Skip to main content
Log in

Correlation between total hypha length and haustoria number of Pseudoidium neolycopersici in type I trichome cells of tomato leaves

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Powdery mildew haustoria are easier to be observed by light microscopy in trichome cells compared to epidermal cells of infected leaves. The objective of this study was to explore the relationship between the hyphal length and the number of haustoria in type I trichome cells of tomato (Solanum lycopersicum Mill.) leaves. The trichome cells of tomato cv. Moneymaker were inoculated with conidia of tomato powdery mildew (Pseudoidium neolycopersici L. Kiss), isolate KTP-04. On these cells, the P. neolycopersici isolate produced a maximum of four vigorously elongated hyphae per conidium. At 12 days after inoculation, KTP-04 formed two to five haustoria per conidium. Field-emission scanning electron microscopy showed that the haustorium consisted of a haustorial body and several lobes embedded in an extrahaustorial matrix. The number of haustoria per hypha and hyphal length on trichomes were positively correlated. Also, the tips of one to four hypha per conidium (excluding germ tubes and primary appressoria) were injured using a minute glass needle installed on micromanipulator under a high-fidelity digital microscope, and their total hyphal lengths were compared. Wounded hyphae possessed the same number of haustoria in trichome cells as non-wounded hyphae, and total hyphal lengths were similar between treatment groups. In this study, a new model was developed to study the infection mechanisms of powdery mildews that will be useful in future gene expression studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Braun U (1987) A monograph of the Erysiphales (powdery mildews). Beih Nova Hedwig 89:1–700

    Google Scholar 

  • Braun U, Shin HD, Takamatsu S, Meeboon J, Kiss L, Lebeda A, Kitner M, Götz M (2019) Phylogeny and taxonomy of Golovinomyces orontii revisited. Mycol Prog 18:335–357

    Article  Google Scholar 

  • Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC (2010) Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc Natl Acad Sci U S A 107:460–465

    Article  CAS  PubMed  Google Scholar 

  • Duffey SS (1986) Plant glandular trichomes: their partial role in defense against insects. In: Juniper BE, Southwood TE (eds) Insects and the plant surface. Arnold, London, pp 151–172

    Google Scholar 

  • Dyki B (2003) Morphogenesis of pathogen causing powdery mildew in Polish cultivation of tomato. Veg Crop Res Bull 59:131–138

    Google Scholar 

  • Dyki B, Staniaszek M (1997) Infection of tomato by Oidium lycopersicum (Cooke & Massee, emend. Noordeloos & Loerakker). Phytopathol Pol 13:13–17

    Google Scholar 

  • Ellis J (2006) Insights into nonhost disease resistance: can they assist disease control in agriculture? Plant Cell 18:523–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita K, Matsuda Y, Wada M, Hirai Y, Mori K, Moriura N, Nonomura T, Kakutani K, Toyoda H (2004) Powdery mildew pathogens can suppress the chitinase gene expression induced in detached inner epidermis of barley coleoptile. Plant Cell Rep 23:504–511

    Article  CAS  PubMed  Google Scholar 

  • Glover BJ (2000) Differentiation in plant epidermal cells. J Exp Bot 51:497–505

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Groot T, Meijer-Dekens F, Niks RE, Lindhout P (1998) The resistance to powdery mildew (Oidium lycopersicum) in Lycopersicon species is mainly associated with hypersensitive response. Eur J Pl Pathol 104:399–407

    Article  Google Scholar 

  • Jacob D, David DR, Sztjenberg A, Elad Y (2008) Conditions for development of powdery mildew of tomato caused by Oidium neolycopersici. Phytopathology 98:270–281

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones H, Whipps JM, Gurr SJ (2001) The tomato powdery mildew fungus Oidium neolycopersici. Mol Plant Pathol 2:303–309

    Article  CAS  PubMed  Google Scholar 

  • Kang J-H, Liu G, Shi F, Jones AD, Beaudry RM, Howe GA (2010) The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiol 154:262–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashimoto K, Matsuda Y, Matsutani K, Sameshima T, Kakutani K, Nonomura T, Okada K, Kusakari S, Nakata K, Takamatsu S, Toyoda H (2003) Morphological and molecular characterization for a Japanese isolate of tomato powdery mildew Oidium neolycopersici and its host range. J Gen Plant Pathol 69:176–185

    Article  CAS  Google Scholar 

  • Kennedy GG, Sorenson CF (1985) Role of glandular trichomes in the resistance of Lycopersicon hirsutum f. glabratum to Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 78:547–551

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kiss L, Cook RTA, Saenz GS, Cunnington JH, Takamatsu S, Pascoe I, Bardin M, Nicot PC, Sato Y, Rossman AY (2001) Identification of two powdery mildew fungi, Oidium neolycopersici sp. nov. and O. lycopersici, infecting tomato in different parts of the world. Mycol Res 105:684–697

    Article  Google Scholar 

  • Koga D, Kusumi S, Shodo R, Dan Y, Ushiki T (2015) High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy. Microscopy 64:387–394

    Article  CAS  PubMed  Google Scholar 

  • LaMondia JA, Smith VL, Douglas SM (1999) Host range of Oidium lycopersicum on selected Solanaceous species in Connecticut. Plant Dis 83:341–344

    Article  Google Scholar 

  • Lebeda A, Mieslerová B, Petřivalský M, Luhová L, Špundová M, Sedlářová M, Nožková-Hlaváčková V, Pink DAC (2014) Resistance mechanisms of wild tomato germplasm to infection of Oidium neolycopersici. Eur J Pl Pathol 138:569–596

    Article  CAS  Google Scholar 

  • Lemke CA, Mutschler MA (1984) Inheritance of glandular trichomes in crosses between Lycopersicon esculentum and L. pennellii. J Am Soc Hort Sci 109:592–596

    Google Scholar 

  • Li C, Bonnema G, Che D, Dong L, Lindhout P, Visser R, Bai Y (2007) Biochemical and molecular mechanisms involved in monogenic resistance responses to tomato powdery mildew. Mol Plant Microbe Interact 20:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Li C, Faino L, Dong L, Fan J, Kiss L, de Giovanni C, Lebeda A, Scott J, Matsuda Y, Toyoda H, Lindhout P, Visser RGF, Bonnema G, Bai Y (2012) Characterization of polygenic resistance to powdery mildew in tomato at cytological, biochemical and gene expression level. Mol Plant Pathol 13:148–159

    Article  CAS  PubMed  Google Scholar 

  • Lindeberg M, Cunnac S, Collmer A (2012) Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol 20:199–208

    Article  CAS  PubMed  Google Scholar 

  • Matsuda Y, Kashimoto K, Takikawa Y, Aikami R, Nonomura T, Toyoda H (2001) Occurrence of new powdery mildew on greenhouse tomato cultivars. J Gen Plant Pathol 67:294–298

    Article  Google Scholar 

  • Matsuda Y, Sameshima T, Moriura N, Inoue K, Nonomura T, Kakutani K, Nishimura H, Kusakari S, Takamatsu S, Toyoda H (2005) Identification of individual powdery mildew fungi infecting leaves and direct detection of gene expression by single conidium polymerase chain reaction. Phytopathology 95:1137–1143

    Article  CAS  PubMed  Google Scholar 

  • McDowell ET, Kapteyn J, Schmidt A, Li C, Kang JH, Descour A, Shi F, Larson M, Schilmiller A, An L, Jones AD, Pichersky E, Soderlund CA, Gang DR (2011) Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiol 155:524–539

    Article  CAS  PubMed  Google Scholar 

  • Micali CO, Neumann U, Grunewald D, Panstruga R, O’Connell R (2011) Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13:210–226

    Article  CAS  PubMed  Google Scholar 

  • Nonomura T, Matsuda Y, Kakutani K, Takikawa Y, Toyoda H (2008) Physical control of powdery mildew (Oidium neolycopersici) on tomato leaves by exposure to corona discharge. Can J Plant Pathol 30:517–524

    Article  Google Scholar 

  • Nonomura T, Matsuda Y, Xu L, Kakutani K, Takikawa Y, Toyoda H (2009a) Collection of highly germinatve pseudochain conidia of Oidium neolycopersici from conidiophores by electrostatic attraction. Mycol Res 113:364–372

    Article  PubMed  Google Scholar 

  • Nonomura T, Xu L, Wada M, Kawamura S, Miyajima T, Nishitomi A, Kakutani K, Takikawa Y, Matsuda Y, Toyoda H (2009b) Trichome exudates of Lycopersicon pennellii form a chemical barrier to suppress leaf-surface germination of Oidium neolycopersici conidia. Plant Sci 176:31–37

    Article  CAS  Google Scholar 

  • Nonomura T, Nishitomi A, Matsuda Y, Soma C, Xu L, Kakutani K, Takikawa Y, Toyoda H (2010) Polymorphic change of appressoria by the tomato powdery mildew Oidium neolycopersici on host tomato leaves reflects multiple unsuccessful penetration attempts. Fungal Biol 114:917–928

    Article  PubMed  Google Scholar 

  • Nonomura T, Matsuda Y, Yamashita S, Akahoshi H, Takikawa Y, Kakutani K, Toyoda H (2013) Natural woody plant, Mallotus japonicus, as an ecological partner to transfer different pathotypic conidia of Oidium neolycopersici to greenhouse tomatoes. Plant Prot Sci 49:S33–S40

    Article  Google Scholar 

  • Oichi W, Matsuda Y, Sameshima T, Nonomura T, Kakutani K, Nishimura H, Kusakari S, Toyoda H (2004) Consecutive monitoring for conidiogenesis by Oidium neolycopersici on tomato leaves with a high-fidelity digital microscope. J Gen Plant Pathol 70:329–332

    Article  Google Scholar 

  • Oichi W, Matsuda Y, Nonomura T, Toyoda H, Xu L, Kusakari S (2006) Formation of conidial pseudochains by tomato powdery mildew Oidium neolycopersici. Plant Dis 90:915–919

    Article  CAS  PubMed  Google Scholar 

  • Peter AJ, Shanower TG (1998) Plant glandular trichomes: Chemical factories with many potential uses. Resonance 3:41–45

    Article  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  CAS  PubMed  Google Scholar 

  • Saenz GS, Taylor JW (1999) Phylogeny of the Erysiphales (powdery mildews) inferred from internal transcribed spacer ribosomal DNA sequences. Can J Bot 77:150–168

    CAS  Google Scholar 

  • Sameshima T, Kashimoto K, Kida K, Matsuda Y, Nonomura T, Kakutani K, Nakata K, Kusakari S, Toyoda H (2004) Cytological events in tomato leaves inoculated with conidia of Blumeria graminis f. sp. hordei and Oidium neolycopersici KTP-01. J Gen Plant Pathol 70:7–10

    Article  Google Scholar 

  • Schweizer P (2007) Nonhost resistance of plants to powdery mildew – new opportunities to unravel the mystery. Physiol Mol Plant Pathol 70:3–7

    Article  CAS  Google Scholar 

  • Segarra G, Reis M, Casanova E, Trillas MI (2009) Control of powdery mildew (Erysiphe polygoni) in tomato by foliar applications of compost tea. J Plant Pathol 91:683–689

    Google Scholar 

  • Seifi A, Nonomura T, Matsuda Y, Toyoda H, Bai Y (2012) An avirulent tomato powdery mildew isolate induces localized acquired resistance to a virulent isolate in a spatiotemporal manner. Mol Plant Microbe Interact 25:372–378

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Matsuda Y, Nonomura T, Ikeda H, Tamura N, Kusakari S, Kimbara J, Toyoda H (2007) Dual protection of hydroponic tomatoes from rhizosphere pathogens Ralstonia solanacearum and Fusarium oxysporum f. sp. radicis-lycopersici and airborne conidia of Oidium neolycopersici with an ozone-generative electrostatic spore precipitator. Plant Pathol 56:987–997

    Article  Google Scholar 

  • Simmons AT, Gurr GM (2005) Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agric For Entomol 7:265–276

    Article  Google Scholar 

  • Suzuki T, Murakami T, Takizumi Y, Ishimaru H, Kudo D, Takikawa Y, Matsuda Y, Kakutani K, Bai Y, Nonomura T (2018) Trichomes: interaction sites of tomato leaves with biotrophic powdery mildew pathogens. Eur J Pl Pathol 150:115–125

    Article  Google Scholar 

  • Takikawa Y, Kakutani K, Nonomura T, Matsuda Y, Toyoda H (2011a) Conidia of Erysiphe trifoliorum attempt penetration twice during a two-step germination process on non-host barley leaves and an artificial hydrophobic surface. Mycoscience 52:204–209

    Article  Google Scholar 

  • Takikawa Y, Xu L, Kakutani K, Nonomura T, Sameshima T, Matsuda Y, Toyoda H (2011b) Conidia of the tomato powdery mildew Oidium neolycopersici initiate germ tubes at a predetermined site. Mycoscience 52:198–203

    Article  Google Scholar 

  • Takikawa Y, Nonomura T, Miyamoto S, Okamoto N, Murakami T, Matsuda Y, Kakutani K, Kusakari S, Toyoda H (2015) Digital microscopic analysis of developmental process of conidiogenesis by powdery mildew pathogens isolated from melon leaves. Phytoparasitica 43:517–530

    Article  CAS  Google Scholar 

  • Tooker JF, Peiffer M, Luthe DS, Felton GW (2010) Trichomes as sensors detecting activity on the leaf surface. Plant Signal Behav 5:73–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Whipps JM, Budge SP, Fenlon JS (1998) Characteristics and host range of tomato powdery mildew. Plant Pathol 47:36–48

    Article  Google Scholar 

  • White JF Jr, Johnston SA, Wang CL, Chin CK (1997) First report of powdery mildew in greenhouse-grown tomatoes in New Jersey. Plant Dis 81:227

    Article  PubMed  Google Scholar 

  • Zeller KA (1995) Phylogenetic relatedness within the genus Erysiphe estimated with morphological characteristics. Mycologia 87:525–531

    Article  Google Scholar 

  • Zheng Z, Nonomura T, Bóka K, Matsuda Y, Visser RGF, Toyoda H, Kiss L, Bai Y (2013) Detection and quantification of Leveillula taurica growth in pepper leaves. Phytopathology 103:623–632

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grants for Scientific Research from Faculty of Agriculture, Kindai University, and Research Institute for Agricultural Technology and Innovation, Kindai University. The authors acknowledge the assistance of two professional editors who assisted with the English and grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nonomura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T., Nakao, Y., Ura, R. et al. Correlation between total hypha length and haustoria number of Pseudoidium neolycopersici in type I trichome cells of tomato leaves. Australasian Plant Pathol. 49, 451–460 (2020). https://doi.org/10.1007/s13313-020-00718-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-020-00718-4

Keywords

Navigation