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Abstract: In this research, the effects of target sputtering power on the structure and optical 
properties of radio frequency (RF) sputtered Ti6Al4V films were investigated. Different sputtering 
RF powers were used to produce different thicknesses of Ti6Al4V thin films. From the X-ray 
diffraction, it was found that the Ti6A14V films had polycrystalline cubic and hexagonal structures 
and increased films crystallinity and crystalline size with increasing the sputtering power. Atomic 
forces microscopy (AFM) gave us a nanometric film character, films homogeneity, and surfaces 
roughness. A higher degree of roughness and average grain size with increasing RF power was 
exhibited. Band gap and refractive index of Ti6Al4V thin films varied with sputtering RF powers.  

Keywords: RF magnetron sputtering; Ti6Al4V; structural properties; optical properties. 

Citation: Mohammed K. KHALAF, H. F. Al-TAAY, and Dawood S. ALI, “Effect of Radio Frequency Magnetron Sputtering Power on 
Structural and Optical Properties of Ti6Al4V Thin Films,” Photonic Sensors, 2017, 7(2): 163–170. 

 

1. Introduction  

Due to the interesting chemical and mechanical 

properties, the titanium alloy is far used in many 

applications [1, 2]. One particular alloy, the Ti6Al4V, 

has the most performance among the different 

grades of titanium. The Ti6Al4V thin films have 

attracted large scientific and practical interest since 

their specific properties enable various applications 

as microstructure materials in surgical appliances [3, 

4]. The pure titanium is a monophasic, 

physiologically inert, and non-toxic metal. Ternary 

titanium alloys containing Al and V exhibit      

and  phases structure that has attractive mechanical 

properties, high wear resistance, hardness, tenacity, 

resistance to fatigue, and high corrosion   

resistance [5]. Besides having a low density, it has 

an excellent biocompatibility of permitting its use in 

the fabrication of medical implants [6]. There are 

many deposition methods used to prepare Ti6Al4V, 

by means of chemical vapor deposition (CVD) [7], 

electrochemical method [8], selective laser melting 

[9], and physical vapor deposition (PVD) such as 

RF-DC sputtering [10]. In this work, Ti6Al4V thin 

films have been deposited on glass substrates by the 

radio frequency (RF) magnetron sputtering method 

with five different deposition power conditions. The 

crystallographic properties and surface morphology 

of the films were studied by the X-ray diffraction 

(XRD) and atomic forces microscopy (AFM) 
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techniques. The optical property measurements for 

Ti6Al4V thin films are obtained by using the UV 

(ultraviolet) -visible recording spectrometer. 

2. Experiment 

In our study, Ti6Al4V thin films were prepared 
by using the RF magnetron sputtering technique 
(CRC600 CO.USA-made). The thin films were 
deposited on the glass substrate with different 
powers. The glass slides were sequentially cleaned 
in an ultrasonic bath with acetone and ethanol. 
Finally, they were rinsed with distilled water and 
dried. The sputtering chamber was evacuated to 
5×105

 mbar base pressure using diffusion and 
mechanical booster pump combination prior to the 
deposition. Before the deposition of Ti6Al4V films, 
a Ti6Al4V target (99.99% pure and 5 cm diameter) 
was pre-sputtered in pure argon atmosphere for   
10 min in order to remove oxide on the surface of 
the target. Ti6Al4V films were deposited by the RF 
sputtering system in pure argon gas (99.9%) with 
pressure of 5×102

 mbar. The X-ray diffraction 
measurements of thin films were performed by using 
the diffract meter type (SHIMADZU-6000). The 
AFM was a contact mode used to analyze the 
morphological feature on Angstrom Inc. (AA3000). 
The optical properties measurements for Ti6Al4V 
thin films were obtained by using the UV-Visible 
recording spectrometer (UV-2601 PC Shimadzu 
software 1700 1650). The thickness of the films has 
been calculated by using the Device FT-650 Film 
Thickness (FT) Probe System. 

3. Results and discussion 

3.1 X-ray diffraction (XRD) 

It can be expected that low sputtering power 

exhibits a low deposition rate which is due to less 

energetic argon over the target species and less 

ejected atoms from the target material. However, 

when the sputtering power was increased, the 

sputtering yield of the Ti6Al4V films markedly was 

increased. Figure 1 shows the XRD analysis for 

Ti6A14V thin films deposited on glass substrates 

with different powers (50 W, 75 W, 100 W, 125 W, 

and 150 W, respectively). The XRD pattern 

illustrates that the Ti6A14V films had a 

polycrystalline structure with peaks attributed to 

(110) diffractions for cubic structure or (002) 

diffractions for hexagonal structure and (102) 

diffractions for cubic structure, identified with 

standard peaks (card No. 96-900-8555 and 

96-900-8518). Also, note that an increase in the RF 

power led to an increase in the peak intensity (i.e. an 

increase in films crystallinity). The mobility 

improvement of adatoms sputtered on the surface, 

which was required to form highly crystalline films. 

Because it is believed that high DC sputtering power 

in the magnetron sputtering system energizes inert 

argon gas to provide sufficient kinetic energy to 

adatoms, the surface diffusion of these adatoms was 

then expected to enhance with the momentum 

transfer to the nucleation and growth of the Ti6Al4V 

films. Increasing the RF power will make an 

increase in the grain size, as shown in Table 1. This 

may be due to the enhancement of crystallinity in 

the films. The films of crystalline was improved 

which led to a decrease in the number of grain 

boundaries. A significant line was broadened which 

is a characteristic of nanoparticles [1, 11]. 

Table 1 Comparison between the Exp. and Std. the values of  
dhkl for the (Ti6Al4V) peaks shown in XRD for different RF 
powers on a glass substrate. 

Power 
(W) 2 (deg.)

 
(FWHM) 

(deg.) 

dhkl 

Exp.(Å) 

G.S 
(nm) 

dhkl 
Std.(Å) 

Phase hkl 

2.3380 Cubic (110)
38.4010 1.7020 2.3422 4.9 

2.3430 Hex. (002)50 

53.8120 1.6503 1.7022 5.4 1.7268 Hex. (102)

2.3380 Cubic (110)
38.5902 0.9230 2.3312 9.1 

2.3430 Hex. (002)75 

53.7980 1.4120 1.7026 6.3 1.7268 Hex. (102)

2.3380 Cubic (110)
38.4320 0.6013 2.3404 14.0 

2.3430 Hex. (002)100 

53.8210 0.9340 1.7020 9.5 1.7268 Hex. (102)

2.3380 Cubic (110)
38.4610 0.5780 2.3387 14.6 

2.3430 Hex. (002)125 

53.7650 1.1043 1.7036 8.1 1.7268 Hex. (102)

2.3380 Cubic (110)
38.4426 0.5431 2.3398 15.5 

2.3430 Hex. (002)150 

53.7630 0.5312 1.7037 16.8 1.7268 Hex. (102)
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Fig. 1 X-ray diffraction patterns of the (Ti6A14V) films deposited on the glass substrate at different sputtering powers. 

 

3.2 Atomic force microscope 

The surface morphology of Ti6Al4V films 

deposited on the glass substrate was studied by AFM 

to monitor the growth of nanostructure under the 

influence of different deposition powers. Figure 2 

shows 2D and 3D AFM images of Ti6Al4V thin film 

deposited at different working sputtering powers. 

The images have light and dark regions. From the 

colors, brightness is used to specify the vertical 

profile of the thin film surface, where light regions 

represent the highest points and the dark points are 

the depressions. This figure confirms that the films 

are uniform, and the substrate surface is well 

covered with grains that are nearly uniformly 

distributed. From these images, it is observed that 

the surfaces of the films exhibit more degree of 

roughness with increasing the RF power. In addition, 

an increase in the average grain size leads to an 

increase in the root mean square roughness (RMS), 

as shown in Table 2. The Ti6Al4V film deposited at 

higher sputtering power exhibits profound large 

grains with orientations. These morphologies are 

due to the fact that sputtering power helps increase 

the surface mobility of adatoms, which is required to 

form continuous films. The surface diffusion of 

these adatoms is then enhanced by the higher 

sputtering power, which results in a provision of the 

momentum transfer to the growing surface. 
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(e) 

Fig. 2 Two-dimensional (2D) and three-dimensional (3D) AFM images of (Ti6Al4V) thin films deposited on glass substrate at 
different RF powers: (a) 50 W, (b) 75 W, (c) 100 W, (d) 125 W, and (e) 150 W. 
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Table 2 AFM data of (Ti6Al4V) thin films deposited on the 
glass substrate at different RF powers. 

Average 
roughness 

(nm) 

Root mean 
square 

roughness 
(nm) 

Average 
diameter of 
granularity 

(nm) 

Power 
(W) 

0.190 0.255 50.21 50 
0.487 0.569 57.38 75 
0.730 0.848 75.38 100 
2.710 3.320 81.70 125 
3.340 4.000 92.85 150 

3.3 Optical measurements 

The optical properties of the Ti6Al4V thin films 

deposited by RF magnetron sputtering were 

analyzed by UV-visible spectroscopy in the 

wavelength range of 400 nm–1100 nm as shown in 

Fig. 3. The transmission spectra of Ti6Al4V thin 

film at different RF powers (50 W, 75 W, 100 W,  

125 W, and 150 W) decrease with an increase in RF 

power when films thicknesses increase (244.89 nm, 

435.26 nm, 598.98 nm, 866.23 nm, and 910.46 nm, 

respectively). The transmittance patterns of all 

deposited thin films on glass increase with an 

increase in wavelength (λ). A decrease in the 

transmittance spectra is caused by an increase in the 

loss of light scattering as the grain size     

increases [12]. 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 
300 400 500 600 700 800 900 1 000 1 100

 (nm) 

50 W

75 W

100 W

125 W

150 W

T
ra

ns
 m

is
si

on
 (

%
) 

 
Fig. 3 Transmittance as a function of wavelength for 

(Ti6Al4V) thin film at different working RF powers. 

Absorbance spectra of Ti6Al4V thin films at 

different RF powers are shown in Fig. 4. An increase 

in absorbance due to a decrease in transmission 

associates with a change in the thickness. The figure 

shows that the optical absorption in the UV region is 

high. The absorption patterns of all deposited thin 

films on glass decrease with an increase in the 

wavelength. 
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Fig. 4 Absorbance as a function of wavelength for (Ti6Al4V) 

thin film at different working RF powers. 

Figure 5 displays the absorption coefficient as a 

function of wavelength for Ti6Al4V thin films 

deposited at different RF powers. The absorption 

coefficient increases with an increase in the film 

thickness which is proportional to RF power. Also, 

the absorption coefficient of deposited thin films on 

glass decreases with an increase in the wavelength. 
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Fig. 5 Absorption coefficient as a function of wavelength for 

(Ti6Al4V) thin film at different working RF powers. 

Figure 6 illustrates the variation of extinction 

coefficient with wavelength in the range of      

400 nm–1100 nm for Ti6Al4V films deposited on the 

glass substrate at different RF powers. The 

extinction coefficient depends mainly on the 
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absorption coefficient, and we notice that the 

extinction coefficient decreases with an increase in 

the wavelength because of the increment in the 

absorption coefficient [13].  
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Fig. 6 Extinction coefficient as a function of wavelength for 

(Ti6Al4V) thin film at different working RF powers. 

Figures 7 and 8 show the dielectric constant and 

dielectric loss as a function of wavelength for 

Ti6Al4V thin films deposited at different RF powers. 

The dielectric constants decrease with an increase in 

RF power and increase with an increase in the 

wavelength (). The variation of the dielectric 

constant depends on the value of the refractive index. 

By contrast, the dielectric loss depends mainly on 

the extinction coefficient values which are related to 

the variations of absorption [13]. 
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Fig. 7 Dielectric constant real as a function of wavelength 

for (Ti6Al4V) thin film at different working RF powers. 
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Fig. 8 Dielectric constant imaginary as a function of 

wavelength for (Ti6Al4V) thin film at different working RF 
powers. 

The variations of the refractive index are versus 

wavelength in the range 400 nm–1100 nm. It is clear 

from this figure that the refractive index in general 

increases with an increase in the thickness, due to 

the different deposited thicknesses, as shown in  

Fig. 6. 
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Fig. 9 Refractive index as a function of wavelength for 

(Ti6Al4V) thin film at different working RF powers. 

Table 3 shows the variation of optical parameters 

at 500 nm wavelength for (Ti6Al4V) films at 

different RF powers. This table illustrates that T, n, 

r, i, and Eg decrease with an increase in the RF 

power while  and K decrease. 
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Table 3 Optical parameters for (Ti6Al4V) films at the 
different thicknesses. 

Sample T% 
 

(cm1) 
K n r i Eg (eV) 

Thickness
(nm) 

50 1.17 55621 0.22 5.92 34.95 2.63 1.54 244.89 

75 0.71 61801 0.25 5.16 26.58 2.55 1.44 435.26 

100 0.50 66222 0.26 4.68 21.85 2.47 1.39 598.98 

125 0.31 72400 0.29 4.09 16.62 2.36 1.34 866.23 

150 0.19 78578 0.31 3.57 12.61 2.23 1.23 910.46 

4. Conclusions  

We investigated the effects of target sputtering 

power on the structure and mechanical properties of 

Ti6Al4V film on the glass substrate as deposited by 

the RF magnetron sputtering technique. The results 

showed that the structure of the Ti6Al4V films 

deposited at all the target sputtering powers was 

polycrystalline with dual structure phases cubic and 

hexagonal. Films crystallinity and crystalline size 

increased with an increase in the RF power. AFM 

data indicated that film roughness was less for 

samples deposited on the glass substrate at lower 

sputtering power. It was observed from UV-visible 

measurements that the absorbance and the extinction 

coefficient (k) for deposited thin films increased 

with an increase in the RF power, while other 

parameters such as dielectric constants and 

refractive index decreased. The present work can be 

a guideline for obtaining good quality Ti6Al4V thin 

films for biomedical applications. 
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