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Abstract: High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on 
the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high 
nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet 
decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three 
typical field testing signals, and an artificial neural network (ANN) is built for the event 
identification. The comparison results prove that the WPD performs a little better than the WD for 
the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate 
can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 
5.6% for the identification network with the wavelet packet energy distribution features. 
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1. Introduction 

The distributed optical-fiber vibration sensing 

(DOVS) system based on the phase-sensitivity 

optical time domain reflectometry (Φ-OTDR) 

technology provides a convenient and cost-effective 

disturbance detection and location method for safety 

monitoring of ultra-long distance perimeters, oil or 

gas pipelines, submarine or buried 

telecommunication cables, power transmission 

cables, and large structures [1]. However, the high 

sensitivity of the system induces that it is liable to be 

interfered by complicated disturbing sources in 

practical long-distance monitoring applications, 

which may result in a high nuisance alarm rate 

(NAR) [5]. The conventional detection method for 

DOVS is always carried out by only differentiating 

the obtained OTDR traces before and after the 

intrusion occurrence [7]. And most of the related 

signal processing work focused on the improvement 

of detection, and very few mentioned the 

identification of the perturbing events except some 

frequency spectrum analysis with the fast Fourier 

transform (FFT) [10]. Due to the unpredictable 

influences of traffics, and other production and 

people’s life interferences along the long monitoring 

line, the identification of the detected events is 

always a persisting predicament, which restricts its 

practical applications. 

Thus, identifiable feature extraction methods for 
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DOVS signals are comparatively studied in this 

paper to improve the perturbing event identification 

performance: energy spectrum distributions are 

extracted by using the wavelet decomposition (WD) 

and the wavelet packet decomposition (WPD) 

respectively for the varied types of disturbing event 

signals along the buried oil pipeline of about 65 km 

in practical field applications. Then we construct a 

4-layer artificial neural network (ANN) to identify 

three typical events, background noises, artificial 

digging events, and vehicle passing interferences as 

a comparison of these two feature extraction 

methods. The practical application results show that 

the probability for correct detection has been 

improved considerably and NAR has been reduced 

effectively. 

2. Pipeline safety monitoring system 
based on DOVS with Φ-OTDR 
technology 

The schematic diagram of pipeline safety 

monitoring system based on DOVS with Φ-OTDR 

technology is shown in Fig. 1. A continuous coherent 

light generated from the ultra-narrow line-width 

laser is modulated to an optical pulse signal by the 

acoustic-optical-modulator (AOM). The optical 

pulse signal, amplified by the erbium-doped fiber 

amplifier (EDFA), is then gated into the sensing 

fiber cable through the optical isolator. The 

backscattered Rayleigh light is filtered by the optical 

filter to eliminate noises. A coherent optical time 

domain reflection signal, namely an OTDR track, is 

obtained after a photoelectric conversion by the 

photo-detector (PD) and then converted into a digital 

signal by the analog-digital-converter (ADC). The 

sensing fiber cable is usually an optical 

communication cable that has already been buried 

along the oil pipeline. One end of a spare fiber core 

is connected into the Φ-OTDR demodulator. When 

an intrusion occurs near the pipeline, its vibration 

may generate phase disturbances in the closed fiber, 

which can be revealed from the received OTDR 

traces. Finally, the acquired data are processed in a 

processing unit to obtain and demonstrate the 

abnormal event detection and location results in real 

time. 
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Fig. 1 Pipeline safety monitoring system. 

The temporal sequence obtained along the time 

axis at each spatial point exactly demonstrates the 

different action modes of the different individual 

disturbing events, which can be obtained by 

accumulating the OTDR traces at different moments. 

Further, different types of event signals have 

different frequency components, thus they could 

have different concentrated distributions in the 

frequency domain. Therefore, the extracted energy 

distribution of different types of event signals by 

using multi-scale WD or WPD methods could be 

identifiable and distinguished from each other. 

3. Feature extraction and identification 
methods 

3.1 Identifiable feature extraction based on 
multi-scale analysis 

WD [6] is processed like an unbalanced tree 

from top to bottom as shown in Fig. 2(a). The signal 

passing through the filter banks is decomposed into 

the approximations from low-pass filter and the 

details from the high-pass filter. With a J-level 

decomposition, the obtained details at each level are 

denoted as [d1, d2, …, dJ], and the approximations at 

Jth level is denoted as aJ. And we use d(J + 1) to 

replace aJ for uniform expression. The decomposed 

signals are sorted from low frequency components 

to high frequency components, which are denoted as 

[s0, s2, …, sj]. Then the corresponding energy of 

each decomposed frequency band is computed as 
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follows: 
2
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where n is the index, and N  is the length of the 

sequence. By normalization, the wavelet energy 

(WE) vector in (1) is obtained as follows: 
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where sumwE  is the total sum of all the members of 

wjE . 

The WPD [11] applies the decomposition not 

only to the approximations but also to the details, 

offering richer frequency analysis than the WD. And 

the WPD process like a balanced tree from top to 

bottom is comparatively illustrated in Fig. 2(b). With 

a j-level decomposition, the WPD generates 2 j  

different decomposition components, which are 

denoted as 
, , 0,1, , 2 1j

j lC l   and l  is the 

terminal node index at the jth level. The 

decomposed signals are sorted in the ascending 

order of frequency bands, which are denoted as 

[s0 … sm] ( 2 1)jm   . The corresponding energy 

of each frequency band is obtained as  
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where n is the index, and N  is the length of the 

sequence. By normalization, the wavelet packet 

energy (WPE) vector in (3) is obtained as 
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where sumwpE  is the total sum of all the members of 

lE . 
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Fig. 2 Multi-scale decomposition tree: (a) wavelet 
decomposition and (b) wavelet packet decomposition. 

3.2 Identification network construction 

After the multi-scale analysis, the energy 

distributions of different event signals can be 

obtained. We also construct a 4-layer back 

propagation (BP) ANN network as shown in Fig. 3 

for further event identification and determination. In 

the identification network, there is one input layer, 

two hidden layers, and one output layer. In the input 

layer, taking WE, or WPE or other feature vector as 

the basic input feature, the input knot number of the 

network is determined by the dimension of the 

feature vector and equals 2 j . For the two hidden 

layers, generally a hyperbolic tangent sigmoid 

function is chosen as the activation function where 

five knots are set in the first hidden layer and three 

knots are set in the second hidden layer in this case 

according to series of experimental parameters test. 

The output layer with a linear activation function 

consists of two knots, which is decided by the target 

number. With this designed configuration, samples 

of three typical event signals in oil pipeline safety 

monitoring, such as artificial digging events, vehicle 

passing interferences, or just background noises, are 

input to the identification network to be trained to 

obtain suitable network parameters. A proper error 

threshold is set to stop the training process. The 

error threshold is a tradeoff between the 

identification precision and the computation cost. 

And for the test, the normalized WE/WPE of testing 

signals can be taken as the input to intelligently 

reveal if the vibration disturbing signal is caused by 

artificial digging events, vehicle passing 

interferences, or just background noises. 
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Fig. 3 4-layer BP ANN network for classification. 

4. Field test results and discussion 

4.1 Energy distribution results 

In the field test, three typical event signals along 

a 65- km-long oil pipeline are obtained and analyzed, 
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including background noises with no intrusion, 

artificial digging events, and vehicle passing 

interferences. The sampling rate of the accumulated 

temporal signal is 508 Hz. The temporal signals of 

the three typical events in one second and their WE 

and WPE distributions are demonstrated in Figs. 4, 5, 

and 6, respectively. 
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Fig. 4 Background noise signal and its WE and WPE 

distributions: (a) background noise signal, (b) wavelet energy 
distribution, and (c) wavelet packet energy distribution. 
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Fig. 5 Artificial digging signal and its WE and WPE 

distributions: (a) artificial digging signal, (b) wavelet energy 
distribution, and (c) wavelet packet energy distribution. 

As shown in Figs. 4(b) and 5(b), for background 

noise and artificial digging event signals, the high 

frequency band s3 dominates in both the two WE 

energy graphs, and the shapes of the WE distribution 

envelopes are similar. There is also difference in the 

two graphs: the bar of band s3 is much higher than 

that of band s2 for artificial digging signal; on the 

contrary, the bar height difference is less for 

background noise signal. However, the WPE can 

obtain more different distribution trends for all of 

the three types of event signals as shown in Figs. 

4(c), 5(c), and 6(c). That’s because the WD 

decomposes the signal frequency band with an 

uneven scale at different levels, which thus induces 

that the energies are always concentrated on a wider 

band of higher frequencies. As a result, it is not an 

ideal tool to evaluate the energy distribution 

difference in the frequency domain. 
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Fig. 6 Vehicle passing signal and its WE and WPE 

distributions: (a) vehicle passing signal, (b) wavelet energy 
distribution, and (c) wavelet packet energy distribution. 

To further investigate the difference of these two 

decomposition methods in practical complex 

scenarios, more signal samples of the above three 

types of events are tested in a similar way, and the 

WE and WPE distributions of the tested samples are 

comparatively demonstrated in Figs. 7 and 8. In Fig. 

7, even though the vehicle passing interferences 

have typically different WE distribution trends, the 

distribution trends of the other two events could be 

similar, in which two of the three WE distributions 

of the artificial digging events (artificial digging II 

and III) nearly overlap with the WE distributions of 

the two background noises (background noise I and 

II). This conclusion agrees with the conclusion of 

the single case in Figs. 4 and 5. However, the WPE 

in Fig. 8 can demonstrate three typically different 

energy distribution trends for these three events. It is 
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seen that the background noises always have a flat 

energy spectrum, the artificial digging signals 

always denominate the band s1 and s2 with higher 

frequencies in the low frequency components, and 

the vehicle passing events are always denominating 

the band s0 with the lowest frequencies. It can be 

summed up that the WPD is a better frequency 

spectrum analysis way which can obtain a more 

accurate frequency band decomposition. 
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Fig. 7 WE distribution for three typical events. 
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Fig. 8 WPE distribution for three typical events. 

4.2 Identification results 

To evaluate the feasibility of the proposed WD 

and WPD’s feature extraction method, a database of 

127 sample signals including 40 background noises, 

47 artificial digging events, and 40 vehicle passing 

interferences, are first prepared to train the 4-layer 

ANN network as shown in Fig. 3. And the 

normalized WE and WPE [E0, E1, …, E7] in 

decomposed frequency [s0, s1, … , s7] of each 

sample event signal are respectively taken as the 

input vector at the input layer. 

After well training, 90 field testing signals are 

inputted into the network, which contains 30 

background noises, 30 artificial digging events, and 

30 vehicle passing interferences. For comparison, 

the extracted WE and WPE feature are in turn input 

into the 4-layer BP network. And the identification 

results for the two feature extraction methods are 

concluded in Tables 1 and 2. The identification rate 

(IR) for all of the three events can reach higher than 

90% for both methods. However, the identification 

results by using the features extracted by WPD in 

Table 2 are better than those by using the features 

extracted by WD in Table 1. The average IR by 

using WPE can be achieved up to 94.4%, and the 

overall NAR can be effectively controlled as low as 

5.6%, while for the results by using WE, the IR can 

be achieved to 91.1%, and the NAR can be 8.9%. 

Table 1 Identification results by using WE. 

 I II III Others IR 
IR in 

average 
NAR

I 27 3 0 0 90.0% 
II 2 28 0 0 93.3% 
III 0 3 27 0 90.0% 

91.1% 8.9%

 

I: Type I, background noises; 

II: Type II, artificial digging events; 

III: Type III, vehicle passing interferences; 

Others: Unidentified events; 

IR: Identification rate; 

NAR: Nuisance alarm rate. 

Table 2 Identification results by using WPE. 

 I II III Others IR 
IR in 

average 
NAR

I 27 2 0 1 90.0% 
II 2 28 0 0 93.3% 
III 0 0 30 0 100% 

94.4% 5.6%

5. Conclusions 

In this paper, feature extraction methods with 

WD and WPD are first comparatively studied for the 

DOVS signals in oil pipeline safety monitoring 

applications. And then the field testing results based 

on the BP network prove the effectiveness of WD 
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and WPD as an identifiable feature extraction tool 

for the practical event signal classification, and 

WPD could be better for the identifiable feature 

extraction than WD. Therefore, it is promising to be 

practically applied in the oil pipeline safety 

monitoring system for pre-warning of the third-party 

damage. 
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