Skip to main content
Log in

Improved Pharmacokinetic and Pharmacodynamic Profile of Deuterium-Reinforced Tricyclic Antidepressants Doxepin, Dosulepin, and Clomipramine in Animal Models

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Doxepin, dosulepin, and clomipramine are tricyclic antidepressants (TCAs) that act as serotonin and noradrenaline reuptake inhibitors. The metabolites formed by N-dealkylation of these tricyclic antidepressants contribute to overall poor pharmacokinetics and efficacy. Deuteration of the methyl groups at metabolically active sites has been reported to be a useful strategy for developing more selective and potent antidepressants. This isotopic deuteration can lead to better bioavailability and overall effectiveness. The objective is to study the effect of site-selective deuteration of TCAs on their pharmacokinetic and pharmacodynamic profile by comparison with their nondeuterated counterparts.

Methods

In the current study, the pharmacokinetic profile and antidepressant behavior of deuterated TCAs were evaluated using the forced swim test (FST) and tail suspension test (TST), using male Wistar rats and male Swiss albino mice, respectively; additionally, a synaptosomal reuptake study was carried out.

Results

Compared with the nondeuterated parent drugs, deuterated forms showed improved efficacy in the behavior paradigm, indicating improved pharmacological activity. The pharmacokinetic parameters indicated increased maximum concentration in the plasma (Cmax), elimination half-life (t1/2), and area under the concentration-time curve (AUC)  in deuterated compounds. This can have a positive clinical impact on antidepressant treatment. Synaptosomal reuptake studies indicated marked inhibition of the reuptake mechanism of serotonin (5-HT) and norepinephrine.

Conclusions

Deuterated TCAs can prove to be potentially better molecules in the treatment of neuropsychiatric disorders as compared with nondeuterated compounds. In addition, we have demonstrated a concept that metabolically active, site-selective deuteration can be beneficial for improving the pharmacokinetic and pharmacodynamic profiles of TCAs. A further toxicological study of these compounds is needed to validate their future clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Almasi A, Meza CE. Doxepin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. 2022 Jan 3.

  2. Nakagawa T, Ukai K, Kubo S. Antidepressive effects of the stereoisomer cis-dosulepin hydrochloride. Arzneimittelforschung. 1993;43(1):11–5.

    CAS  PubMed  Google Scholar 

  3. Wilson M, Tripp J. Clomipramine. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. 2022 Dec 11.

  4. Balant-Gorgia AE, Gex-Fabry M, Balant LP. Clinical pharmacokinetics of clomipramine. Clin Pharmacokinet. 1991;20:447–62.

    Article  CAS  PubMed  Google Scholar 

  5. Hobbs DC. Distribution and metabolism of doxepin. Biochem Pharmacol. 1969;18(8):1941–54.

    Article  CAS  PubMed  Google Scholar 

  6. Eh-Haj BM. Metabolic N-dealkylation and N-oxidation as elucidators of the role of alkylamino moieties in drugs acting at various receptors. Molecules. 2021;26(7):1917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feng M, De Oliveira J, Sallustrau A, Destro G, Thuéry P, Roy S, et al. Direct carbon isotope exchange of pharmaceuticals via reversible decyanation. J Am Chem Soc. 2021;143(15):5659–65.

    Article  CAS  PubMed  Google Scholar 

  8. Gómez-Lechón MJ, Tolosa L, Donato MT. Metabolic activation and drug-induced liver injury: in vitro approaches for the safety risk assessment of new drugs. J Appl Toxicol. 2016;36(6):752–68.

    Article  PubMed  Google Scholar 

  9. Hunyadi A. The mechanism (s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med Res Rev. 2019;39(6):2505–33.

    Article  CAS  PubMed  Google Scholar 

  10. Steverlynck J, Sitdikov R, Rueping M. The Deuterated “Magic Methyl” Group: A Guide to Site-Selective Trideuteromethyl Incorporation and Labeling by Using CD3 Reagents. Chem A Eur J. 2021;27(46):11751–72.

    Article  CAS  Google Scholar 

  11. Gant TG. Using deuterium in drug discovery: leaving the label in the drug. J Med Chem. 2014;57(9):3595–611.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Tang W. Drug metabolism in drug discovery and development. Acta Pharmaceutica Sinica B. 2018;8(5):721–32.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Timmins GS. Deuterated drugs: where are we now? Expert Opin Ther Pat. 2014;24(10):1067–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Russak EM, Bednarczyk EM. Impact of deuterium substitution on the pharmacokinetics of pharmaceuticals. Ann Pharmacother. 2019;53(2):211–6.

    Article  CAS  PubMed  Google Scholar 

  15. Collamati A, Martone AM, Poscia A, Brandi V, Celi M, Marzetti E, et al. Anticholinergic drugs and negative outcomes in the older population: from biological plausibility to clinical evidence. Aging Clin Exp Res. 2016;28:25–35.

    Article  PubMed  Google Scholar 

  16. Woolf AD, Erdman AR, Nelson LS, Caravati EM, Cobaugh DJ, Booze LL, et al. Tricyclic antidepressant poisoning: an evidence-based consensus guideline for out-of-hospital management. Clin Toxicol. 2007;45(3):203–33.

    Article  CAS  Google Scholar 

  17. By the American Geriatrics Society 2015 Beers Criteria Update Expert Panel. American Geriatrics Society 2015 Updated Beers Criteria for Potentially Inappropriate Medication Use in Older Adults. J Am Geriatr Soc. 2015;63(11):2227–46. https://doi.org/10.1111/jgs.13702.

    Article  Google Scholar 

  18. Moraczewski J, Awosika AO, Aedma KK. Tricyclic Antidepressants. 2023 Aug 17. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

    Google Scholar 

  19. Von Wolff A, Hölzel L, Westphal A, Härter M, Kriston L. Selective serotonin reuptake inhibitors and tricyclic antidepressants in the acute treatment of chronic depression and dysthymia: a systematic review and meta-analysis. J Affect Disord. 2013;144(1–2):7–15.

    Article  Google Scholar 

  20. Ward NG, Bloom VL, Friedel RO. The effectiveness of tricyclic antidepressants in the treatment of coexisting pain and depression. Pain. 1979;7(3):331–41.

    Article  PubMed  Google Scholar 

  21. Vrijens B, Urquhart J. Methods for measuring, enhancing, and accounting for medication adherence in clinical trials. Clin Pharmacol Ther. 2014;95(6):617–26.

    Article  CAS  PubMed  Google Scholar 

  22. Westenberg H, Sandner C. Tolerability and safety of fluvoxamine and other antidepressants. Int J Clin Pract. 2006;60(4):482–91.

    Article  CAS  PubMed  Google Scholar 

  23. Yan J-H, Hubbard J, McKay G, Midha K. Stereoselective in vivo and in vitro studies on the metabolism of doxepin and N-desmethyldoxepin. Xenobiotica. 1997;27(12):1245–58.

    Article  CAS  PubMed  Google Scholar 

  24. Oussou GJ-B, Kouakou KL, Ettien AS, Yapo AP, Ehilé EE. Antidepressant-like effects of aqueous leaf extract of Macaranga barteri Mull. and Arg (Euphorbiaceae) in rats. J Appl Pharm Sci. 2021;11(6):140–5.

    CAS  Google Scholar 

  25. Redrobe J, Bourin M, Colombel M, Baker G. Dose-dependent noradrenergic and serotonergic properties of venlafaxine in animal models indicative of antidepressant activity. Psychopharmacology. 1998;138(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  26. Akotkar L, Aswar U, Patil R, Kumar D, Aswar M, Pandey J. Modulation of CUMS Induced Behaviour Deficits in Rats by Alpha Lipoic Acid: Possible Involvement of Dopaminergic and Serotonergic Neurotransmission. 2022.

  27. Yadav CK, Poudel K, Shrivastava A, Mehta R, Yadav T. Anti-depressant Activity of the Seeds of Zanthoxylum armatum on Swiss Albino Mice. Nepal J Health Sci. 2022;2(1):98–103.

    Article  Google Scholar 

  28. Fernández MdMR, Wille SM, Samyn N. Quantitative method validation for the analysis of 27 antidepressants and metabolites in plasma with ultraperformance liquid chromatography–tandem mass spectrometry. Therap Drug Monitor. 2012;34(1):11–24.

    Article  Google Scholar 

  29. Lin C-N, Juenke JM, Johnson-Davis KL. Method validation of a tricyclic antidepressant drug panel in urine by UPLC-MS/MS. Ann Clin Lab Sci. 2014;44(4):431–6.

    CAS  PubMed  Google Scholar 

  30. Breaud AR, Harlan R, Di Bussolo JM, McMillin GA, Clarke W. A rapid and fully-automated method for the quantitation of tricyclic antidepressants in serum using turbulent-flow liquid chromatography–tandem mass spectrometry. Clin Chim Acta. 2010;411(11–12):825–32.

    Article  CAS  PubMed  Google Scholar 

  31. Manousi N, Samanidou VF. Recent advances in the HPLC analysis of tricyclic antidepressants in bio-samples. Mini Rev Med Chem. 2020;20(1):24–38.

    Article  CAS  PubMed  Google Scholar 

  32. Breaud AR, Harlan R, Kozak M, Clarke W. A rapid and reliable method for the quantitation of tricyclic antidepressants in serum using HPLC-MS/MS. Clin Biochem. 2009;42(12):1300–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kanba KS, Kanba S, Nelson A, Okazaki H, Richelson E. [3H] neurotensin (8–13) binds in human brain to the same sites as does [3H] neurotensin but with higher affinity. J Neurochem. 1988;50(1):131–7.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng HC. The power issue: determination of KB or Ki from IC50: a closer look at the Cheng-Prusoff equation, the Schild plot and related power equations. J Pharmacol Toxicol Methods. 2001;46(2):61–71.

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Zhang B, Dong Y, Liu T, Zhang Y, Nie H, et al. A selective and cost-effective method for the reductive deuteration of activated alkenes. Tetrahedron Lett. 2017;58(28):2757–60.

    Article  CAS  Google Scholar 

  36. Yang X, Ben H, Ragauskas AJ. Recent Advances in the Synthesis of Deuterium-Labeled Compounds. Asian J Organic Chem. 2021;10(10):2473–85.

    Article  CAS  Google Scholar 

  37. Yi Y, Ren G, Zheng M, Zhao D, Li N, Chen X, et al. Simultaneous determination of deuterated vortioxetine and its major metabolite in human plasma by UPLC-MS/MS and application to a pharmacokinetic study in healthy volunteers. J Chromatogr B. 2020;1138: 121955.

    Article  CAS  Google Scholar 

  38. Richard A, Frank S. Deutetrabenazine in the treatment of Huntington’s disease. Neurodegenerative Dis Manag. 2019;9(1):31–7.

    Article  Google Scholar 

  39. Porsteinsson AP, Antonsdottir IM. An update on the advancements in the treatment of agitation in Alzheimer’s disease. Expert Opin Pharmacother. 2017;18(6):611–20.

    Article  CAS  PubMed  Google Scholar 

  40. Majeed A, Xiong J, Teopiz KM, Ng J, Ho R, Rosenblat JD, et al. Efficacy of dextromethorphan for the treatment of depression: a systematic review of preclinical and clinical trials. Expert Opin Emerg Drugs. 2021;26(1):63–74.

    Article  CAS  PubMed  Google Scholar 

  41. Khoury R. Deuterated dextromethorphan/quinidine for agitation in Alzheimer’s disease. Neural Regen Res. 2022;17(5):1013.

    Article  CAS  PubMed  Google Scholar 

  42. Kargbo RB. Application of deuterated N, N-dimethyltryptamine in the potential treatment of psychiatric and neurological disorders. ACS Med Chem Lett. 2022;13:1402–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang F, Jiang H, Deng Y, Yu J, Zhan M, Zhao L, et al. Design, synthesis and biological evaluation of deuterated Vismodegib for improving pharmacokinetic properties. Bioorg Med Chem Lett. 2018;28(14):2399–402.

    Article  CAS  PubMed  Google Scholar 

  44. Pang X, Wang Y, Chen Y. Design, synthesis, and biological evaluation of deuterated apalutamide with improved pharmacokinetic profiles. Bioorg Med Chem Lett. 2017;27(12):2803–6.

    Article  CAS  PubMed  Google Scholar 

  45. Guo S, Pang X, Peng L, Zhan M, Fan L, Gong Y, et al. Design, synthesis and biological evaluation of deuterated Tivozanib for improving pharmacokinetic properties. Bioorg Med Chem Lett. 2015;25(11):2425–8.

    Article  CAS  PubMed  Google Scholar 

  46. Harbeson SL, Tung RD. Deuterium in drug discovery and development. Annu Rep Med Chem. 2011;46:403–17.

    CAS  Google Scholar 

  47. Szostak M, Spain M, Procter DJ. Selective synthesis of α, α-dideuterio alcohols by the reduction of carboxylic acids using SmI2 and D2O as deuterium source under SET conditions. Org Lett. 2014;16(19):5052–5.

    Article  CAS  PubMed  Google Scholar 

  48. Foster AB. Deuterium isotope effects in studies of drug metabolism. Trends Pharmacol Sci. 1984;5:524–7.

    Article  CAS  Google Scholar 

  49. Kaur S, Gupta M. Deuteration as a tool for optimization of metabolic stability and toxicity of drugs. Glob J Pharmaceu Sci. 2017;1: 555566.

    Google Scholar 

  50. Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium-and tritium-labelled compounds: applications in the life sciences. Angew Chem Int Ed. 2018;57(7):1758–84.

    Article  CAS  Google Scholar 

  51. Jiang J, Pang X, Li L, Dai X, Diao X, Chen X, et al. Effect of N-methyl deuteration on metabolism and pharmacokinetics of enzalutamide. Drug Design Dev Therapy. 2016;10:2181–91.

    Article  CAS  Google Scholar 

  52. Marks DM, Shah MJ, Patkar AA, Masand PS, Park G-Y, Pae C-U. Serotonin-norepinephrine reuptake inhibitors for pain control: premise and promise. Curr Neuropharmacol. 2009;7(4):331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors acknowledge BVDU and Cleanchem Life Sciences for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Rane.

Ethics declarations

Funding

The funding for the experimental work was provided by Cleanchem Lifesciences LPP, Navi, Mumbai.

Conflict of Interest

All authors have no any conflict of competing interest to declare.

Ethics Approval

The animal experiments were carried out in accordance with the protocol (1120/IAEC/2022-2023; dated 12/08/2022) approved by the Institutional Animal Ethics Committee (IAEC), AIIMS, New Delhi and as per the guidelines laid down by the Committee for Control and Supervision of Experimental Animals (CCSEA), New Delhi.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

The supporting data for this article will be made available by the corresponding author on the request from reader.

Code Availability

Not applicable.

Author Contributions

R.R. wrote the manuscript with support from S.M., L.A. and U.A. D.K. contributed for the analysis and interpretation of data for this manuscript. B.G. and K.P. helped R.R. to supervise the project.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moharir, S., Akotkar, L., Aswar, U. et al. Improved Pharmacokinetic and Pharmacodynamic Profile of Deuterium-Reinforced Tricyclic Antidepressants Doxepin, Dosulepin, and Clomipramine in Animal Models. Eur J Drug Metab Pharmacokinet 49, 181–190 (2024). https://doi.org/10.1007/s13318-023-00870-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-023-00870-4

Navigation