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Abstract: A new type of gain flattening filter for amplified spontaneous emission (ASE) source 
based on erbium doped fiber (EDF) is proposed and demonstrated by fabricating and writing two 
series ultra-long period fiber grating (ULPFG) on single mode fiber (SMF-28). The novelty method 
in this research is based on writing the two ULPFGs as fat gratings. The LPG is written by a simple 
and available arc-discharge method. The pump power based on single-pass backward pump 
configuration is around 100 mW, and the average wavelength is near to 974 nm. The gain flattening 
profile is obtained by 3.4 (±1.7) dB ripple in the wavelength range between 1524 nm and 1565 nm 
with 41-nm band width.  
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1. Introduction 

Erbium doped fiber amplifier is an essential 

component for increasing capacity of transmission 

in long-way communication systems [1]. Although 

these amplifiers are more useful than others, 

un-flatness gain spectrum of amplified 
spontaneous emission (ASE) source around  

1532 nm leads to decrement in capacity and 

bandwidth in wavelength division multiplexing 

(WDM) and dense wavelength division multiplexing 

(DWDM) systems. Hence, the gain flattening of 

erbium-doped fiber amplifier (EDFA) is serious for 

these systems. The using of several pump 

configurations, such as forward or backward and 

single or double pass EDFA, has been proposed 

during years [2–4]. The gain fluctuation was 

obtained around 0.9 dB for the wavelength between 

1560 nm and 1610 nm with 15-m EDF length for the 

pumping with single pass forward (SPF) 

configuration [2]. The gain spectrum is a very 

non-uniform profile in the range of 1530 nm –  

1565 nm for this situation, while these amounts of 

fluctuations are acceptable results in L-band 
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windows. Therefore, the SPF is not a suitable way 

for the C-band region. According to the 

experimental tests carried out by J. Yang et al., the 

ripple around ±0.4 dB on the gain spectrum was 

achieved in 1570 nm – 1610 nm with the using of 

two-stage pump configuration [4]. Also in the study 

conducted by M. K. Jazi et al., un-flatness gain 

spectrum around 1532 nm was still observed with 

double pass bidirectional ASE source [3]. However, 

the using of two or more pumps makes systems 

complex in operation that our concentration is 

flattening the gain profile in 1530 nm – 1565 nm by 

simple way and components.  
In a general classification, there are two ways for 

flattening gain spectrum. One is to apply changes to 
the material environment of erbium doped fibers, for 
example by doping EDF with Al [5] or Zr [6]. A 
hybrid configuration with zirconia-based erbium 
doped fiber and semiconductor optical amplifier 
produced the gain variation around 4 dB in 1530 nm– 

1560 nm. The second general way is to use the 
external filters, such as acousto-optic filter [7, 8], 
Mach-Zehnder interferometer [9], and fiber loop 
mirror [9, 10]. 

The performance of these filters is creating 
inverse of ASE spectrum to achieve flatness. The 
combination of ASE and the inverse one removes 
the un-flatness region, and then the gain spectrum is 
uniformed.  

Long period fiber gratings (LPFG) that have 
attractive sensing applications [11, 12] (for example 
in refractive index [13, 14], strain, and temperature 
sensors [14, 15]) are suitable filters because of their 
low insertion and return loss. These filters with 
different fabrication methods [16, 17] and 
implementation capabilities on several kinds of 
fibers (such as photonic crystal fibers [18] and the 
three-layer fibers [19]) are used with various 
techniques for equalization. 

The LPFG promotes the coupling mode between 
the propagating light of fundamental core mode 
(LP01) and the co-propagating cladding modes. 
Because of scattering losses, the light coupled to the 
cladding modes decays fast in the guided core mode 

observed at the output end of LPFG [19, 20]. 
Therefore, transmission spectrum of this type of 
filter has a series of attenuation bands which are 
employed for the ripple compensation in EDF gain.  

There are several gain flattening methods that 
have employed LPGs. At the effect of acoustic wave 
[7, 8], temperature [21, 22], twisting [23, 24], and 
bending process on LPGs, the fluctuations are 
decreased in around 30 nm on bandwidth by LPG 
length more than 51 mm. However, we observed 
gain flattening around 1 dB due to new design of 
LPG on extended bandwidth by employing simple 
equipments. 

The proposed method in this study is following 
the study on fabrication of ASE source by Kanani et 
al. [3]. Our purposed work is making a gain 
flattening filter for this type of source. According to 
the survey about ASE sources in [3], single pass 
backward (SPB) ASE sources is suitable for the gain 
flattening in C-band telecommunication region 
owning to its stable broad-band spectrum and high 
output power rather than forward sources.  

In this research, by design and fabrication of 
new kind of ULPFG with fat gratings and 
combination with another LPG on SMF-28, the 
flatness gain is obtained. This gain flattening filter is 
fabricated in the research center by point-to-point 
arc-discharge method which is simple and 
affordable. 

2. Experimental setup and results 

The performed steps for realization and 
fabrication arrays based on LPG as a filter are 
described in details. 

2.1 Designing setup 

The simulation setup is illustrated in Fig. 1 by 
OptiSystem software based on broad band 
non-coherent ASE source, LPG, optical spectrum 
analyser, optical isolator, and other components. 

As shown in Fig. 1, the 974-nm laser diode is 

employed to pump the EDF with 100 mW pump power 

through the WDM as a C-band SPB ASE source. 

Figure 2 shows the simulated spectrum of this source in 

C band region. 
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Fig. 1 Configuration of designed set-up in OptiSystem 
software. 
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Fig. 2 Simulated spectrum of the proposed ASE source in 

C-band. 
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Fig. 3 Experimental spectrum of the proposed ASE source. 
 
A minimum length of EDF (3 m) is used as the 

active medium in simulation and experimental work 

where the fiber doping concentration is          

1/9×1025 ions/m3 with an NA of 0.2. The 3-dB 

optical coupler or WDM coupler is placed at the end 

of the laser diode to transfer power to EDF (inset in 

Fig. 3). As a result, the variation of gain spectrum 

against pump power due to the experimental ASE 

source is shown in Fig. 3. According to this figure, a 

maximum peak power exists around 1532 nm and 

the fluctuations of the gain profile in C band interval 

are around 8.69 dB. 

A comparison between simulation and 

experimental results in Figs. 2 and 3 reveals only a 

little loss due to experimental conditions. 

2.2 Fabrication method of ULPFG  

According to the simple available equipment, a 

point-to-point arc-discharge method for ULPFG 

fabrication is employed in this study. Since the 

thickness of induced grating by arc is 959 µm, and 

distance between each grating is tuned on 630 µm, 

the period and length of the grating is obtained 

around 1589 µm and 39 mm, respectively. The 

operating wavelength is also considered as 1532 nm. 

2.3 Performance of fabricated ULPG 

After fabricating the mentioned ULPFG in the 

previous step and entering the light to it, the process 

that transferring energy from light of fundamental 

mode (LP-01) into forward propagating cladding 

mode (LP-02) is done. Designing ULPG leads to 

create the loss band around 1532 nm and the 

transmission spectrum of ULPFG experiences the 

decrement in power in this region. When this filter is 

set in the following ASE setup, the decrement level 

of power around the peak takes place and the 

uniform gain profile is achieved. However, the 

performance of ULPFG as a gain flattening filter is 

shown in Fig. 4. 
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Fig. 4 Performance of ULPG for gain flattening filter. 
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2.4 Novelty in fabricating LPG  

In order to configure LPG for gain equalization, 
the first stage is writing ULPG with 25 segments 
and 39-mm length of grating on the SMF-28. The 
fluctuations of ASE profile decrease to 6.3 dB after 
passing from this LPG (Fig. 5). The aim of the 
second stage is to improve this spectrum and 
decrease the fluctuations greatly. So, a new kind of 
ULPG is designed and demonstrated in this study. 

In the fabrication process of LPFGs, to 
implement uniform gratings, the fiber is fixed in the 
device, and the gratings are written on it, so that one 
end of the fiber is fixed, and another end is strained 
with a weight. In novelty process, LPFG has made 
with pushing two ends of the fiber towards each 
other while writing gratings. So the gratings are 
made in a fat shape (Fig. 6). However, with 
minimum 5 fat segments on 8 mm in continuing of 
previous ULPFG with 25 segments, more flattening 
gain spectrum is obtained (Fig. 5). 

However, two grating series are engraved on the 
normal fiber. The ASE profiles of these processes 
are shown in Fig. 5. This figure shows the ripple of 
ASE spectrum that is greatly reduced by employing 
of two ULPFG series as a filter. 

At the best final condition, by inserting of the 5 
fat gratings, the fluctuations around 3.4 dB are 
obtained.  

As mentioned before, Fig. 6 shows the designing 
model of this new type of ULPFG with fat gratings 
that have higher refractive index rather than any 
region of the fiber. 
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Fig. 5 ASE spectrum in absence of any filter (solid curve), 

ASE after passing from one ULPG with 25 segment (dash line 
curve), and ASE after two ULPFG (dash-dot curve). 

 

Fig. 6 Novel LPG design for gain flattening with fat grating. 

2.5 ASE spectrum with different input powers 

Finally, in order to achieve the compact filter, 

two kinds of ULPG are fabricated on the fiber. The 

gain profile is compared in Fig. 7, by prepared filter 

and the source in different pump powers of 100 mW 

and 300 mW, respectively, the gain profile is 

compared in Fig. 7. As shown in this figure, the 

fluctuations of pump power in 100 mW are less than 

that in 300 mW. The ripple rate for 100 mW is 

around 3.4 dBm while for 300 mW is around     

4.5 dBm. So, for the less power in this study, the 

gain profile has become more flatten.  
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Fig. 7 Comparison of the flattened gain profile in 100 mW 

and 300 mW pump power output. 

3. Comparison of results 

Table 1 shows the comparison between results 

and selection of the best filter for the equalization of 

ASE profile in this study.  

Table 1 Comparing of the fluctuations in gain profile. 

Optimum 
state 

Value of 
fluctuation (dB) 

Kind of profile 

 8.69 ASE without filter 
 6.3 ASE+ ULPFG (25 segment) 

 3.4(±1.7) 
ASE+ ULPFG (25 segment)+ 

ULPFG (5 fat segment) 

Compared with other methods for equalization 

gain profile, the following points should be 
considered: 
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(1) The minimum length of erbium doped fiber 

that used (around 3m in compare to other reports 

>10 m) is so better because of compacting integrated 

circuits and economic issue.  

(2) The length of LPFG that is fabricated is   

39 mm while in many studies it is longer. 

(3) The important point is a simple fabrication 

method that is achieved by arc-discharge system and 

simple equipments. Although, some of 

investigations have better fluctuations in ASE 

spectrum, the results with this method are more 

desirable rather than the complicated fabrication 

way. 

4. Conclusions 

In summary, a novel filter was proposed for 

flattening the gain spectrum of ASE in this research. 

The SPB ASE source was used and gain flattening 

profile with employing two stage ULPG was 

achieved, where the second ULPFG was made of fat 

gratings. In this way, the input power was 100 mW. 

With this low level of pump power, the uniform gain 

profile in C band region with 3.4 (±1.7) dB ripple 

rate was observed. 

Hence, the recombination of two LPGs by using 

the novel ULPG with fat grating at the comparison 

with other methods is easy, compact, and affordable 

for employing in various applications. The ASE flat 

spectrum is also very applicable for broadband 

sensors, WDM systems, filters, and so on. 
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