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Abstract: The two-dimensional (2D) lidar is a ranging optical sensor that can measure the 
cross-section of the geometric structure of the environment. We propose a robust 2D lidar 
simultaneous localization and mapping (SLAM) algorithm working in ambiguous environments. To 
improve the front-end scan-matching module’s accuracy and robustness, we propose performing 
degeneration analysis, line landmark tracking, and environment coverage analysis. The max-clique 
selection and odometer verification are introduced to increase the stability of the SLAM algorithm in 
an ambiguous environment. Moreover, we propose a tightly coupled framework that integrates lidar, 
wheel odometer, and inertial measurement unit (IMU). The framework achieves the accurate 
mapping in large-scale environments using a factor graph to model the multi-sensor fusion SLAM 
problem. The experimental results demonstrate that the proposed method achieves a highly accurate 
front-end scan-matching module with an error of 3.8% of the existing method. And it can run stably 
in ambiguous environments where the existing method will be failed. Moreover, it ccan successfully 
construct a map with an area of more than 250 000 square meters. 
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1. Introduction 

The two-dimensional (2D) lidar can measure the 

cross-section of the environmental geometric 

structure, and it is suited for the indoor environment. 

Therefore, the 2D lidar has been widely used in 

indoor robot mapping. The 2D lidar simultaneous 

localization and mapping (SLAM) algorithm is of 

great significance to realize the fully autonomous 

operation of robots, so it has attracted much research 

attention. 

Early research on the 2D lidar SLAM method is 

mainly based on the filter method. Smith et al. [2] 

first proposed the extended Kalman filter (EKF) 2D 

lidar SLAM that used EKF to estimate the posterior 

distribution of the robot pose and environmental 

landmarks simultaneously, which performed well in 

small-scale environments. However, its application 

in large-scale environments was limited due to the 

highly computational complexity. To overcome the 

shortcomings of the EKF 2D lidar SLAM method, 

Montemerlo et al. [3] proposed a method using 

RBPF (Rao-Blackwellized particle filter) to estimate 

the pose and environment and further optimize it [4] 

to achieve better convergence performance. Grisetti 

et al. [5] proposed the most used 2D lidar 
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SLAM-gmapping, which applied the RBPF method 

to the grid map and used scan matching to improve 

the convergence speed of RBPF. Kohlbrecher et al. 

[6] proposed a 2D lidar SLAM algorithm that used 

the Gauss-Newton method for scan matching. This 

method overcomes the influence of local extrema on 

the Gauss-Newton method by constructing a 

multi-resolution map pyramid and can perform well 

in a small-scale environment. However, it only 

estimates the current state and cannot correct the 

past errors. As the map area increases, the 

probability of error also increases, so filter-based 

methods cannot provide satisfactory performance in 

large-scale environments. 

The graph optimization method can correct past 

accumulated errors, working well in large-scale 

environments. The graph-optimized 2D lidar SLAM 

method uses a pose-graph to model the robot 

trajectory and realizes the estimation of all the poses 

of the robot trajectory through nonlinear least 

squares [7]. The graph optimization 2D lidar SLAM 

methods can be classified into front-end matching 

and back-end optimization. 

The mainstream method of scan registration is 

the iterative closest point (ICP) method [8] and the 

point-line ICP method [9]. The idea of these two 

methods is to consider the closest point between the 

two scans of laser data as the matching point and to 

obtain the relative pose of the two scans through 

singular value decomposition (SVD), repeating the 

process until convergence. Biber et al. [10] proposed 

the normal distribution transform (NDT) method, a 

piece-wise continuous representation method, 

representing the search space as a set of Gaussian 

distributions, where NDT heavily depended on the 

environment. The above scan-matching algorithms 

are all local and will be affected by local extreme 

values that do not converge to the optimal solution.  

To obtain the optimal solution, Olson [11] proposed 

the correlative scan match (CSM) method that 

divided the search space into grids and then 

enumerated all grids to obtain the optimal pose. 

Since CSM enumerates the entire search space, the 

solution is the optimal solution. At the same time, 

CSM is accelerated by multi-resolution maps and 

has good real-time performance. Tagliabue et al. [12] 

proposed a scanning matching algorithm that fused 

the lidar and IMU, which used ICP for inter-frame 

matching and explicitly considered the degradation 

of the environment to improve the algorithm’s 

stability. The proposed scan-matching method in this 

paper is motivated by this method. Different from 

the previous work, this paper uses CSM for coarse 

matching and the Gauss-Newton method for fine 

matching to obtain a high-precision optimal solution. 

Meanwhile, we use a global information matrix to 

analyze the degradation problem to achieve better 

stability. 

The graph optimization method was first 

proposed by Lu et al. [13], and it had good 

performance in mapping. However, this method’s 

number of state dimensions increases with the map 

area. Therefore, it has high computational 

complexity and is almost impossible to use in the 

actual application. Konolige et al. [14] proposed the 

sparse pose adjustment (SPA) method, which 

utilized the sparsity of the pose-graph, making the 

computational complexity of the graph optimization 

method decrease dramatically. Carlone et al. [15] 

found that graph optimization problems could be 

linearly approximated in 2D cases, converting 

nonlinear least-squares problems into linear 

least-squares problems, and computational 

complexity was significantly reduced. After that, the 

graph optimization method replaces the filter-based 

method as the mainstream method. Google’s 

engineer proposed a 2D lidar SLAM 

method-cartographer [16], using CSM as a front-end 

scant-matching and SPA as back-end optimization. 

At the same time, it adopted a branch-and-bound 

algorithm to accelerate scan-matching and loop 

closure detection and achieve high mapping 

accuracy in both large-scale and small-scale 

environments. Ren et al. [17] proposed a 2D lidar 
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SLAM algorithm in large-scale environment. This 

method has improved CSM to give a more robust 

result in an ambiguous environment. Loop closure 

has a significant impact on the quality of the map, 

and the wrong loop closure will lead to the failure of 

the mapping process. The above method utilizes a 

robust kernel to mitigate the influence of the 

incorrect loop closure and could not eliminate the 

impact of the wrong loop closure. A new key-frame 

will be added into the pose-graph when the robot 

walks over a certain distance or rotates over a 

certain angle. With the extension of the robot 

trajectory, there are more and more key-frames in 

the pose-graph, especially when the robot goses 

back to a particular place, it would further lead to 

more key-frames and significantly affect the 

SLAM’s performance. Besides, the above methods 

do not consider the environmental ambiguity, and 

they would fail to build a map in an ambiguous 

environment. 

We propose a framework for tightly coupled 

lidar-wheel-IMU information and realize high 

accuracy mapping in a large-scale environment to 

overcome the above problems. And the largest 

mapping area of the framework is more than    

250 000 square meters. The framework introduces 

the degradation analysis and realizes stable mapping 

and localization in an ambiguous environment. We 

use CSM to make the coarse global                                                        

match and Gaussian-Newton method for fine match 

and introduce line landmark tracking, which 

significantly improve the matching accuracy in the 

structured environment. To eliminate the influence 

of the wrong loop closure, we propose a two-stage 

filtering method. First, the max clique method [18] 

is introduced to select the correct loop closure, 

which could choose the correct loop closure when 

the incorrect loop closure rate reaches 90%; second, 

for the selected loop closures, the odometry check is 

performed to eliminate the influence caused by 

incorrect loop closure in SLAM. 

This paper is organized as follows. Section 2 

describes the system framework. Section 3 

introduces front-end module, including 

scan-matching algorithm, line landmark tracking, 

and keyframe selection strategy. Section 4 

introduces the loop closure selection module. 

Section 5 describes the factor-graph optimization 

module. Sections 6 and 7 show experimental results 

and conclusions. 

2. System framework 

When the 2D lidar is working, the laser will 

move in a circular motion with the rotating motor. 

The laser performs a distance measurement when 

the motor rotates over a certain angle. When the 

motor rotates 360 degrees, the 2D lidar obtains a 

cross-section corresponding to the geometric 

structure of the environment. The working principle 

of the 2D lidar is shown in Fig. 1. The blue rectangle 

represents the obstacles in the environment, the red 

dot represents the measurement data of the 2D lidar, 

and the red arrow represents the emitted laser beam. 

The 2D lidar drives the rotation of the laser by a 

rotating motor and obtains a cross-section 

corresponding to the geometric structure of the 

environment. 

2D lidar

 
Fig. 1 2D lidar’s work principle. 

When the lidar data is obtained, we can input it 

into our SLAM algorithm and fuse it with other 

sensors to build a map of the environment. The 

SLAM system includes three modules: front-end 

scan-matching module, loop closure detection 

module, and back-end optimization module. The 

system framework is shown in Fig. 2. The front-end 
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scan-matching module receives lidar, wheel- 

odometry, and IMU information. It then estimates 

the robot movement, in which the line landmark 

tracking is used to improve the estimation accuracy. 

Once the robot is translated or rotated over a certain 

distance, the key-frame selection module will 

automatically determine whether to generate a new 

key-frame according to the coverage of the current 

robot pose. Then, when the new key-frame is 

obtained, the loop closure module automatically 

performs loop closure detection and filters the 

influence of the incorrect loop closure on the SLAM. 

Finally, the back-end optimization module optimizes 

the pose graph via factor graph [19] to obtain 

accurate poses. Three modules are described in 

detail in the following section. 
 

IMU 

CSM 

Sensor data 

2D lidar 

Wheel odometry 

Line landmark tracking

Gausian-Newton 

Front-end Loop closure module 

Max clique 

Odometry verification

Keyframe 
selection

Multi-sensor fusion 
factor-graph 

Back-end 

 
Fig. 2 Framework of SLAM system. 

3. Front-end scan-matching module 

The front-end scan-matching module aims to 

estimate the movement of the robot accurately. An 

accurate movement estimate is beneficial for the 

quality of mapping and loop closure detection. This 

paper introduces line landmark tracking. Multiple 

key-frames are associated with the same line 

landmark, which introduces additional spatial 

constraints, increasing the accuracy of the front-end 

scan-matching result. In addition, we limite the 

generation of key-frames by analyzing the coverage 

area. The number of key-frames is only related to 

the map area and is independent of the robot 

trajectory’s length.  

3.1 Scan-matching algorithm 

Firstly, we use wheel odometer and IMU 

information to get the prior pose between two 

keyframes. Secondly, we use the CSM method to 

obtain the relative pose between the two keyframes. 

The relative pose will not be affected by the local 

extrema, but the grid resolution limits the accuracy, 

so the relative pose is a sub-optimal solution closest 

to the optimal solution. Thirdly, we use the 

Gauss-Newton scan-matching method for further 

optimization to obtain a high-precision optimal 

solution based on the previous step. 

The purpose of scan-matching is to find the 

relative pose between two keyframes. The first 

keyframe is used to construct a likelihood field map, 

as shown in Fig. 3. The yellow areas represent the 

lidar points, and the red areas correspond to the 

likelihood field. The closer the grid in the likelihood 

field is to the lidar points, the higher the score is. 

The black areas indicate the area with a score of 0. 

 
Fig. 3 Likelihood field map. 

The lidar points of the second key-frame are 

projected into the likelihood field map through a 

pose. If this pose has the largest score among all the 

poses, this pose is the pose of the second keyframe. 

We use X=(x, y, θ)=(t, θ) to represent the pose of the 

robot and pi=(pix, piy)T to represent the ith lidar point 

in the robot coordinate system. The expression of 

converting the laser point into the likelihood field 

map through the robot pose is shown in (1). 
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where R represents the rotation matrix 
corresponding to the angle of the pose X. 

After getting the coordinates of the lidar point in 
the likelihood field map, we can query the score of 
the corresponding grid in the likelihood field map, 
and the average score of all lidar points is the score 
of the pose: 
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where S(X) represents the score of the pose X, and 
M(p) represents the likelihood field score of the 
point p. 
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For the CSM method, the solution of (3) is 
relatively simple. Thus, we directly enumerate all 
poses and then select the best scoring pose among 
them, so that the covariance matrix can be directly 
obtained. The Gauss-Newton method requires a 
continuous likelihood field. The bi-linear 
interpolation is used to generate a continuous 
likelihood field and then is solved iteratively. The 
result of the scan-matching is shown in Fig. 4. The 
blue points represent the first keyframe, the red 
points represent the second keyframe using the 
wheel odometer pose, and the white points represent 
the second keyframe using the scan-matching pose. 
It can be seen that the accuracy of the wheel 
odometry pose is low, and the overlap of the two 
key-frames is not good; the scan matching pose 
accuracy is high, and the overlap of the two frames 
is good. 

For a normal environment, the scan-matching 
method can achieve good results. However, for 
degraded environments, for example, a long and 

straight corridor shown in Fig. 5, the scan-matching 
pose is not stable. 

 
Fig. 4 Scan-matching result. 

    
(a)                      (b) 

Fig. 5 Long and straight corridor: (a) snapshot of the corridor 
and (b) correspond lidar points. 

 
(a)                        (b) 

Fig. 6 Eigenvector of the covariance matrix. The red arrow 
and green arrow mean the eigenvector, and the length of the 
arrow is the correspond eigenvalue: (a) eigenvecotor of normal 
environment and (b) eigenvector of corridor environment. 

As shown in Fig. 5, the robot moves along the 
corridor, and the data observed by the lidar do not 
change, that is, the score does not change with the 
pose. Therefore, the pose is unconstrained along the 
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corridor, and one of the eigenvalues of the pose 
covariance matrix will be much larger than the other 
eigenvalues. However, the two eigenvalues are equal 
in a normal environment, as shown in Fig. 6. 

We use the ratio of the maximum eigenvalue and 

the minimum eigenvalue of the pose covariance 

matrix to evaluate the degradation degree of the 

solution. If it is greater than the threshold, the 

eigenvector corresponding to the large eigenvalue 

belong to the degradation direction, and the 

projection of the solution in this direction needs to 

be eliminated [20]; otherwise, the solution is 

accepted directly. Assuming that the dimension of 

the covariance matrix is n and the number of 

degenerate eigenvalues of the covariance matrix is m 

(0≤m≤n), three matrices are expressed as follows:  

 T

1,  ,  ,  0,  ,  0d mV v v           (4) 
T

1[0,  ,  0,  ,  ,  ]g m nV v v          (5) 
T

1 1[ ,  ,  ,  ,  ,  ]f m m nV v v v v         (6) 

where v means the covariance’s eigenvector. 
Assuming that Xo is the odometry pose, Xs is the 
scan-matching pose, and the final pose is shown in 
(7): 

1 1
f f d o f g s

  X V V X V V X .        (7) 

According to (7), the final pose in the degenerate 

direction comes from the odometry pose, and the 

value of the non-degenerate direction comes from 

the scan-matching pose. 

3.2 Line landmark tracking 

The above-mentioned scan-matching algorithm 

only constructs the spatial constraint between two 

consecutive keyframes, and it often happens that 

multiple keyframes observe the same landmark. 

Therefore, imposing spatial constraints on multiple 

keyframes through landmarks can greatly improve 

the accuracy of front-end matching. 

The most suitable landmark for the 2D laser 

SLAM is a 2D line landmark. The line extraction 

method [21] is first applied to each new key-frame, 

and a line set L is obtained. For each line l=(θl, d) in 

the set L, the key-frame pose is to project the line 

into the world coordinate system and represented as 

follows: 

l l                    (8) 

 T
cos sind d     t         (9) 

where l represents the direction vector of the line, d 

represents the distance from the line to the origin of 

the coordinate system, θ is the robot orientation, and 

t is the robot position. 

Then, its relationship with the existing straight 

line is analyzed. For two straight lines A and B, they 

are viewed as the same line when their parameter 

differences satisfy the following condition: 

,  .A B A Bd d d    ≤ ≤       (10) 

The two key-frames can be connected by the line. 

If the current line cannot be associated with any 

known line, it is viewed as a new one and saved to 

the currently known line set for data associated with 

subsequent key-frames. 

3.3 Key-frame selection 

Generally, when the robot moves over a certain 

distance or a certain angle, it needs to insert a 

key-frame. In addition to the movement distance, we 

performed an additional check step. We find all 

other key-frames near the current key-frame to form 

a key-frame set and use this set to generate a 

likelihood field sub-map and then obtained current 

key-frame’s in this sub-map. If the score is greater 

than the threshold, the current key-frame do not 

need to be inserted; if the score is less than the 

threshold, the current key-frame needs to be inserted 

into the pose-graph. 

The above check step avoids adding duplicate 

key-frames in the constructed area. The number of 

key-frames in the pose graph only relates to the map 

area, which is also demonstrated in Fig. 7. 

Comparing the result in Fig. 7(b) with that in    

Fig. 7(a), although the robot moves back and forth in 

the same environment, the number of key-frames is 

not increased after reaching a certain level, which 

reduces the computational complexity of SLAM and 

improves the real-time performance of SLAM. 



Shan HUANG et al.: A Robust 2D Lidar SLAM Method in Complex Environment 

 

Page 7 of 15

  
(a)                       (b) 

Fig. 7 Pose-graph. The red point is the robot pose and the 
blue line is the robot trajectory: (a) pose graph without check 
step and (b) pose graph with check stop. 

4. Loop closure detection module 
Although scan-matching and line landmark 

tracking can greatly improve the accuracy of 
front-end scan-matching, the cumulative error still 
cannot be eliminated. With the extension of the 
robot trajectory, the cumulative error will become 
larger and larger. Loop closure detection is a good 
way to eliminate accumulated errors. Loop closure 
detection detects that the robot returns to the 

previously visited area and can directly calculate the 
relative pose between the current key-frame and the 
past key-frame, and add the loop closure constraint 
to the pose graph to achieve the goal of eliminating 
accumulated errors. The disadvantage of the 2D 
lidar is that there is insufficient information, so it is 
easy to get the incorrect loop closures. And the 
incorrect loop closure has a huge impact on the 
mapping. To remove the incorrect loop closure, we 
use the maximum clique method and the odometry 
post-check to select the correct loop closures. 

4.1 Max clique 

An intuitive idea does not immediately decide 
when a loop closure is detected but stores the loop 
closure in the buffer and waits until enough loop 

closure is accumulated. After that, these loop 
closures are checked. Two loop closures form a 
quadrilateral on the pose graph. If both are correct, 

the pose integration along this quadrilateral results 
in an identity matrix, as shown in Fig. 8. 

 
kX1kX 

2 1 23 34 4 1

1
2 1 23 34 4 1

k k kk

k k kk

T T T T T

I T T T T T
 


 

   
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1X 2X 3X 4X 5X
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4 4k kT X X

1
34 3 4T X X1

23 2 3T X X

2 1kT 

1
1 1kk k kT X X
 

 
Fig. 8 Loop closure. The blue circles are the robot pose and arrows are the spatial constraint. 
 
If the two-loop closures are wrong and the 

magnitude of the error is the same, the pose integral 
of the quadrilateral formed along the two incorrect 
loop closures is also equal to the identity matrix. 
Therefore, when the pose integral of the 
quadrilateral formed by two loop closures is equal to 
the identity matrix, the two-loop closures may be 
right or wrong. But these two loop closures are 
either right or wrong at the same time, so we can 
consider the two-loop closures to be compatible. 
Due to the existence of noise, the pose integral of 
the compatible loop closures cannot be strictly equal 
to the identity matrix. The two-loop closures LPik 

and LPjl are considered compatible if they satisfy the 
constraint of (11). 

1( ) Δi i j l
ikjl k j l ke     

Σ
T T T T .      (11) 

where  is the predefine threshold value. 
That is, the Mahalanobis distance of the pose 

integral of the compatible loop closures is less than 
the threshold, and the two loops are considered to be 
compatible. 

If the two-loop closures are correct, the two-loop 
closures must be compatible. Next, we need to 
assume that all correct loop closures are compatible, 
and wrong loop closures may or may not be 
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compatible, but there is a high probability that they 
are incompatible. This assumption makes sense 
because there are many reasons for incorrect loop 
closure, which can be considered random, and the 
probability that the error amplitudes of two wrong 
loop closures are exactly equal is very small. Based 
on this assumption, we divide all loop closures into 
multiple sets, and loop closures in one set are all 
compatible. The number of elements in the incorrect 
loop closure set is relatively small. The number of 
elements in the correct loop closure set is relatively 
large, so it can be concluded that the largest 
compatible subset of all loop closures is the correct 
loop closure set. 

For each loop closure, LPi is in the loop set LP, 

and we use a binary variable si to indicate whether 

the loop closure is correct. “1” indicates correct, “0” 

indicates incorrect, and S indicates a vector 

composed of all binary variables. Then, the correct 

loop closure set selection can be expressed as the 

constraint optimization problem described in (12): 

*
, 0

{0, 1}

arg max ,  s.t. Δ.
n

u v u v
S

e s s


S S ≤     (12) 

The constrained optimization problem described 

in (12) is converted into a graph theory problem and 

then is solved by the graph theory. We regard a loop 

closure as a vertex. If two loop closures are 

compatible, an edge between them is connected. As 

a result, all vertices and edges form a graph G, as 

shown in Fig. 9. 

 

5 

2 

1 3 4 

6 

7 8

 

Fig. 9 Max clique. The nodes are loop-closure and 
dark-areas are the max-clique. 

Then, obtaining the correct loop closure set is 

equivalent to solving the largest complete subgraph 

of the graph G and the dark area in Fig. 9 is the 

largest complete sub-graph. Because the correct loop 

closures must be compatible, they will form a 

complete sub-graph. According to the above 

assumption, the correct loop closure set must be the 

largest compatible subset, so it is equivalent to the 

largest complete sub-graph. Therefore, solving (12) 

is transformed into finding the largest complete 

sub-graph of the graph G. In the graph theory, the 

search for the largest complete sub-graph is called 

the max clique problem. The max clique problem is 

a non-deterministic polynomial hard problem. 

Although it is not guaranteed to find the optimal 

solution, it can give an excellent sub-optimal 

solution. This paper uses the method proposed by 

Pattabiraman et al. [22]. 

4.2 Odometry check 

Although the loop closures obtained with the 

maximum clique algorithm are likely to be correct, 

we add an odometry verification step based on the 

maximum clique selection to further improve the 

robustness of loop closure detection. The wheel 

odometry is highly accurate in the short term. 

Therefore, the spatial constraint accuracy between 

adjacent nodes in the pose graph is very high. When 

a loop closure is obtained, the loop closure is 

temporarily added to the pose graph, and then the 

global optimization is performed. After optimization, 

the relative pose between adjacent nodes is 

compared with the relative pose before optimization. 

If the difference is less than the threshold, the loop 

closure is correct and the loop closure can be 

accepted directly; otherwise, the loop closure is 

wrong and is rejected, and the state before the 

optimization is restored. 

5. Factor-graph optimization  

We need to fuse the information of multiple 

constraints to obtain a high-precision robot 

trajectory when obtaining a correct loop closure. We 

use factor-graph to model graph optimization 

problems. The factor graph is shown in Fig. 10. 
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There are five factors in the factor graph: prior factor, 

wheel odometry and IMU factor, lidar odometry 

factor, loop closure factor, and line landmark factor.  

(1) The prior factor is used to fix the first node 

of the pose graph. We regard the first node of the 

pose graph as the origin of the world coordinate 

system, so it needs to be fixed by a priori factor. 

(2) Wheel odometer and IMU factor are obtained 

from the wheel odometer and IMU. The relative 

pose between two key-frames can be calculated 

through integration, and the relative pose can 

provide spatial constraints between the two 

key-frames. 

(3) The lidar odometry factor comes from the 

front-end scan-matching module. The front-end 

scan-matching module calculates the relative pose 

between the two key-frames through the CSM and 

Gauss-Newton method. 

(4) The loop closure factor comes from the loop 

closure detection module, and the loop closure 

constraint that passes the verification will be added 

to the factor graph. 

(5) The line landmark factor comes from the line 

landmark tracking in the front-end scan-matching 

module, and multiple key-frames are connected 

through the line landmark factor. 

 

Prior factor 

1X 2X 3X 4X 5X 6X

Wheel odometry and IMU factor 

Line landmark factor

Loop closure factor 

Line landmark Robot pose 

Lidar odometry factor 

l1 l2 

 

Fig. 10 Factor-graph. 

 

The factor graph can be expressed as a nonlinear 

least-squares problem: 

 wo lo lc lp prior

, 

2 22 2 2

wo lo lc lp prior

,  arg min

i



   

* *

X l

Σ Σ Σ Σ Σ

X l

r r r r r

(13)
  

where rwo represents the error function 

corresponding to the wheel odometry factor; rlo 

represents the error function corresponding to the 

laser odometry; rlc represents the error function 

corresponding to the loop closure constraint factor; 

rlp represents the error function corresponding to the 

line landmark factor; rprior represents the error 

function corresponding to the prior factor; Σ 

represents the covariance matrix corresponding to 

the error function. 

For the nonlinear least-squares system described 

in (13), we use the Levenberg-Marquardt method to 

solve it. 

The error function of the wheel odometry factor 

is defined as follows: 

1 1
wo , 2 ( ),i j i jT V i k k     r O X X    (14) 

where Oi, j represents the inter-frame constraint 

measured by the wheel odometry, and the wheel 

odometry constraint only exists between adjacent 

keyframes. T2V() represents the function that 

extract the robot pose from the transformation 

matrix and is expressed as follow: 
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The error function of the lidar odometry factor is 

defined as follows: 
1 1

lo ,  2 ( ), 1i j i jT V j i     r LO X X    (16) 

where LOi, j represents the inter-frame constraint 

obtained by the front-end scan-matching module, 
and the laser odometry constraint also only exists 
between adjacent key-frames. 

The error function of the loop closure constraint 
factor is defined as follows: 

1 1
lc , 2 ( ),i j i jT V i k k     r T X X     (17) 

where Ti, j represents the relative pose between the 

key-frame i and key-frame j. Unlike the odometry 
factor, the loop closure constraint only exists on two 
key-frames with a certain difference in time, and the 

subscript difference of the two key-frames must be 
greater than k. 

The error function corresponding to the line 

landmark factor is as follows: 

lp ( ,  ) ,w wf  r X l l l l         (18) 

where lw represents the line in the world coordinate 

system, l represents the line observed by the 

key-frame i, which is the same line as lw, and f(X, l) 

represents the projection of the line l through the 

pose X. For details, please refer to (8) and (9). 

Therefore, all the key-frames that see the line lw can 

be correlated with each other. 

The prior factor is used to fix the coordinate 

system of the map, we choose to fix the pose of the 

first key-frame: 

prior 12 ( )T Vr X           (19) 

The error function described in (19) is equivalent 

to setting the pose of the first key-frame to (0, 0, 0). 

6. Experiments 

To verify the effectiveness of the proposed 

method, we conducted some experiments to 

compare them with state-of-the-art 2D lidar SLAM 

algorithm-cartographer. Although cartographer’s 

original paper was published in 2016, its 

open-source code has been updated until now, and it 

is still the state-of-the-art 2D SLAM algorithms. For 

comparison, we modified the visualization part of 

the cartographer and produced the same 

visualization effect as the proposed method. The 

experimental platform is shown in Fig. 11. The 

experimental platform was a differentially driven 

wheeled robot equipped with various sensors, such 

as a wheeled odometer, IMU, and 2D lidar. Its 

processor was a Pentium quad-core processor with   

8 GB of memory. 

 
Fig. 11 Test platform. The test platform is equipped with 

three types of sensors: 2D lidar, wheel odometry, and IMU. 

To verify the effectiveness of the proposed 

method, we conducted sufficient experiments on the 

front end of the SLAM method, the loop detection 

method, and the construction of large-scale maps. 

We recorded the original sensor data-set through the 

experimental platform. Then, the two algorithms 

were running based on the data-set. Finally, we 

compared the results of the two algorithms.  

6.1 Front-end experiments 

To test the front-end’s performance. We 

conducted a mapping test in an environment that did 
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not require a loop closure. In this environment, the 

maps obtained by the cartographer algorithm and the 

proposed method are shown in Figs. 12(a) and 12(b), 

respectively. 

The map as shown in Fig. 12 is generated after 
the robot walks from left to right. Since the map 
does not have a loop structure, the quality of the 

map is completely determined by the performance of 
the front-end matching algorithm. It can be seen 
from Fig. 12 that the map constructed by the 

proposed method can maintain the shape of a 
straight line, while cartographer’s map becomes an 
arc. We used the degree of deviation of the straight 

line as the accuracy evaluation index of the 
algorithm. The deviation was defined as the 
maximum distance that the built map deviated from 
the reference line. The deviation of the proposed 

method was 0.07 m and the deviation of the 
cartographer was 1.82 m, so the deviation of the 
proposed method was only 3.8% of the deviation of 

the cartographer. The reason was that the line 
landmark track module could build constraints over 
multiple frames and improve state estimation 

accuracy. The experimental results showed that the 
line landmark track module could significantly 
improve the accuracy of the front-end module. 

0.07 m

 
(a) 

 

1.82 m

 
(b) 

Fig. 12 Front-end map: (a) map built by cartographer and (b) map built by proposed method. 
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Fig. 13 Pose-graph nodes. The relationship between the 

number of nodes in the pose graph and the running distance. 

To verify the effectiveness of the keyframe 

selection strategy, we also counted the number of 
nodes in the pose-graph during the running of the 
two algorithms. The number of nodes in the pose 

graph is shown in Fig. 13. It can be seen from Fig. 13 

that the number of nodes in the cartographer method 
increases with the length of the robot trajectory. The 

number of nodes in the proposed method will 
stabilize after the robot trajectory reaches a certain 
distance and will not increase. Although the robot 

continues to move on the map, no more nodes will 
be added to the pose graph. This means that with an 
increase in the robot’s moving distance, the memory 

consumption of the cartographer will increase until 
all memory is consumed, and the memory 
consumption of the proposed method will be 

stabilized. The experimental results showed that the 
proposed keyframe selection strategy can 
significantly reduce the memory consumption of the 

algorithm. 
To test the robustness of the proposed method in 

an ambiguous environment, we conducted a 
mapping test in an ambiguous environment. The 
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maps built by the cartographer algorithm and the 
proposed algorithm in the ambiguous environment 
are shown in Figs. 14(a) and 14(b), respectively.   
It can be seen from Fig. 14 that there is degradation 
in the environment, the cartographer has  
ambiguities in the front-end matching, and      
the map appears inconsistent in the        
corridor shown in the red box. The proposed method 

introduced degradation analysis to deal with     
the degradation situation, even in an     
ambiguous environment, and a globally   
consistent map could be constructed. The 
experimental results showed that the degradation 
analysis module could greatly improve the 
algorithm’s robustness to run stably in an ambiguous 
environment. 

    
(a)                                                 (b) 

Fig. 14 Map of degraded map: (a) map built by cartographer and (b) map built by the proposed method. 

 

6.2 Loop closure experiments 

To test the robustness of the proposed loop 

closure detection method, a mapping test was 

finished in an ambiguous environment. The correct 

map of the environment is shown in Fig. 15. 

The map constructed by the cartographer 

algorithm and the proposed algorithm in the 

ambiguous environment is shown in Figs. 16(a) and 

16(b), respectively. It can be seen from Fig. 16 that 

the map constructed by the proposed method is clear 

and consistent. The map constructed by the 

cartographer has inconsistency in the part shown in 

the red circles. The reason is that the test 

environment has ambiguities in the place, and loop 

closure detection is prone to errors. Therefore, the 

cartographer method was accepted an incorrect loop 

closure and then resulted in an inconsistent map. 

The proposed method successfully removed the 

incorrect loop closure and obtained a consistent map 

in the ambiguous environment. The experimental 

results showed that the proposed max-clique loop 

closure selection method could select correct loop 

closure from the set containing many incorrect loop 

closures, which significantly improved the 

algorithm’s stability. 

 
Fig. 15 Correct map. 

6.3 Large-scale mapping experiment 

To verify the mapping ability of the proposed 

method in a large-scale environment, a mapping test 

was conducted in a low-level parking lot with an 

area of more than 250 000 square meters, and the 

constructed map is shown in Fig. 17. It can be seen 
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that despite the large area of the parking lot, the 

proposed method still successfully constructed the 

map of the parking lot, and the constructed map was 

clear and consistent. The experimental results 

demonstrated that the proposed method could 

accurately build maps in a large-scale environment. 

In the process of building the map, due to excessive 

memory consumption, the cartographer suffered a 

program crash and its map is not shown here. The 

reason is that the proposed method consumes much 

less memory than the cartographer. Therefore, the 

proposed method can build a map of the large-scale 

environment, and the cartographer will crash due to 

excessive memory consumption. 

 
(a) 

 
(b) 

Fig. 16 Loop closure test: (a) the map constructed by cartographer and (b) the map constructed by proposed method. 

 

Fig. 17 Parking lot map constructed by proposed method. 
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7. Conclusions 

This paper proposes a robust 2D lidar SLAM 

method for complex environments. The constructed 

multi-sensor tightly-coupled 2D lidar SLAM 

framework is suitable for multi-sensor and 

multi-feature fusion. First, we introduce line 

landmark tracking and degradation analysis and 

improve the matching accuracy of the front-end and 

the stability in the complex environment. Then, we 

introduce the maximum clique method and 

odometry check and achieve the correct loop closure 

selection in the presence of lots of outliers. The 

experiments validate our approach on real-world 

datasets. A detailed evaluation and comparison with 

existing methods are conducted to demonstrate the 

effectiveness of the proposed method. Our future 

work is to introduce semantic features to make the 

mapping process reliable, more accurate and 

human-friendly. 
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