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Abstract: A novel approach for measuring the nonlinear refractive index of an optical fiber utlizing 
the bistable behavior of the double coupling optical fiber ring resonator was proposed and 
investigated. The switch-off or switch-on power decreases with an increase in the nonlinear 
refractive index n2 (m2/W), and the dependence of swith-off or switch-on power on the nonlinear 
refractive index was analyzed numerically. Simulation results showed that the switch-off power and 
switch-on power (in dBW) decreased linearly with 10 2log ( )n  in a 100-m-length fiber ring resonator, 
when n2 changed from 203.2 10−× m2/W to 172.5 10−× m2/W or nearly 20

2 3.2 10n −= × m2/W. These mean 
that high accuracy as well as large-scale nonlinear refractive index measurement can be achieved by 
the proposed approach. 
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1. Introduction 

The optical nonlinear resonator has been 
attracting greatly attention due to its variety of 
possible operating regimes, including bistability, 
period-doubling, or chaos [1]. Bistability commonly 
refers to a state in which the output intensity of a 
device may take two different values for the same 
input intensity depending on the initial conditions 
[2]. Optical bistabiltiy has been studied widely over 
the past years, and numberous applications such as 
differential amplification, optical thresholding, or 
all-optical switching have been demonstrated [3–6]. 
This interesting behavior originates in an optical 
Kerr effect that the refractive index of an optical 
fiber is changed depending on the optical intensity. 

Therefore, nonlinear refractive index information of 
the fiber can be extracted from the bistablity 
characteristics in the optical nonlinear resonator. 

In this work, we proposed and investigated a 
nonlinear refractive index measurement approach 
utilizing the bistable behavior of the double coupling 
optical fiber ring resonator structure. Compared to 
one of major conventional methods which uses the 
continuous wave (CW) probe light that composes a 
Mach-Zehnder interferometer for obtaining the 
phase shift and optical pump pulses that are 
produced by cross phase-modulation in the probe 
light [7, 8], our approach can avoid ultra-high pump 
power and mitigate the large error in measuring the 
interference fringe shift. Addtionally, the simulation 
results showed that high accuracy as well as large- 
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scale nonlinear refractive index measurement could 
be achieved by this proposed approach. 

2. Modeling 

A schematic diagram of the double coupling 
optical fiber ring resonator is depicted in Fig. 1. The 
input light Ei is launched into the double coupling 
optical fiber ring resonator through an optical 
coupler (OC1). The light from Port 4 of OC1 (Et1) 
propagates a half-round trip in the ring and then is 
coupled by the optical coupler (OC2). After OC2, 
part of the light (Ed) is guides out of the resonator 
from Port 7 of OC2, and part of the input light (Et2) 
after propagating in the resonator is coupled with the 
circulated light in the OC1. 
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Fig. 1 Schematic diagram of the double coupling optical 

fiber ring resonator. 
In the double coupling optical fiber ring 

resonator system, the output optical fields from OC1 
and OC2 can be expressed as 
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where M1 and M2 are the transmission matrices of 
OC1 and OC2, respectively, which are given by 
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where pn (n=1,2) and ki (i=1,2) are the fractional 
intensity loss and intensity coupling coefficient of 
the coupler, respectively. 

Considering the propagating effect in the ring, 
Ep1(t) and Ep2(t) are given by 

[ ]1 2 2( ) ( ) ex pj ( )p t r rE t E t tτ τ φ τ= − − −      (5) 

[ ]2 1 1( ) ( ) ex pj ( )p t r rE t E t tτ τ φ τ= − − −      (6) 
2

1 1 NL1 1 2 1( ) ( ) ( ) /L L tt t n L E tφ φ φ φ π λ= + = +     (7) 
2

2 2 NL2 2 2 2( ) ( ) ( ) /L L tt t n L E tφ φ φ φ π λ= + = +    (8) 

where 0 /r n L cτ =  is the half round-trip time of the 
ring, L is the length of the ring, n2 is the nonlinear 
refractive index of the fiber in the ring, and λ is the 
wavelength of the input light. 

Therefore, the two output optical fields at OC1 
Er(t) and OC2 Ed(t) can be finally expressed as 
follows: 

{ }1 1 in 1 1( ) 1 1 ( ) j ( )r pE t p k E t k E t= − − +    (9) 

2 2 2( ) j 1 ( )d pE t p k E t= − .        (10) 

3. Numerical analysis and discussion 

Here, we focus on the numerical investigation 
into the bistable behavior of the double coupling 
optical fiber ring resonator. So, we assume that the 
input light is a Guassian pulse with the peak power 
of 35 W and full width at the half maximum 
intensity (FWHM) of 1.44 ms. Firstly, we consider a 
common case and assume the optical fiber with 
linear and nonlinear refractive indices n0 = 1.45 and 

20
2 3.2 10n −= × m2/W, respectively, and an effective 

mode area Seffs is 30 μm2. It is also assumed that the 
length L of the ring fiber is 100 m, the loss a is   
0.2 dB/km, the operation wavelength 1550nmλ = , 
k1 = 0.9, k2 = 0.75, and p1 = p2 = 0.1. 

Figures 2(a) and 2(b) show the bifurcation 
diagrams at two outputs of the ring (Port 2 and Port 
7 shown in Fig. 1), respectively. As shown in Fig. 2, 
the bistable behavior is observed at both output ports, 
which means that we can use the bistable behavior 
of any output port to carry out nonlinear refractive 
index measurement. 
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Fig. 2 Bifurcation diagrams of the double coupling optical 

fiber ring resonator at output Pr and Pd, respectively. 
In fact, the bistable behavior of the double 

coupling optical fiber ring resonator is sensitive to 
the system’s parameters, such as the nonlinear 
refractive index of the fiber. Therefore, we can 
utilize this effect to measure the nonlinear refractive 
index of the fiber by building up a ring resonator. 
Figure 3 shows the bistable behavior variation of the 
fiber ring resonator when different type fibers are 
applied. The corresponding nonlinear refractive 
indices in Figs. 3(a), 3(b), 3(c), and 3(d) are 

20
2 3.2 10n −= × m2/W, 192 10−× m2/W, 184.2 10−×  

m2/W, and 172.5 10−×  m2/W, respectively. As shown 
in Fig. 3, under the bistable processing, the 
switch-off power and switch-on power decrease with 
an increase in the nonlinear refractive index. 
Therefore, the nonlinear refractive index 
information of the fiber in the ring can be extracted 
from the characteristics in the resonator. To obtain 
more details about the relationship between the 
switch-off or switch-on power and nonlinear 
refractive index, we applied more kinds of fibers in 
the ring resonator, and the simulation results are 
shown in Fig. 4. According to Fig. 4, the switch-off 
power and switch-on power (in dBW) decreased 
linearly with 10 2log ( )n . Taking the switch-on power 
as an example (shown in Fig. 5), the switch-on 
power (in dBW) and the logarithm of nonlinear 
refractive index '

2 10 2log ( )n n=  can be explicitly 
expressed as 

'
in 2(dBW)= 0.9711 40.8875P n− × − .    (11) 
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Fig. 3 Bifurcation diagrams when the fibers with different 

nonlinear refractive indices are applied: (a) 20
2 3.2 10n −= ×  m2/W, 

(b) 19
2 2 10n −= ×  m2/W, (c) 18

2 4.2 10n −= ×  m2/W, and       
(d) 17

2 2.5 10n −= ×  m2/W. 
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power and the nonlinear refractive index. 
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Fig. 5 Relationship between the switch-on and '
2n  when n2 

changes from 203.2 10−×  m2/W to 172.5 10−×  m2/W. 

According to (11), we can calculate the 
nonlinear refractive index n2 by simply detecting the 



                                                                                             Photonic Sensors 

 

82 

switch-off or switch-on power value. As shown in 
Fig. 5, the relationship between the switch-on power 
and 2n  satisfies (11) in the large area 
(from 203.2 10−× m2/W to 172.5 10−× m2/W), which 
means large-scale nonlinear refractive index 
measurement can be achieved by this approach. 
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Fig. 6 Relationship between the switch-on and '
2n when n2 

changes from 202.6 10−× m2/W to 203.4 10−× m2/W. 

In some applications, the nonlinear refractive 
index of the optical fiber should be measured 
precisely, such as the chaos system, sensing, and all 
optical signal processing [9–11]. From the point of 
view of the application, we further investigated the 
relationship between the switch-on power and the 
nonlinear refractive index when the nonlinear 
refractive index varied in a small range. Figure 6 
shows the relationship between the switch-on power 
and the logarithm of the nonlinear refractive 
index '

2 10 2log ( )n n=  when n2 changed from 
202.6 10−× m2/W to 203.4 10−×  m2/W. As shown in 

Fig. 6, the swtich-on power and '
2n  satisfied the 

linear relationship as well, when n2 changed in a 
small range. So, the high accuracy nonlinear 
refractive index measurement can be obtained by 
this approach as well. 

4. Conclusions 

We proposed and numerically analyzed a 
nonlinear refractive index measurement approach 
utilizing the bistable behavior of the double coupling 
optical fiber ring resonator. The simulation results 

showed that the switch-off power and switch-on 
power (in dBW) decreased linearly with 10 2log ( )n  
in a 100-m-length fiber ring resonator, when n2 

changed from 203.2 10−× m2/W to 153.5 10−× m2/W or 
nearly 20

2 3.2 10n −= × m2/W. Therefore, high 
accuracy as well as large-scale nonlinear refractive 
index measurement can be achieved by this 
proposed approach. 
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