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Abstract: Gafchromic external beam therapy 3 (EBT3) film has widely been used in medical field 
applications. Principally, the EBT3 film’s color gradually changes from light green to darker color 
under incremental exposures by ionizing or even non-ionizing ultraviolet (UV) radiation. Peak 
absorbance of the EBT3 film can be used to predict absorbed doses by the film. However, until today, 
related researches still rely on spectrometers for color analysis of EBT3 films. Hence, this paper 
presents a comparative analysis between results produced by the spectrometer and a much simpler 
light-emitting diode-photodiode based system in profiling the color changes of EBT3 films after 
exposure by solar UV radiation. This work has been conducted on a set of 50 EBT3 samples with 
incremental solar UV exposure (doses). The wavelength in the red region has the best sensitivity in 
profiling the color changes of EBT3 films for low solar UV exposure measurement. This study 
foresees the ability of blue wavelength to profile films with a large range of solar UV exposure. The 
LED (light emitting diode)-based optical system has produced comparable measurement accuracies 
to the spectrometer and thus, with a potential for replacing the need for a multipurpose spectroscopy 
system for simple measurement of light attenuation. 
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1. Introduction 

The radiochromic film is an important tool in the 

medical field application, which is commonly used to 

verify dose distributions in highly conformal 

radiation therapy such as intensity-modulated 

radiation therapy (IMRT), volumetric modulated arc 

therapy (VMAT), and X-ray [1–3]. Since the last 

decade, more researches have been conducted on the 

applicability of various types of radiochromic films 

in measuring ultraviolet (UV) exposure [4–6]. One of 

them is the gafchromic external beam therapy      

3 (EBT3) film. The blue colored polymer is formed 

when the active component in the film is exposed to 

radiation [7]. The color changes of EBT3 films have 

been proven to be highly correlated with the absorbed 

UV exposure by the films [8–17]. For the color 

analysis of the film through the visible absorbance 

spectroscopy technique, researchers found that the 

wavelength in the red region of the spectrum has the 

highest absorption [17–19]. The absorption spectrum 

for the EBT3 film has two distinctive peaks, at   

633 nm and 582 nm. However, the absorption peak at 

633 nm provides a higher sensitivity than the peak at 
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582 nm [17]. Choosing a light source with a 

wavelength at the maximum absorption will provide 

the highest sensitivity for the EBT3 film 

measurement [20]. In ionizing radiation application, 

the wavelength at 635 nm has been employed to 

accurately measure the absorption of the film for 

doses level less than 10 Gy. However, for doses level 

larger than 10 Gy, the absorption saturates due to a 

small amount of light transmitting through the film 

and limits the sensitivity of the spectrometer [21]. For 

the same reason, UV exposure measurement using 

the EBT3 film can be made up to 30000 mJ/cm2 [9]. 

Besides spectroscopy based color measurement, the 

flatbed scanner is another important optical tool 

commonly used to profile the color changes of the 

EBT3 film. The red channel produces the highest 

sensitivity in transmission and reflection modes of 

the scanner while the blue channel shows the lowest 

sensitivity and cannot be used because of the effect of 

yellow dye [19]. In an experiment, the optical  

density (OD) of the EBT3 film was measured by two 

scanners, and the larger values for the red channel 

was gained which showsed more sensitivity, hence, 

better dose measurement results were compared with 

that in the RGB spectrum analysis [18]. The 

UV-visible absorption spectrum, however, has been 

identified to be more sensitive to changes in dose (i.e., 

in relation to a polymer content of the EBT3 film) 

compared with the flatbed scanning method [21]. 

The application of the scanner is time consuming 

due to the required orientation and post-exposure 

analysis of the film. For example, the transmission 

mode scanning requires continuous scanning 

orientation and less exposure to room light to reduce 

uncertainty in measured dose. Meanwhile, the 

reflection scanning mode shows a good stability to 

room light, but film orientation has a large 

uncertainty in measured dose [22]. Additionally, 

reflective scanning analysis is an economic method 

for the EBT3 film compared with the transmission 

method. In the reflection scanning mode, there is no 

difference between the landscape and portrait 

orientation. Likewise, the single scan approach is 

recommended, although single and multiple scans do 

not show any significant difference as long as the size 

and number of samples still fit in the scanning area 

[18]. In contrast, the result differs for peeled-off 

EBT3 film (i.e., one polyester cover above the active 

layer is removed). The responses are different for 

different scanning directions (i.e., landscape and 

portrait scan) [2]. Furthermore, the orientation 

dependence with respect to the front and back sides 

of the film is completely eliminated in the EBT3 film 

due to the symmetrical layer of the film [1]. 

Until today, the flatbed scanner [9, 10, 18, 23–25] 

and visible spectroscopy [7, 8, 17, 21] are considered 

to be the most acceptable optical tools in analyzing 

the color changes of the radiochromic film and red 

channel/wavelength to be the most sensitive in the 

application. Hence, to utilize only a single red 

wavelength from a spectrometer or a single red 

channel from a scanner is not a cost-effective 

measure. Furthermore, this instrumentation requires 

post-processing in the film analysis. Therefore, this 

paper presents an innovative application of several 

colored light emitting diodes (LEDs) as an 

illumination light source with a single photodiode as 

the detector. The single-colored LED as a light 

source can replace the tungsten halogen lamp, which 

is commonly used in the broad spectral spectroscopy 

analysis. In addition, the LED emits a narrow 

spectrum of light and can operate at the low 

temperature and voltage. The purpose of this study is 

to offer comparative analysis between the visible 

absorbance spectroscopy and LED-based optical 

system in profiling the color changes of EBT3 films 

in the measurement of natural solar UV exposure. 

The result of this research may assist in the 

development of the miniaturizing and portable 

personal UV dosimeter, partly, as a promising tool to 

monitor the possible harmful solar UV overexposure 

on humans. The LED-photodiode system offers a 

low-cost and rapid alternative in the characterization 
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and the measurement of EBT3 films’ colors in 

relation to the solar UV exposure. 

2. Materials and methods 

A piece of EBT3 film (20.32 cm × 25.4 cm 

dimension) was cut into 50 small pieces with a     

1 cm × 2 cm dimension. All the films were placed 

simultaneously on a white mahjong paper to ensure 

uniformity in the potential back reflected light [26]. 

The experiment was conducted during a clear sky 

between 12:30 pm and 1:45 pm (1 hour and       

15 minutes) at the rooftop of School of Physics, 

Universiti Sains Malaysia. The selected time, 

duration of experiment, and location were based on 

the intention to obtain the maximum UV exposure 

towards the surface of the films. The weather was hot 

with temperature of 30 ℃  – 32 ℃  during the 

experiment with the irregular and brief appearance of 

clouds. Solarmeters (models 4.0 UVA and 6.0 UVB) 

were used in the experiment to record the total UV 

irradiance (UVA + UVB). UVA meter had an 

irradiance measurement range between 0 and   

199.9 mW/cm² with a resolution of 0.1 mW/cm² 

while the UVB meter irradiance range was between 0 

and 19.99 mW/cm² with a resolution of 0.01 mW/cm². 

The UV meters were placed close to EBT3 films 

during exposure. During the solar UV measurement, 

the irradiance was measured every 30 seconds until 

the 90th second and averaged. For each 90 seconds, a 

film was collected from the mahjong paper and 

placed in a black envelop to keep the film away from 

the further exposure by UV irradiance. This step was 

repeated for the next film until all 50 films were 

completed. The total exposure on each film was 

based on the accumulation of averaged UV irradiance 

over a period of 90 seconds. Each film represented an 

incremental value of UV exposure with the 

maximum recorded value of 32801.7 mJ/cm2. 

However, since the UV measurement was made only 

in the interval of 30 seconds, any drastic changes in 

irradiance might not be captured. Hence, it was 

important to take note of the sky condition and the 

irradiance gradient throughout the experiment to 

avoid any discrepancies in total UV exposure in 

relation to the EBT3 color. 

The color of the films was measured by using two 

optical systems. The first was through the visible 

absorbance spectrometer and the second was through 

a simplified system with a LED as a light source and 

a photodiode as the detector. Visible absorbance 

spectra of the films were measured by using Ocean 

Optics QE65000 spectrometer and tungsten halogen 

lamp (HL-2000) as the illumination light source. In 

spectroscopy measurement, darker films, due to the 

higher UV exposure, result in the higher absorbance. 

For the LED-based system, seven low power 5 mm 

LEDs with different emission colors were used as the 

light sources. The LEDs were red 

(HLMP-EG08-WZ000) with a peak emission (λpeak) 

at 635 nm, red-orange (HLMP-EH15-TW000) with 

λpeak at 616 nm, orange (HLMP-EL15-SV000) with 

λpeak at 596 nm, yellow (HLMP-C515) with λpeak at 

563 nm, green (LC503FPG1-15Q-A3-00011) with 

λpeak at 519 nm, cyan (HLMP-CE16-WZQDD) with 

λpeak at 501 nm and blue (HLMP-CB2B-VW0DD) 

with λpeak at 462 nm as presented in Table 1. 

Table 1 Properties of red, green, blue, orange, red orange, 
cyan, and yellow LEDs used in this experiment. 

Model Wavelength (nm)
Maximum 

intensity (mcd) 
Maximum 

current (mA)
Typical 

voltage (V)

Red 635 16000 50 1.9 

Green 535 34000 25 3.2 

Blue 464 7200 30 3.2 

Orange 592 6300 50 2.02 

Red orange 621 7200 50 1.94 

Cyan 502 16000 30 3.2 

Yellow 568 490 30 2.2 

 

The attenuation of LED emission through the 

film was measured by using TSL257 (TAOS Inc.) 

which was a light to the voltage optical converter that 

combined a photodiode and a transimpedance 

amplifier. TSL257 had a broad spectral sensitivity 

across and beyond the visible region (i.e., between 
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300 nm and 1100 nm) as shown in Fig. 1. For this 

experiment, darker films resulted in higher light 

attenuation through the film which subsequently led 

to the lower output voltage from the photodiode. 

Peak sensitivity of an optical system is defined based 

on the peak emission wavelength of the LED, which 

is strongly related to the peak responsivity of the 

detector. The optical measurement achieves the 

maximum efficiency by matching the detector 

response to the emission spectra of the light source. 

Hence, it is important to select the light source and 

optical sensor (detector) that have similar optical 

characteristics [27]. Each LED selected for this 

experiment had a peak emission wavelength that fell 

within the spectral sensitivity of the detector. Table 2 

lists the electrical characteristics of TSL257. From 

the table, among the tested emission wavelengths, 

645 nm produced a higher sensitivity compared with 

other wavelengths (i.e., 428 nm, 470 nm, and 656 nm). 

Hence, it is important to set the output voltage of the 

detector to a standard initial voltage prior to the 

experiment, so that the attenuation degree for all 

LEDs illumination through the film can be 

impartially compared. 
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Fig. 1 TSL257 photodiode spectral responsivity [28]. 

The experimental setup based on the 

LED-photodiode system is illustrated in Fig. 2 while 

the schematic diagram of the entire system is shown 

in Fig. 3. Prior to the experiment, the unexposed 

EBT3 film was used as a reference sample to 

calibrate the system by adjusting the intensity of the 

LED through the film until the output voltage of the 

detector was set to 4.5 V. This was to ensure that the 

maximum possible intensity through the film was 

lower than the detector saturation level (i.e., 5 V). 

After the calibration, each exposed EBT3 film was 

placed in a film’s holder, and the measurement was 

recorded by using a multimeter in the unit of  

voltage (V). A similar method was employed on all 

seven LEDs. In this experiment, a portion of the 

illuminated light from the LED was absorbed by the 

film while the rest transmitted through the film. A 

portion of the transmitted light was directed to the 

detector through the collimator. Darker films 

absorbed more light and subsequently attenuated the 

intensity of the light to the detector. 
Table 2 Specifications of TSL257 [28]. 

Parameters Value 

Wavelength 300 nm to 1100 nm 

Operating temperature 0 to 70 ℃ 

Voltage supply, VDD 2.7 V to 5.5 V 

Dark voltage, VD 15 mV 

Irradiance responsivity 
λρ = 428 nm 
λρ = 470 nm 
λρ = 565 nm 
λρ = 645 nm 

 
1.18 V/(µW/cm²) 
1.30 V/(µW/cm²) 
1.58 V/(µW/cm²) 
1.68 V/(µW/cm²) 

LEDFilm’s holder 

LED 
Facing 

Photodiode TSL257 (side view) 

Multimeter

VDD
OUT

GND

Collimator 

EBT 3 film Cover 

Collimator

 
Fig. 2 Side views of LED and TSL257 photodiode which 

were attached to the collimators. 
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process, it can be expressed as 

Blue = Blue filter = White – (Red + Green)  (1) 

The EBT3 film is dominated by the optical 

properties of the blue phase polymer. By applying the 

concept of the filter and color subtraction process, a 

large portion of blue light can transmit through the 

blue colored polymer dye in the EBT3 film while the 

rest of the wavelength will be absorbed. Therefore, 

the blue light has the lowest sensitivity or response to 

the EBT3 film due to the lowest absorption. This 

explains the lowest absorbance (0 to 0.6 OD) for 

wavelengths lower than 490 nm [Fig. 4(a)]. 

Meanwhile, the red region of the visible spectra 

carries the highest responsivity with the maximum 

absorbance reaching to 2 OD, while the green region 

has the maximum absorbance slightly above 1.8 OD. 

The red light has the highest reaction towards the 

blue-colored polymer dye EBT3 film compared with 

green light. This clarifies that the exposure-response 

curve for the EBT3 film for the absorption peak at 

630 nm (red light) offers a higher sensitivity than the 

peak at 580 nm (green light). This can be further 

observed in Figs. 4(b) and 4(c) which show the 

relationship between the absorbance and UV 

exposure for two peak absorbances i.e., 580 nm and 

630 nm, respectively. The findings also show that the 

absorbance measurement can be made regardless of 

the film’s orientation (i.e., either from the front or 

from back side). 

The relationship between the absorbance and UV 

exposure can be represented by using a different 

function in order to obtain the best regression fit 

along with the data with a coefficient of 

determination, R2, preferably above 0.98. Since the 

wavelength within the red region is highly sensitive 

to EBT3 colors, by obeying Beer-Lambert law of 

absorption, its responses curve will have an earlier 

inclination towards an asymptote. Unlike 

wavelengths within less sensitive regions such as far 

red and blue, the response to films with high UV 

exposure is much lower and can even be profiled by 

using a simple linear function. 

 

A
bs

or
ba

nc
e@

58
0.

62
 n

m
 

400 450 500 550 600 650 700 750

0

0.5

1

1.5

2

2.5

A
bs

or
ba

nc
e 

(o
pt

ic
al

 d
en

si
ty

) 

Increasing film 
darkness 

580 nm 630 nm

Wavelength (nm) 

1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0
0 7000 14000 21000 28000 35000

Solar UV exposure (mJ/cm2)

Back side Front side

(b) (c)

(a) 

Solar UV exposure (mJ/cm2) 

0 7000 14000 21000 28000 35000 

Back side Front side 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

A
bs

or
ba

nc
e@

63
0.

62
 n

m
 

 
Fig. 4 Spectral response of EBT3 film: (a) visible absorption spectrum of gafchromic EBT3 films irradiated under incremental solar 

ultraviolet exposure between 584 mJ/cm2 and 32801.7 mJ/cm2. The relationship between the solar ultraviolet exposures (in mJ/cm2) 
and films’ absorbances measured from both sides of the films at two peak absorbance wavelengths: (b) 580 nm and (c) 630 nm. 

Figure 5 shows the graphical representation of 

absorbance against solar UV exposure for the 

selected wavelengths. It can be observed that the best 

response for lower UV exposure (i.e., less than  
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10000 mJ/cm2) is produced by using films’ 

absorbances at 620 nm and 630 nm. But the 

sensitivity of these wavelengths starts to decline at a 

higher UV exposure since the curve starts to move 

gradually closer towards asymptote. The sensitivity 

curve of the nonlinear function starts to decline for 

wavelengths lower than 620 nm and higher than   

630 nm, until a point where the response starts to 

linearise. The wavelength 650 nm displays the best 

linear response with the high responsivity compared 

with the wavelength at the farther red region (i.e., 

670 nm and 690 nm) and blue region (i.e., 450 nm, 

460 nm, and 490 nm) with lower regression fit with R2 

approximately 0.96. 

Table 3 lists all the functions and coefficients of 

determination, where R2 is for the response curve by 
 

each wavelength. The function is selected based on 

its ability to generate good regression with a 

coefficient of determination preferably above 0.98. 
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Fig. 5 Response curve obtained from the relationship 

between the solar ultraviolet exposures (in mJ/cm2) and 
absorbances of the films developed by using selected 
wavelengths within visible spectra. 

Table 3 Summary of functions and coefficients of determination obtained from the relationship between the solar ultraviolet 
exposures (mJ/cm2) and absorbances of the films developed by using selected wavelengths within visible spectra. 

Functions Wavelength (nm) Relationship Coefficients R² 

 450 Linear 51 10m −= × , 0.0568c = −  0.965 

y mx c= +  460 Linear 51 10m −= × , 0.0522c = −  0.965 

 490 Linear 5 2 10m −×= , 0.0105c = −  0.961 

 510 Non-linear 3.63a − , 501.2141b = , 0.4365c =  0.990 

 530 Non-linear 4.2381a = − , 555.8915b = , 0.5197c =  0.994 

 550 Non-linear 4.7107a = − , 562.4108b = , 0.5934c =  0.996 

 560 Non-linear 4.9821a = − , 571.2694b = , 0.6344c =  0.997 

ln
b

y a c x
x

= + +  570 Non-linear 4.9614a = − , 522.4779b = , 0.6441c =  0.996 

 580 Non-linear 4.9726a = − , 468.5155b = , 0.6593c =  0.994 

 590 Non-linear 5.483a = − , 664.1099b = , 0.692c =  0.997 

 600 Non-linear 5.1912a = − , 644.2356b = , 0.6519c =  0.996 

 610 Non-linear 5.4731a = − , 611.8412b = , 0.706c =  0.997 

 cxy a be= +  620 Non-linear 2.01482a = ,  2.0737b = − , 0.000139611c = −  0.999 

 630 Non-linear 1.90941a = , 1.91843b = , 0.000187755c = −  0.996 

ln
b

y a c x
x

= + +  640 Non-linear 5.9382a = − , 607.6033b = , 0.7758c =  0.993 

y mx c= +  650 Linear 55 10m −= × , 0.0049c =  0.983 

y mx c= +  670 Linear 52 10m −= × , 0.0948c = −  0.993 

 690 Linear 51 10m −= × , 0.0828c = −  0.985 
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Regression fit generated by using absorbance 

with the peak emission wavelength at 450 nm,    

460 nm, and 490 nm however was best recorded by 

using a linear function with a slightly lower 

coefficient of determination around 0.96. This may 

be caused by the lower sensitivity of the range of 

wavelengths in profiling the color changes of 

external beam therapy 3 films. The logarithmic 

function was used to generate regression fit for the 

wavelengths between 510 nm and 610 nm; and 

wavelength at 640 nm. An exponential function was 

used for wavelengths of 620 nm and 630 nm.  

Among all the linear functions, the wavelength of 

650 nm was able to generate the best responsivity 

based on its steeper slope (m). The purpose of 

presenting these functions in relation to solar UV 

exposure and absorbance is to identify the 

performance and accuracy of wavelength for the 

measurement of solar UV exposure. 

The films color measurement by using a visible 

absorbance spectroscopy technique was repeated by 

using the LEDs-photodiode based system. The 

purpose of this experiment was to introduce a more 

cost-effective technique for simple optical 

transmittance/absorbance measurement that was 

capable of producing comparable results to a much 

complex spectroscopy system. Hence, instead of 

using a broad-spectrum tungsten halogen lamp, this 

section introduces the application of single colored 

LEDs. A single photodiode (detector) was used as a 

replacement of the spectrometer in detecting the 

transmitted LED light through the EBT3 film.  

Figure 6 shows the spectra of seven visible LEDs 

used in this experiment. These are the typical peak 

emission wavelengths of visible LEDs that are 

available in the market. The spectra were measured 

by using QE65000 spectrometer through direct 

emission. The intensity of the LEDs was adjusted 

until the intensity displayed by the spectroscopy 

system was standardized to approximately     

40000 a.u. 
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Fig. 6 Visible spectra of seven light emitting diodes with the 

peak emission wavelengths at 462 nm, 501 nm, 519 nm, 563 nm, 
596 nm, 616 nm, and 635 nm. 

Figure 7 shows the graphical representation of the 

results obtained from all seven LEDs. Unlike the 

absorbance spectroscopy technique where the 

instrument was first calibrated to produce absorbance 

representation of the films’ colors, the results 

produced through LEDs based system were in raw 

voltage produced by the detector. The system 

basically was set up to measure the light transmitting 

through the film. Films with a darker color would 

have less light transmitting through them, and 

subsequently lower output voltage would be 

produced by the detector. The magnitude of light 

attenuation was depending on the wavelength of the 

LED. Similar to spectroscopy results, illumination 

light with a peak wavelength at 635 nm showed the 

best sensitivity in profiling the color changes of 

EBT3 films and subsequently the solar UV exposure 

on the films. By comparable observation of the 

spectroscopy technique, the highest sensitivity of the 

wavelength could be seen only for UV exposure 

lower than 10000 mJ/cm2. Much lower responsivity, 

however, was recorded especially for exposure 

measurement above 15000 mJ/cm2. Wavelengths of 

616 nm and 596 nm exhibited a similar response to 

each other while wavelengths of 501 nm and 462 nm 

began to display higher linearity. 

In this experiment, blue illumination light with a 

peak wavelength at 462 nm retained its relatively 

lower sensitivity among all other wavelengths for 

low UV exposure measurement. Regardless of that, 
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for the entire measurement of solar UV exposure, the 

spectroscopy and LED-based system showed the 

ability of wavelength within the blue region in 

maintaining its sensitivity throughout the 

measurement. This can be observed through the 

linear relationship of the response that can be 

represented by a single responsivity (i.e., slope of the 

linear graph). While many previous studies that 

utilized red light in film analysis showed an early 

decline in sensitivity when measuring large UV 

exposure, in this experiment, the application of blue 

LED, on the other hand, may increase the ability of 

the optical system to profile films with much higher 

exposure. Other than blue light, based on the result in 

Fig. 5, red light with 650 nm wavelength could also be 

considered for high dose measurement as this 

wavelength did not show saturation (i.e., near 

optimum light absorption by the film) at a higher 

dose (above 10000 mJ/cm²), where the linear 

response and sensitivity were in fact much higher 

than blue wavelength. 
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Fig. 7 Response curve obtained from the relationship between 

the solar ultraviolet exposures (in mJ/cm2) and output voltage of 
photodiode through the individual illumination by seven light 
emitting diodes with distinctive peak emission wavelengths 
between 462 nm and 635 nm. 

Table 4 lists the functions used in generating 

regression fit across data and their respective R2. For 

this experiment, only the reciprocal function was 

used to profile results generated by using all LEDs. 

The high accuracy of fitting was produced with R2 

above 0.99, indicating the suitability and high 

accuracy of the functions used in representing the 

response curve. 

Table 4 Summary of functions and coefficients of 
determination obtained from the relationship between the solar 
ultraviolet exposures (in mJ/cm2) and output voltage of 
photodiode through individual illumination by seven light 
emitting diodes with distinctive peak emission wavelengths 
between 616 nm and 635 nm. 

Function Wavelength (nm) Coefficients R² 

 
462 

(Blue LED) 

58503.604a =  

11373.696h = −
0.397k = −  

0.996 

Reciprocal 
501 

(Cyan LED) 

37768.399a =  

6982.772h = −  

0.454k = −  

 
0.996 

a
y k

x h
= +

−
519 

(Green LED) 

16970.792a =  

3098.769h = −  

0.372k = −  

 
0.995 

 
563 

(Yellow LED) 

5005.791a =  

2050.865h = −  

0.063k = +  

 
0.998 

 
596 

(Orange LED) 

10971.238a = , 

1889.459h = −  

0.267k = −  

 
0.991 

 
616 

(Red - Orange 
LED) 

10844.246a = , 

1953.438h = −  

0.288k = −  

 
0.991 

 
635 

(Red LED) 

2886.578a = , 

315.083h = −  

0.058k = −  

 
0.996 

4. Conclusions 

This research has shown that an LED-based 

optical system can be used to profile the color 

changes of EBT3 films. The results obtained are 

comparable to those from the visible spectrometer. 

Red wavelength, especially around 635 nm, is 

commonly considered the most sensitive in analyzing 

EBT3 films. Since the relationship between the color 

changes of EBT3 films and UV exposure is 

according to asymptotic functions, the wavelength is 

only highly sensitive up to a certain level of exposure. 

Beyond that, the relationship curve will start to 

gradually move towards asymptote before saturating. 

While for blue wavelength, though considered to be 

the most ineffective wavelength, it can retain 

relatively constant sensitivity through the 

measurement of EBT3 films with large UV exposure. 

The results from this experiment are suitable to be 
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implemented for ionizing radiation exposure such as 

high energy X-rays, except the color of the films 

needs to be recalibrated accordingly to the radiation 

dose. 
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