used the first lemma.

Lemma 1 (Global well-posedness of electrostatic potential φ) For given measur-
able function μ ∈ L∞((0, T );M(Ω))n, data g ∈ L∞(0, T ; L2(ΓN)) and φ0 ∈
L∞(0, T ; H1(Ω)), a solution φ ∈ L∞(0, T ; H1(Ω)) satisfying the Dirichlet condi-
tion φ = φ0 on ΓD in (3b) and the quasilinear parabolic equation in the variational
form (inserting (7c) into (8c))

∫

Ω

(∇φ�A∇φ −
n∑

k=1

zk Pk(μ − zφ)φ
)
dx =

∫

ΓN

gφ dSx (15a)

for all φ ∈ H1(Ω) such that φ = 0 at ΓD, exists and satisfies the a-priori estimate

‖∇φ‖L2(Ω) ≤ Kφ, (15b)

with the positive constant

K 2
φ =

(
4KP
a2

+ 1
a2

)
|Ω|(CZ)2 + Ktr

(
4(1+KP)

a2
+ 1

a2

)
‖g‖2L2(ΓN)

+ 2
( 2a
a

)2‖φ0‖2H1(Ω)
,

(15c)
where the bounds are from (4d), (7d), (14), and recalling Z = ∑n

k=1 |zk |.

Proof A solution to the quasilinear elliptic problem (15a) exists by the Schauder–
Tikhonov fixed point theorem. Indeed, the principal term in (15a) is linear, coercive
and bounded due to (4d). The nonlinear term is uniformly bounded according to (7d)
and Lipschitz continuous, because

∣∣ ∂Pk (μ)
∂μi

∣∣ ≤ C
kBθ

for i, k = 1, . . . , n, from which it

follows that |∇μPk(μ)| ≤ C
√
n

kBθ
for μ ∈ R

n and

∣∣∣∣∣
n∑

k=1

zk
(
Pk(μ − zφ1) − Pk(μ − zφ2)

)
∣∣∣∣∣ ≤ C

√
n

kBθ
|z(φ1 − φ2)|Z . (15d)



616 J. R. G. Granada, V. A. Kovtunenko

Testing (15a) with φ = φ − φ0 provided by zero on ΓD, due to (4d) we evaluate

a‖∇φ‖2L2(Ω)
≤

∫

Ω

∇φ�A∇φ dx

=
∫

Ω

(∇φ�A∇φ0 +
n∑

k=1

zk Pk(μ − zφ)(φ − φ0)
)
dx

+
∫

ΓN

g(φ − φ0) dSx.

Applying Young’s inequality to the following terms

∣∣∣∣
∫

Ω

∇φ�A∇φ0 dx

∣∣∣∣ ≤ a
4‖∇φ‖2L2(Ω)

+ a2

a ‖∇φ0‖2L2(Ω)
,

∣∣∣∣∣
∫

Ω

n∑
k=1

zk Pk(μ − zφ)(φ − φ0) dx

∣∣∣∣∣

≤ a
4KP

‖φ‖2L2(Ω)
+ a2

a ‖φ0‖2L2(Ω)
+

(
KP
a + a

4a2

)
|Ω|(CZ)2,

∣∣∣∣
∫

ΓN

g(φ − φ0) dSx

∣∣∣∣ ≤ a
4Ktr(1+KP)

‖φ‖2L2(ΓN)
+ a2

aKtr
‖φ0‖2L2(ΓN)

+
(
Ktr(1+KP)

a + aKtr

4a2

)
‖g‖2L2(ΓN)

,

where (7d) and Z = ∑n
k=1 |zk | were used, after summation of these inequalities, with

the help of (14) we arrive at the estimate (15b) and the bound (15c). ��
In Theorem 2, the estimate (9b) follows from the next lemma.

Lemma 2 (Global a-priori estimate for electro-chemical potential μ) For the quadru-
ple (ρ, φ,μ, p), let φ ∈ L∞(0, T ; H1(Ω)), p ∈ L∞(0, T ; H1(Ω)) solve (6a),
ρ ∈ L∞((0, T )×Ω)n within the Gibbs simplex (1f), and ∂ρ

∂t ∈ L2(0, T ; H−1(Ω)))n.
If μ ∈ L2(0, T ; H1(Ω))n satisfies the thermodynamic relations (2b), the initial con-
dition (3a), the boundary conditions in (3b) with the constant Dirichlet data

ρ0
i = 1

βi
, i = 1 . . . , n, at ΓD (16a)

subject to conditions (3d), and the nonlinear parabolic equations (8b’) in the decou-
pled by (9a) form

∫ T

0

〈
∂ρi
∂t , ρi

〉
Ω

dt +
∫ T

0

∫

Ω

ρi∇μ�
i D∇ρi dxdt = 0, i = 1, . . . , n, (16b)

for all ρ ∈ L2(0, T ; H1(Ω))n such that ρ = 0 at ΓD, then the a-priori estimate holds

‖√ρ ∇μ‖2L2((0,T )×Ω)n
≤ C

(
d
d

)2
2

(
|z|2 + nZ2

)
‖∇φ‖2L2((0,T )×Ω)

+ 2
d θ S

∣∣T
t=0.

(16c)
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Here the bounds are from (2d), (4c), Z = ∑n
k=1 |zk |, and the function of entropy

R+ �→ R, S := − ∂E
∂θ

= −
∫

Ω

n∑
i=1

kBρi
(
ln(βiρi ) − 1

)
dx (16d)

is uniformly bounded as follows

kB|Ω|C min

{
0, 1 −

n∑
i=1

ln(βiC)

}
≤ S ≤ kB|Ω|C . (16e)

Proof We start with defining the entropy function in (16d) according to (2a). Since the
inequality−x(ln x+1) ≤ 1 holds for all x ≥ 0, we have−ρi (ln(βiρi )−1) ≤ 1

βi
. The

upper bound for S in (16e) follows by summing the latter inequality over i = 1, . . . , n,
multiplying the result by kB, integrating over Ω , and using

∑n
k=1

1
βi

= C due to
(16a) and the total mass balance (3d). While the lower bound of S in (16e) holds for
ρi ∈ (0,C).

The time derivative of entropy can be calculated with the help of thermodynamic
relations (2b) in the form

θ ∂S
∂t = −

n∑
i=1

〈
∂ρi
∂t , kBθ ln(βiρi )

〉
Ω

= −
n∑

i=1

〈
∂ρi
∂t , μi − ziφ − u

C p
〉
Ω

. (16f)

Next we remark that the functionμi −ziφ− u
C p = kBθ ln(βiρi ) is zero onΓD because

of the assumption (16a) and the Dirichlet condition (3b). Thus it can be inserted for a
test function into (16b) and we get the following relations

d‖√ρi ∇μi‖2L2((0,T )×Ω)
≤

∫ T

0

∫

Ω

ρi∇μ�
i D∇μi dxdt

=
∫ T

0

∫

Ω

ρi∇μ�
i D

(
zi∇φ + u

C ∇ p
)
dxdt −

∫ T

0

〈
∂ρi
∂t , μi − ziφ − u

C p
〉
Ω

dt

(16g)

thanks to the lower bound in (4c) and (9a). From (2b) and (2c) we easily get

zi∇φ + u
C ∇ p = ∇(μi − kBθ ln(βiρi )) = Υi (ρ)

ρi
∇φ. (16h)

Combining this equality with the upper bound in (4c) and (9a), and taking into account
the inequality ρi ≤ C and estimate (2d) for Υi (ρ)

ρi
, we can estimate the former integral

in the right-hand side of (16g) from above using Young’s inequality as follows:

∣∣∣∣
∫ T

0

∫

Ω

(
√

ρi ∇μi )
�D√

ρi
(Υi (ρ)

ρi

)∇φ dxdt

∣∣∣∣

≤ d
2 ‖√ρi ∇μi‖2L2((0,T )×Ω)n

+ C d
2

2d (|zi | + Z)2‖∇φ‖2L2((0,T )×Ω)
. (16i)



618 J. R. G. Granada, V. A. Kovtunenko

After summation over i = 1, . . . , n, the latter integral in the right-hand side of (16g)
agrees with θ

∫ T
0

∂S
∂t dt due to (16f). Gathering the same terms in (16g)–(16i) and

multiplying the resulting inequality with the factor 2
d , we conclude with the a-priori

estimate (16c). ��

References

1. Bothe, D., Rolland, G.: Global existence for a class of reaction-diffusion systems with mass action
kinetics and concentration-dependent diffusivities. Acta Appl. Math. 139, 25–57 (2015)

2. Burger, M., Di Francesco, M., Pietschmann, J.-F., Schlake, B.: Nonlinear cross-diffusion with size
exclusion. SIAM J. Math. Anal. 42, 2842–2871 (2010)

3. Dautray, R., Lions, J.-L.:Mathematical Analysis andNumericalMethods for Sciences and Technology.
Evolution Problems I. Springer, Berlin (2000)

4. Desvillettes, L., Fellner, K., Pierre, M., Vovelle, J.: Global existence for quadratic systems of reaction–
diffusion. Adv. Nonlinear Stud. 7, 491–511 (2007)

5. Dreyer, W., Guhlke, C., Müller, R.: Overcoming the shortcomings of the Nernst–Planck model. Phys.
Chem. Chem. Phys. 15, 7075–7086 (2013)

6. Efendiev,M.: Evolution Equations Arising in theModelling of Life Sciences. Birkhäuser, Basel (2013)
7. Fellner, K., Kovtunenko,V.A.: A singularly perturbed nonlinear Poisson–Boltzmann equation: uniform

and super-asymptotic expansions. Math. Meth. Appl. Sci. 38, 3575–3586 (2015)
8. Fellner, K., Kovtunenko, V.A.: A discontinuous Poisson-Boltzmann equation with interfacial transfer:

homogenisation and residual error estimate. Appl. Anal. 95, 2661–2682 (2016)
9. Fuhrmann, J.: Comparison and numerical treatment of generalized Nernst–Planck models. Comput.

Phys. Commun. 196, 166–178 (2015)
10. Gerstenmayer, A., Jüngel, A.: Analysis of a degenerate parabolic cross-diffusion system for ion trans-

port. J. Math. Anal. Appl. 461, 523–543 (2018)
11. Glitzky, A., Mielke, A.: A gradient structure for systems coupling reaction–diffusion effects in bulk

and interfaces. Z. Angew. Math. Phys. 64, 29–52 (2013)
12. Godoy Molina, M., Markina, I.: Sub-Riemannian geodesics and heat operator on odd dimensional

spheres. Anal. Math. Phys. 2, 123–147 (2012)
13. Gonzalez, J.R., Guerrero, L.H., Cárdenas Alzate, P.P.: Solution of nonlinear equation representing a

generalization of the Black–Scholes model using ADM. Contemp. Eng. Sci. 10, 621–629 (2017)
14. Gustafsson, B., Vasiliev, A.: Conformal and Potential Analysis in Hele–Shaw Cells. Birkhäuser, Basel

(2006)
15. Ivanov, G., Vasil’ev, A.: Löwner evolution driven by a stochastic boundary point. Anal. Math. Phys.

1, 387–412 (2011)
16. Jüngel, A.: The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity 28, 1963–

2001 (2015)
17. Khludnev, A.M., Kovtunenko, V.A.: Analysis of Cracks in Solids. WIT-Press, Southampton (2000)
18. Kovtunenko, V.A., Zubkova, A.V.: Solvability and Lyapunov stability of a two-component system

of generalized Poisson–Nernst–Planck equations. In: Maz’ya, V., Natroshvili, D., Shargorodsky, E.,
Wendland, W.-L. (eds.) Recent Trends in Operator Theory and Partial Differential Equations (The
Roland Duduchava Anniversary Volume). Operator Theory: Advances and Applications, vol. 258, pp.
173–191. Birkhäuser, Basel (2017)

19. Kovtunenko, V.A., Zubkova, A.V.: On generalized Poisson–Nernst–Planck equations with inhomo-
geneous boundary conditions: a-priori estimates and stability. Math. Meth. Appl. Sci. 40, 2284–2299
(2017)

20. Kovtunenko, V.A., Zubkova, A.V.: Mathematical modeling of a discontinuous solution of the gen-
eralized Poisson–Nernst–Planck problem in a two-phase medium. Kinet. Relat. Mod. 11, 119–135
(2018)

21. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasilinear Equations of
Parabolic Type. American Mathematical Society, Providence (1968)



Entropy method for generalized Poisson–Nernst–Planck… 619

22. Lavrentiev, M.M., Spigler, R., Akhmetov, D.R.: Regularizing a nonlinear integroparabolic Fokker–
Planck equation with space-periodic solutions: existence of strong solutions. Sib. Math. J. 42, 693–714
(2001)

23. Murthy, M.K.V., Stampacchia, G.: Boundary value problems for some degenerate-elliptic operators.
Ann. Mat. Pura Appl. 80, 1–122 (1968)

24. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Interscience Publ, New York
(1961)

25. Radwan, A., Vasilieva, O., Enkhbat, R., Griewank, A., Guddat, J.: Parametric approach to optimal
control. Optim. Lett. 6, 1303–1316 (2012)
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