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Abstract
Traumatic brain injury is a common type of acquired brain injury of varying severity carrying potentially deleterious con-
sequences for the afflicted individuals, families, and society. Following the initial, traumatically induced insult, cellular 
injury processes ensue. These are believed to be amenable to treatment. Among such injuries, neuroinflammation has gained 
interest and has become a specific focus for both experimental and clinical researchers. Neuroinflammation is elicited 
almost immediately following trauma, and extend for a long time, possibly for years, after the primary injury. In the acute 
phase, the inflammatory response is characterized by innate mechanisms such as the activation of microglia which among 
else mediates cytokine production. Among the earliest cytokines to emerge are the interleukin- (IL-) 1 family members, 
comprising, for example, the agonist IL-1β and its competitive antagonist, IL-1 receptor antagonist (IL-1ra). Because of its 
early emergence following trauma and its increased concentrations also after human TBI, IL-1 has been hypothesized to be 
a tractable treatment target following TBI. Ample experimental data supports this, and demonstrates restored neurological 
behavior, diminished lesion zones, and an attenuated inflammatory response following IL-1 modulation either through IL-1 
knock-out experiments, IL-1β inhibition, or IL-1ra treatment. Of these, IL-1ra treatment is likely the most physiological. 
In addition, recombinant human IL-1ra (anakinra) is already approved for utilization across a few rheumatologic disorders. 
As of today, one randomized clinical controlled trial has utilized IL-1ra inhibition as an intervention and demonstrated its 
safety. Further clinical trials powered for patient outcome are needed in order to demonstrate efficacy. In this review, we 
summarize IL-1 biology in relation to acute neuroinflammatory processes following TBI with a particular focus on current 
evidence for IL-1ra treatment both in the experimental and clinical context.
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Introduction

Traumatic brain injury (TBI), i.e., altered cerebral function 
due to external physical force [1], is a heterogenous disor-
der encompassing mild, moderate, and severe injuries [2]. 
TBI is a globally important cause of mortality or life-long 
disability [3] and currently, 55 million people are estimated 
to live in the aftermath of TBI [4]. Following decades of 
sparse interest, TBI is emerging as a pivotal health prior-
ity, not least because of the putative association between 
neurodegenerative diseases and TBI [5, 6]. International 
collaborative efforts, including the Collaborative European 
NeuroTrauma Effectiveness Research study (CENTER-TBI) 
[7] and the Transforming Research and Clinical Knowledge 
in TBI (TRACK-TBI) [8, 9], have used large aggregated 
observational datasets to identify promising strategies for 
patient stratification using a range of biomarkers, clinical, 
radiological, and biochemical. The hope is that this will 
allow patient-tailored treatment (so-called personalized 
medicine), by accurately identifying the specific pathologi-
cal abnormalities that occur in a given patient [3]. With 
this in mind, it is likely that the next phase of TBI research 
will be pathophysiology-oriented studies that target these 
specific processes.

Following the injury eliciting trauma (also known as the 
primary injury), TBI evokes numerous cellular and humoral 
injury processes. If left untreated, these may cause an irre-
versible secondary brain injury [10, 11]. Conversely, these 
mechanisms also constitute therapeutically tractable targets. 
The plethora of cellular injury processes include disruption 
of ion homeostasis, excitotoxicity, edema, blood–brain bar-
rier (BBB) disruption, and inflammation [10]. Among these, 
the inflammatory responses elicited in the injured brain have 
gained particular interest [12]. Whereas the central nerv-
ous system (CNS) historically was believed to be immune 
privileged, current experimental data support a distinct 
neuroinflammatory response elicited by the trauma [13]. 
Some of these reactions are likely to be detrimental, while 
others are beneficial to the injured brain [14, 15]. As such, 
an understanding of the inflammatory response to TBI has 

become a specific focus for both pre-clinical and clinical 
researchers [12].

Neuroinflammation is initiated in the immediate vicinity 
following the trauma, as a consequence of both local cell 
death, vascular injury, and BBB disruption [13, 16]. Ini-
tially, innate immune mechanisms are activated [15]. This 
triggers a cascade of events that leads to successive recruit-
ment of various immune-related mediators until adaptive 
responses ensue weeks to months following the initiating 
insult [13, 14]. Cytokines, small (~ 20 kDa) proteins that 
serve as inflammatory mediators synthesized across immune 
but also CNS cells [17, 18], are critical regulatory mediators 
in these processes [16], as shown across vast numbers of 
experimental studies [17]. In human severe TBI, cytokine 
increments have been described across CNS compartments 
of both brain extracellular fluid and cerebrospinal fluid 
(CSF). In this context, the interleukin- (IL-) 1 family is 
among the most studied cytokines [17, 19]. This cytokine 
family entails two agonistic ligands, namely IL-1α and IL-1β 
as well as an antagonist, i.e., the IL-1 receptor antagonist 
(IL-1ra) [20]. Following experimental discoveries that IL-1 
inhibition following TBI is beneficial, IL-1ra-mediated IL-1 
inhibition has been hypothesized to be a feasible avenue for 
neuroinflammatory modulation following TBI [21]. Below, 
we summarize IL-1 biology and signaling in the CNS, fol-
lowed by a detailed portrayal of IL-1 contextualized to the 
acute neuroinflammatory events that ensue TBI. In addition, 
we review the current state of the experimental and clinical 
research on IL-1ra treatment following TBI.

Interleukin‑1 Is a Core Mediator 
of Innate Neuroinflammation Amenable 
to Pharmacologic Modulation

IL-1 was discovered in the 1940s as the body’s endogenous 
fever-causing mediator [22, 23]. In 1974, it was denominated 
lymphocyte-activating factor [24], a nomenclature which 
was swapped to the IL-system in 1979 [25]. Since then, the 
knowledge of IL-1 has broadened into a big protein family 
of strictly regulated mediators. Current IL-1 agonists entail 
IL-1 (referring to both IL-1α and IL-1β [22, 26]), as well 
as IL-33, IL-36α, IL-36β, and IL-36γ [27]. These agonists 
bind the type I IL-1 receptor (IL-1R1), which mediates the 
majority of IL-1 induced signaling-related effects [22, 28, 
29]. There is also a type II IL-1 receptor (IL-1R2), which 
however constitutes a so-called decoy receptor [27], which 
means that it inhibits IL-1β signaling [22] by binding the 
protein while lacking the domains for intracellular trans-
duction. In addition, the IL-1 family is also composed of  
proteins with antagonistic effects to IL-1 and IL-1R1 [22, 
27]. The best known among the antagonists, IL-1ra, func-
tions as an endogenous competitive inhibitor [22] through 
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binding to IL-1R1 and thereby hindering activation of the 
receptor by IL-1α or IL-1β [30].

Under homeostatic conditions, IL-1 ligands are 
expressed at low levels [26] but IL-1 transcription is rap-
idly induced following a broad range of stimuli [26]. To 
become active, IL-1β requires caspase-1-mediated cleav-
age while IL-1α does not [31]. The key regulator in this 
process is the inflammasome [23], highlighted in the 
TBI context in detail below. Upon binding, another IL-1 
receptor accessory protein causes receptor dimerization, 

whereby the intracellular signaling cascades ensue. This 
ultimately leads to protein recruitment that, coupled 
with protein kinases, activates transcription factors per-
taining to the nuclear factor kappa light-chain-enhancer 
of activated B cells (NFκB), activator protein-1, c-Jun 
N-terminal kinase, mitogen-associated protein kinases, 
and p38 pathways among else [22, 31]. The joint effect of 
these signaling events is an all-encompassing activation 
of innate immunity [23]. These events are schematically 
summarized in Fig. 1.

Fig. 1  IL-1 signaling in the 
CNS. IL-1 ligands such as 
IL-1α, IL-1β, and IL-1ra binds 
to either one of the two IL-1 
receptors IL-1R1 or IL-1R2. 
IL-1β is synthesized upon 
inflammasome activation, 
typically within microglia 
and released. Upon binding to 
IL-1R1 (located at neurons, 
astrocytes, and endothelial 
cells), IL-1β elicits an intra-
cellular signaling cascade, 
dependent on dimerization to 
the IL-1 receptor accessory 
protein. Ultimately, this leads to 
transcription of mediators per-
taining to various pathways, e.g. 
NFκB, AP-1, and JNK. IL-1ra 
is a competitive IL-1 antago-
nist and hinders further IL-1 
signaling. IL-1R2 is a decoy 
receptor, which also inhibits 
IL-1 signaling. Abbreviations: 
AP-1, activator protein 1; IL-, 
interleukin; IL-1R, interleukin 
receptor type; IL-1ra, IL-1 
receptor antagonist, IL-1RAcP, 
IL-1 receptor accessory protein; 
JNK, c-Jun N-terminal kinase; 
NFκB, nuclear factor kappa 
light-chain-enhancer of acti-
vated B cells
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IL‑1β Is Expressed Across the CNS, Exerts Important 
Homeostatic Functions, and Might Be Attenuated 
Following Insult

All subsets of recognized IL-1 mediators have expression 
within the CNS (Fig. 1) [26]. Microglia, however, constitutes 
the key source of IL-1 production in the CNS before leu-
kocyte infiltration [23], where pro-IL-1β is mostly located 
within the cytoplasm [31]. Under homeostatic conditions, 
the IL-1 family is likely to be involved in normal CNS func-
tions, e.g., neuronal signaling, ionic homeostasis, synaptic 
plasticity, long-term potentiation, sleep regulation, induction 
of neurotrophic factors, and adult neurogenesis [23, 26, 31]. 
This diverse set of functions is likely enabled through cell 
type specific IL-1R1 signaling pathways within the CNS 
[29]. Recent data indicate that endothelial cells, astrocytes, 
neurons, choroid plexus cells, and ependymal cells express 
IL-1R1 [28, 29]. Notably, microglia do not seem to express 
IL-1R1 [29]. Instead, in recent work [29], microglial acti-
vation was claimed to be indirectly mediated through IL-
1-mediated activation of endothelial cells, as well as ependy-
mal/choroid plexus cells [29]. These cells also exerted other 
effector consequences downstream of IL-1 stimulation such 
as leukocyte/monocyte recruitment and pro-inflammatory 
cytokine release [29].

Given the versatile involvement of IL-1 in various inflam-
matory cascades and pathways, IL-1 has been postulated as 
a therapeutically controllable master-regulator of inflamma-
tion. Since the 1990s, it has been observed that attenuated 
IL-1 expression in the CNS following traumatic and non-
traumatic neuroinflammatory conditions seems beneficial 
[26]. Theoretically, IL-1 inhibition can be obtained through 
inhibition of the maturation/cleavage of pro-IL-1β, inhibi-
tion of extracellular IL-1β, and inhibition/antagonism of 

the IL-1R1 [22]. Utilization of the endogenous competitive 
antagonist IL-1ra is the most widely studied [26]. In vivo, 
IL-1ra binds to IL-1R1 without protein dimerization, thus 
inhibiting downstream activities [27]. IL-1ra has been devel-
oped into a pharmaceutical substance—human recombinant 
IL-1ra (rhIL-1ra, anakinra). Anakinra has been tested across 
several rheumatologic disorders [22, 32]. Today, the sub-
stance is approved for use in patients with rheumatoid arthri-
tis or cryopyrin-associated periodic syndrome [26, 27]. In 
CNS disorders, rhIL-1ra has been utilized in randomized 
studies of both aneurysmal subarachnoid hemorrhage and 
stroke [33–35]. In this work, rhIL-1ra has been shown to 
diminish inflammatory responses, and be safe [34, 35]. One 
study, which failed to recruit in accordance with their power 
analysis [33], could not demonstrate a reduction in neuroin-
flammation following rhIL-1ra treatment.

Taken together, the IL-1 family constitutes a collection of 
upstream innate immune mediators of core importance for 
neuroinflammation. Likely, the IL-1 family’s intimate regu-
lation with microglia is indirect through versatile signaling 
mechanisms across several CNS cell types. Therapeutics uti-
lizing knowledge of the IL-1 system has already been imple-
mented in rheumatology, but data is beginning to emerge for 
other CNS disorders. Following studies in non-traumatic acute 
brain injury, initial data has shown reduction in inflammation 
and safety. The remaining discussion is focused on TBI, both 
from the experimental and clinical viewpoint.

Innate Neuroinflammation Following 
Traumatic Brain Injury

Below, we provide a general overview of the chronological 
sequence of neuroinflammatory events that ensue following 
TBI, focusing first on core receptors and secondly on CNS 
inflammatory cells. We specifically highlight pathways where 
IL-1β is a core inflammatory mediator following TBI. Basic 
IL-1 biology is described above, while this section contextual-
izes IL-1β specifically in TBI. The discussion is centered at 
the acute phase following severe TBI. The sequence of events 
described below are schematically summarized in Fig. 2.

The Initiating Trauma Triggers Release 
of Damage‑Associated Molecular Patterns that Bind 
to Cell‑Specific Pattern Recognition Receptors

Immediately upon trauma, cell death and injury ensue. At the 
CNS borders, such as the BBB, loss of tissue integrity leads 
to leakage from the periphery of among else inflammatory 
mediators and complement [14, 16, 36]. Within the paren-
chyma [14, 16, 36], local tissue injury leads to the emer-
gence of damage-associated molecular patterns (DAMPs) 
[13], entailing otherwise intracellular molecules that reach 

Fig. 2  IL-1 synthesis and downstream effects following traumatic 
brain injury. Upon trauma, tissue destruction leads to the release 
of DAMPs from dying cells and leakage of inflammatory mediators 
such as complement across a disrupted BBB. This elicits innate CNS 
immune responses through binding of DAMPs to PRRs. Across these 
events, microglia is a core CNS specific immune cell. Various PRRs 
elicit different immune responses. In the inset, a priming and activa-
tion stimulus are depicted, typically necessary to activate the inflam-
masome within microglia. This yields cleavage of pro-IL1β into its 
active form. Inflammasome activation can also yield pyroptosis, 
through which even more IL-1β is expected to leak into the extracel-
lular room. Here, IL-1β effectuates numerous biological processes, 
of both deleterious and beneficial character for the injured CNS. 
Abbreviations: AP-1, activator protein 1; ASC, apoptosis-associated 
speck-like protein containing a caspase recruiting domain; BBB, 
blood-brain barrier; CNS, central nervous system; DAMP, damage-
associated molecular pattern; IL- interleukin; IL-1ra, IL-1 receptor 
antagonist; JNK, c-Jun N-terminal kinase; NGF, nerve growth factor; 
NFκB, nuclear factor kappa light-chain-enhancer of activated B cells; 
NLR, nucleotide-binding oligomerization domain-like receptor; PRR, 
pattern recognition receptor; TBI, traumatic brain injury; TLR, Toll-
like receptor

◂
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the extracellular milieu [37], e.g., as a consequence of tissue 
necrosis and cytoplasmic leakage interstitially. Following 
(sterile) trauma, the subgroup of DAMPs that are organism-
endogenous are referred to as alarmins [38]. These include 
but are not limited to high mobility group box1 (HMGB1), 
heat shock proteins, S100 proteins, IL-1α, IL-33, uric acid, 
and adenosine triphosphate.

Alarmins function as ligands to pattern recognition recep-
tors (PRRs), a collective name for several receptor families 
with different stereotypical downstream signaling pathways, 
as well as cellular localizations [13]. Specific subfamilies of 
PRRs include Toll-like receptors (TLRs), nucleotide-binding 
oligomerization domain-like receptors (NLRs), RIG-like 
receptors, absent in melanoma-2-like receptors, and other 
receptor families [39]. Specific subclasses of PRRs utilize 
similar downstream signaling pathways [13]. In line with 
this, the most studied receptor—TLRs—can be expressed 
both at the cell surface or the cytoplasm [40, 41]. These 
receptors most commonly signal through either myeloid dif-
ferentiation factor 88 which leads to NFκB activation or (in 
case of TLR3) the TIR domain-containing adaptor protein-
inducing interferon β [39, 41, 42]. In the CNS, all cell types 
likely express some subtypes of TLRs, whereas microglia 
express all known TLR subtypes [40, 43]. This seems natu-
ral as microglia serve as the surveillance cell in the CNS and 
is the first cell-type to become activated [12, 44], through 
among else DAMP-mediated activation of TLRs, especially 
TLR4 [42]. Importantly, astrocytes also express TLRs and 
promote, e.g., cytokine production, astrocytic migration, and 
reduce neuronal survival [41].

In contrast to TLRs, NLRs are exclusively expressed 
intracellularly [40], and signaling results in assembly of the 
inflammasome [12], crucial for caspase-mediated cleav-
age of pro-IL-1β into its active form [45]. Because of its 
central role for IL-1β, we next discuss the inflammasome 
specifically.

Inflammasome Assembly and Activation 
Following TBI Is Crucial for IL‑1β Production, 
While Inflammasome Overactivation Can Lead 
to Pyroptosis

The inflammasome, originally described in 2002, is a critical 
part of the innate immune response [45]. Generally, inflam-
masomes can be defined as large multiprotein complexes  
(estimated to ~ 700 kDa) consisting of three unique units: a 
PRR, an adaptor protein called apoptosis-associated speck-
like protein containing a caspase recruiting domain (ASC), 
and caspase 1 [13, 40, 46]. The PRR can consist of, e.g., an 
NLR or Absent in melanoma 2-protein [6, 40]. Currently, at 
least six different inflammasomes utilizing NLRs as sensor 
proteins have been described [40]. The first inflammasome 
subtype described—NLR family pyrin domain containing 

(NLRP) 1 [46]—is expressed in cerebral cortex neurons and 
microglia [14, 47, 48]. In addition, NLRP2 and NLRP3 have 
been described in the CNS [40]. Astrocytes have been shown 
to express NLRP2 [49], while the NLRP3 inflammasome has 
been implicated in astrocytes, microglia, and neurons [44, 50].

For the inflammasome to become activated, a priming 
stimulus followed by an activating ditto is warranted [51]. 
The priming stimulus and downstream activating signal-
ing mechanism is unique to the inflammasome subtype [6]. 
For example, NLRP3 can be primed by several stimulus 
which converge into NFκB signaling, after which activa-
tion ensues through yet incompletely described mechanisms 
[52]. Common to the various inflammasome subtypes are 
the downstream effector events, which can be subdivided 
into pyroptosis or IL-1β and IL-18 release [45, 46]. Pyrop-
tosis has been associated with inflammasome overactivation  
[51] and is a distinct cell death mechanism, whereby cell 
lysis occurs and is followed by release of cellular content 
otherwise restricted to the cytoplasm [46], thus plausibly  
further incrementing inflammatory signaling through release 
of pro-inflammatory cytokines [44]. Notably, this can be 
one mechanism through which IL-1β and IL-18 are released 
from the cytoplasm [52]. Pyroptosis has been described 
in neurons and glial cells [44]. Conversely to pyroptosis, 
inflammasome activation also leads to caspase-1-mediated 
cleavage of pro-IL-1β into IL-1β, and analogously for IL-18 
[40]. This is then followed by extracellular release, which is 
still incompletely described [46]. In accordance with this, 
NLRP3 activation is seen already at 6 h following TBI [50] 
and IL-1β has been seen to increase also as early as 15 min 
[48], 4 h [53], and 6 h [50] following trauma. In summary, 
inflammasome-induced caspase-1-mediated cleavage is a 
core mechanism through which IL-1β is synthesized in the 
CNS following TBI. Incremented and abnormal inflamma-
tory stimulation leads to pyroptosis, potentially leading to  
even higher levels of IL-1β interstitially.

Downstream Effects of IL‑1 Signaling Entail 
Presumed Propagation of Inflammatory Signaling, 
Encompassing Both Neurotoxic and Protective 
Mechanisms

IL-1β is thus rapidly induced following trauma onset and 
inflammasome activation. In fact, the entire IL-1 family of 
cytokines are among the earliest innate immune mediators 
to emerge [13, 26]. After exerting the intracellular cascades 
as described above, IL-1β propagates the post-traumatic pro-
inflammatory response in multi-faceted ways. For example, 
IL-1β contributes to BBB disruption following TBI [54, 55]. 
It has been suggested that this mechanism is mediated through 
IL-1-signaling-induced release of vascular endothelial growth 
factor [56], but also through IL-1β-mediated downregulation  
of astrocytic Sonic hedgehog [57], or IL-1β-mediated secretion 
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of other cytokines, which in turn act on the BBB [55]. In line  
with this, the ratio between IL-1β expression in CSF and blood 
has been correlated with BBB integrity in patients following 
severe TBI [58].

IL-1β has also been shown to diminish signaling of brain 
derived neurotrophic factor (BDNF) [59], a core neurotrophin 
for CNS neurons [60]. This is of importance in the TBI context, 
where polymorphism in the BDNF gene has been associated 
with cognitive capacity following trauma [61]. Moreover, IL-1β 
has also been suggested to mediate neuronal loss after TBI [54]. 
In vivo, following experimental TBI, this has been suggested to 
occur through extracellular signal-regulated kinase-dependent 
phosphorylation [62]. More recently, astrocytes were suggested 
to exert neurotoxic effects following astrocytic stimulation of 
IL-1α rather than IL-1β [63]. The mechanism underlying this 
finding was later suggested to be saturated lipoparticles [64]. 
In contrast, we recently derived brainstem astrocytes from 
embryonic stem cells and subjected them to similar cytokines 
in vitro as described in Ref. [63]. We could induce the neu-
rotoxic effect on motor neurons through utilization of these 
cytokines, but also through utilization of IL-β and IL-6 jointly 
[65]. This mechanism, shown to be mediated through pathways 
related to endoplasmic reticulum stress and altered regulation 
of MYC [65], could possibly be of interest also in the in vivo 
context after TBI. In addition to these highlighted downstream 
functions of IL-1β, this pro-inflammatory cytokine is likely 
also involved in peripheral immune cell recruitment, edema 
formation, initiation of phagocytosis, and cytokine production 
to name a few [54, 66]. Taken together, IL-1 downstream sign-
aling elicits broad downstream consequences that propagates 
deleterious aspects of inflammation following TBI.

In contrast, IL-1β signaling also seems to be involved in 
presumptive neuroprotective responses elicited after TBI. Both 
intracerebroventricular injection of IL-1β as well as experi-
mental TBI models increase the expression of nerve growth 
factor in the CNS, suggested to be released from astrocytes 
[67, 68]. In line with this, treatment with IL-1ra reduces nerve 
growth factor release following TBI [69], thus suggesting that  
IL-1β also likely confers neuroprotective effects. In sum-
mary, the duality of IL-1β suggests that even if it is a tentative 
treatment target [26] following TBI, the multi-faceted effects 
downstream of IL-1β might yield unexpected and undesirable 
hindering of neuroprotective mechanisms.

Cellular Immune Events Occurring Across  
the CNS in Parallel to IL‑1β Cleavage Promotes 
Peripheral Immune Cell Recruitment  
and Adaptive Immune Responses

The discussion above is centered around IL-1β, while nat-
urally there are numerous other pro-inflammatory events 
happening in conjunction to inflammasome activation. 
Microglial activation is synchronously promoted by other 

inflammatory mediators, such as complement [36, 70]. 
Complement serves as a molecular target of interest for 
modulation of the inflammatory response after experimen-
tal TBI [70], and a clinical trial of complement inhibition is 
ongoing [71]. Activated microglia also exert a plethora of 
functions, including cytokine production [16, 72] of, e.g., 
IL-6, tumor necrosis factor-(TNF-)α, interferon-γ, and reac-
tive oxygen species [12, 16]. Astrocytes act in concert with 
microglia, as described recently in response to microglia-
mediated cytokine production [63]. Microglial activation 
also leads to the production of chemokines [72], i.e., small, 
heparin-binding proteins which serve as leukocyte attract-
ants [17]. Activated astrocytes further promote the release 
of chemoattractants [13]. This leads to the recruitment of 
peripheral immune cells to the site of injury [72]. In fact, 
the first peripheral immune cells arrive within hours to the 
lesioned brain and consist of neutrophils [12, 13]. Through-
out the ensuing days, they are accompanied by monocyte-
derived macrophages, marking late innate immune reactions 
[13, 14]. After several days stretching into weeks, adaptive 
immune responses begin to emerge [13].

Interleukin‑1 Receptor Antagonist Treatment 
Shifts the Inflammatory Response Intracranially

A substantive body of evidence has demonstrated IL-1β 
increments following TBI in both the experimental and clini-
cal context [17]. It has for some time been hypothesized that 
IL-1ra confers a neuroprotective effect in the aftermath of 
TBI [73]. Below, we summarize experimental and clinical 
work on IL-1 modulation with a particular focus on IL-1ra-
based therapeutics. Readers are also referred to another up-
to-date review on these matters [74].

IL‑1 Modulation Following Experimental TBI 
Reduces Lesion Size, Attenuates Pro‑inflammatory 
Signaling, and Improves Functional Outcome

Experimental work exploring IL-1-modulation follow-
ing experimental TBI has been undertaken for decades. In 
Table 1, selected works are summarized. Works included 
in this table all demonstrate specific IL-1β modulation. We 
have also included work pertaining to specific upstream 
inflammasome/inflammasome subset inhibition [48, 75–77], 
while excluding studies utilizing non-specific mediators, 
of which one effect might be inflammasome inhibition 
[78–80]. Moreover, we have included genetic knock-out 
studies on the IL-1R1 [81–83], as well as IL-1α and IL-1β 
inhibition [82]. Naturally, we also include studies utilizing 
pharmacologic modulation of IL-1β, either through utiliza-
tion of IL-1ra [82, 84–88] or through neutralizing antibod-
ies [89–94]. Taken together, n = 20 studies were found. One 
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employed an aseptic cryogenic injury model [95] instead of 
the more traditional mechanical injury models, of which the 
most common was the fluid percussion injury model [96, 
97]. Among all included studies, n = 6 were carried out in 
rats, while n = 14 were carried out in mice. Unexpectedly, 
in n = 6 studies [69, 76, 81, 92, 93, 95], the authors did not 
specify injury severity. This seems rather striking from a 
translational viewpoint, where patient disease trajectories 
are expected to be highly dependent on trauma endotypes 
[98], but also the experimental context, where different 
trauma types yield different inflammatory responses [99].

Principally, four methods for IL-1 modulation were 
employed across the different studies, in accordance with 
the theoretical line of reasoning stated above [22]. First, IL-1 
inhibition can be achieved through inflammasome modula-
tion upstream of the IL-1R1. Two [76, 77] of the studies [48, 
75–77] directed at inflammasome inhibition incorporated 
behavioral testing. Here, mice improved both some motor and 
cognitive skills following inflammasome inhibition [76, 77]. 
In parallel, these studies demonstrated diminished lesion vol-
umes [48, 76, 77] and attenuated cerebral edema [76, 77]. All 
of these studies also modulated the inflammatory response, 
including IL-1β [48, 75–77]. These findings are in line with 
studies utilizing non-specific immune modulation following 
TBI, where one of presumably several effects is inflamma-
some/IL-1β attenuation [78–80]. Of particular interest among 
non-specific inflammasome modulators is hypothermia. Early 
work [100] demonstrated that hypothermia decreased IL-1β 
levels following TBI and at the same time normalized nerve 
growth factor expression. Later work [101] observed among 
else inflammasome modulation following hypothermia, while 
others have argued that hypothermia exerts its effect(s) through 
TLR-4-mediated myeloid differentiation factor 88 signaling 
[102]. Hence, the exact mechanisms mediated through hypo-
thermia are still incompletely characterized. This is reflected 
in a clinical trial on hypothermia following TBI [103], where 
hypothermia was only seen to be beneficial in limited sub-
group analyses. In line with this, hypothermia is only advised  
as a last-tier therapy following clinical TBI [104]. One possible  
mechanism for this might be that hypothermia inhibits neu-
roprotective mechanisms in adjunct to its anti-inflammatory  
effects, in a fashion similar to how nerve growth factor is inhib-
ited following treatment with IL-1ra [69].

Next, IL-1 modulation has also been studied through 
genetic modulation [81–83]. Here, knockout of the IL-1R1 
alters the CNS endogenous and peripheral immune response 
following injury [81], without necessarily alleviating cer-
ebral edema or lesion volumes [82, 83]. Interestingly, despite 
the lack of structural findings, neurological outcome of the 
animals improved in the majority of tests following IL-1R1 
deletion in one of the studies undertaken [83].

Lastly, IL-1 modulation can also be obtained through 
inhibition of the IL-1R1 utilizing either IL-1β antibodies 

[89–94] or else IL-1ra in either the human or mouse recom-
binant form [82, 84, 85, 87, 88]. In addition, two studies 
[69, 86] utilized genetically induced IL-1ra overexpression 
in situ. With the exception of genetical IL-1ra overexpres-
sion, the route of administration of the IL-1 modulator must 
be considered. Among the included studies, the IL-1 modu-
lator was administered subcutaneously [85, 87, 88], intrave-
nously [85], intraperitoneally [90–93], and intracerebroven-
tricularly [84, 89, 94, 95]. This is particularly important 
when considering IL-1ra, given the poor BBB penetrance 
of this molecule [26, 74].

In some studies, IL-1ra or IL-1β antibodies ameliorated 
behavioral changes following TBI including motor functions 
[95], whereas other studies rather found cognitive improve-
ments and complex behavioral changes [85, 89–91]. Among the 
included studies, one specifically assessed post-traumatic epi-
lepsy [87] and found acutely and chronically diminished seizure 
susceptibility. The causal mechanism underlying these behav-
ioral findings likely pertain to diminished lesion magnitude. In 
line with this, several studies report an attenuated inflammatory 
response following IL-1ra or IL-1 antibody treatment [87–89, 
92, 93, 95]. Even though this per se is not necessarily prognos-
tically beneficial, the same studies show simultaneous lesion 
volume diminishment, fewer dying neurons, diminished edema, 
attenuated caspase 3-expression, reduced oligodendrocyte loss, 
preserved parvalbumin interneurons, and dopaminergic signal-
ing [84, 85, 87–90, 92–95]. Taken together, ample experimental 
evidence suggests a role for IL-1 modulation following TBI.

Clinical Studies of IL‑1 Following TBI

The activation and incremented levels of the IL-1 family mem-
bers including IL-1 and IL-1ra are well-documented in the CNS 
following TBI, as reviewed in Ref. [17]. Different protein quan-
tification techniques hold promise for protein biomarker discov-
ery in CSF following trauma [108]. In a uniquely large cohort 
of patients, Lindblad and colleagues assessed n = 177 proteins 
observationally following human severe TBI across both CSF 
and blood. As expected, both IL-1α and IL-1β demonstrated 
an increased expression in CSF [58]. Moreover, these proteins 
were also shown to be significantly associated with BBB dis-
ruption, thus pointing towards an important interplay between 
these two cellular injury mechanisms following TBI [58, 109]. 
In addition to CSF, cytokine production has also been assessed 
utilizing cerebral microdialysis. Following TBI, cytokine pro-
duction likely exhibits a stereotyped sequential expression tem-
porally. Throughout this process, expression levels of IL-1α, 
IL-1β, and IL-1ra are believed to co-vary [110]. Importantly, 
substantive data suggest that the production of these cytokines 
occur also within the human CNS [111], but with influ-
ences from the periphery. The latter has been demonstrated 
in TBI patients with non-CNS infections, where the periph-
eral immune response shifts CNS production of inflammatory 
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mediators [112]. Notably, brain extracellular fluid levels of IL-
1ra decreased in this patient group [112]. In blood, numerous 
structural biomarkers are intensively studied, among else glial 
fibrillary acidic protein, S100B, neurofilament light, ubiquitin 
C-terminal hydrolase L1, tau, and neuron-specific enolase. In 
blood, these biomarkers have been shown to serve as surrogate 
markers of brain injury burden [113], but not more distinct 
anatomical pathology [114]. In line with this, inflammatory 
modulation specifically directed at microglia results in altered 
neurofilament light values [115], possibly indicating that spe-
cific blood biomarkers might serve utile in the future.

Following these observational studies, the next step is to 
delineate whether the inflammatory response, and specifically 
IL-1 and IL-1ra, affects clinical outcome. In several studies, 
outcome analysis has been precluded due to small sample 
size [21, 112], hence why data is sparse in this domain. A 
recent systematic review investigated protein biomarkers in 
CSF following TBI and found several proteins associated 
with outcome. No studies assessing IL-1ra or other IL-1 pro-
teins were included in this review, and IL-1ra did therefore 
not show either a beneficial or deleterious effect on outcome 
[116]. In contrast, Zeiler et al. reviewed cytokines in both 
CSF and cerebral microdialysis following human TBI [19]. 
Here, the authors found n = 4 studies [117–120] demonstrat-
ing a relationship between IL-1β in CSF and patient func-
tional outcome. The discrepancy between the results of these 
two systematic reviews is likely a consequence of broader 
inclusion criteria as Zeiler and colleagues included pediatric 
studies [117, 118], one study that demonstrated a borderline 
significant trend between CSF-IL-1β and outcome [119], as 
well as one study predominantly describing increased CSF 
levels of IL-1β without a clear relationship to outcome [120]. 
In contrast, among cerebral microdialysis studies, there has 
been but one study [73] which has demonstrated a relationship 
between IL-1ra and functional outcome.

To date, one phase II randomized controlled trial assess-
ing recombinant human IL-1ra has been undertaken [21], 
the primary outcome of which was safety assessment, while 
demonstrating feasibility and an altered neuroinflamma-
tory response. rhIL-1ra was administered subcutaneously 
in doses of 100 mg once daily throughout 5 days from injury. 
First, rhIL-1ra was a safe study drug as per a priori defini-
tions throughout the study protocol. Importantly, the authors 
demonstrated that the study drug reached the CNS and main-
tained an adequate concentration within the CNS throughout 
the study period. Utilizing principal component analysis, 
the authors also demonstrated a neuroinflammatory shift, 
further speaking in favor of the treatment effect.

In a follow-up study [121] utilizing the same clinical 
cohort, the neuroinflammatory response was characterized 
in greater detail through advanced statistical tools. Uniquely, 
the authors demonstrated a CNS-specific, temporally regu-
lated shift in cytokine expression. Cytokine responses were 

interpreted in accordance with the then dominating paradigm 
for microglial responses [122, 123], which described micro-
glia as polarized towards either a pro- or anti-inflammatory 
state. Today, this concept is largely abandoned as microglial 
response has been shown to be more versatile [124]. In this 
study by Helmy et al. [121], rhIL-1ra treatment was found 
to shift the neuroinflammatory response in both brain extra-
cellular fluid and in plasma. For brain extracellular fluid, 
the neuroinflammatory shift predominantly occurred within 
the first 48 h following injury. Intracranially, the rhIL-1ra 
treatment elicited paradoxically increased IL-1β and upreg-
ulated proteins associated with peripheral macrophage 
recruitment [121] such as monocyte chemoattractant pro-
tein-1 [125]. Further work must determine and extend the  
biological contextualization of these findings.

To summarize, robust clinical data demonstrate an injury-
dependent altered neuroinflammatory response in the injured 
brain [17, 58, 108]. This response is CNS-specific and produc-
tion of at least some core cytokines occurs in CNS compart-
ments such as CSF and brain extracellular fluid [111]. As a 
core innate immune signaling pathway, the IL-1 system holds 
great promise as a therapeutic target. To date, few studies have 
investigated the clinical impact of IL-1β, IL-1α, and IL-1ra, 
but a high-quality evidence interventional study showed that 
the neuroinflammatory response following severe TBI is mod-
ulated following IL-1ra inhibition and that study drug adminis-
tration was safe [21, 121]. Below, a synthesis of experimental 
and clinical findings and future research avenues are discussed.

Discussion

Neuroinflammation is a core cellular injury mechanism fol-
lowing TBI. Inflammatory cells and mediators are likely to 
play a mechanistic role in development of secondary insults. 
We have summarized the strong evidence in favor of IL-
1-modulation following experimental TBI, as well as initial 
promising clinical data in support of continued efforts in 
this domain. Below, we contextualize why we believe that 
pathophysiology-oriented neuroinflammatory modulation 
throughout interventional clinical trials is the next natural 
step in severe TBI research.

rhIL‑1ra Treatment Is Attainable, Safe, 
and Supported by Robust Experimental Work

We have reviewed the work that underlies our current knowledge  
of the IL-1 family, and these cytokines’ role following TBI. Within  
the experimental context, numerous studies demonstrate behav-
ioral improvements that are paralleled by an altered neuroinflam-
matory response and other structural findings in rodents following  
TBI [83, 87–91, 95]. Of note, these results have emerged from 
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different research groups across a long time period, thus speak-
ing strongly in favor of reproducibility and thereby—a genuine 
treatment effect at the biological level. Yet, there are well-known 
differences between the rodent and human immune system [126]. 
Together, this raises the question as to whether the experimental 
biological effect is also clinically discernible.

In the clinical neurocritical care setting, observational data 
demonstrate increased protein levels of the IL-1 family follow-
ing TBI [17]. A few clinical studies indicate that incremented 
levels of IL-1β are associated with poor prognosis [117, 118] 
and conversely that high levels of IL-1ra is neuroprotective 
[73]. Yet, this data was collected from small observational 
studies of mixed patient populations and should therefore be 
considered—at best—indicative of an association. Moreover, 
interventional trials of rhIL-1ra have inherent challenges. First, 
rhIL-1ra has a molecular mass of ~ 17 kDa [127], which has 
been hypothesized to limit CNS penetrance when administered 
peripherally [26, 74]. However, both peripheral intravenous 
[127] and subcutaneous administration [21] at a sufficient dose 
yield adequate CNS concentrations, making treatment feasi-
ble. Secondly, acute brain injury patients are notoriously dif-
ficult to include in randomized studies, as illustrated by Singh  
and colleagues, who administered rhIL-1ra to patients with 
aneurysmal subarachnoid hemorrhage in need of CSF drainage 
through a ventriculostomy. Their original power analysis sug-
gested inclusion of n = 32 patients, whereas n = 13 were finally 
recruited. They found a small but non-significant reduction of 
IL-6 levels in the treated group [33]. This non-significant effect  
was likely because of the underpowered sample size, highlight-
ing the high risk for type II errors in these patient segments.

In contrast, other non-traumatic brain injuries, characterized 
by an acute neuroinflammatory response [20], have been stud-
ied in interventional study designs. Here, a strong reduction in 
plasma IL-6 following rhIL-1ra treatment was seen following 
both aneurysmal subarachnoid hemorrhage [34] and also acute 
ischemic stroke [35]. Notably, across both studies, rhIL-1ra 
administration was proven safe [34, 35]. The latter is corrobo-
rated by the, to date, only randomized controlled trial of rhIL-1ra 
in severe TBI patients [21]. Importantly, it was shown that rhIL-
1ra modified the neuroinflammatory response [121], the first 
study of its kind to demonstrate an actual biological treatment 
effect following severe TBI. The study was, however, not pow-
ered to assess outcome. Further phase III studies are therefore 
highly warranted, perhaps especially in the context of TBI, where 
no effective disease-modifying drug yet has been found [128].

Neuroinflammatory Modulation Constitutes One 
Opportunity for Personalized TBI Treatment

The attempt to counteract TBI pathophysiology utilizing a 
biologically sound target constitutes a paradigm shift in TBI 
research. As rhIL-1ra is now proven to be safe while exerting 
an inflammation modifying effect [21, 121] speaks strongly 

in favor of both further studies utilizing the same mediator  
but—perhaps even more importantly—to elaborate in the field 
of neuroinflammation-targeted treatment following TBI. This 
is closely attached to the over-arching ambition of personalized 
treatment [3]. Paradoxically, in the absence of high-quality evi-
dence, TBI is to some extent the diagnosis, in which treatment 
has always been individualized because of the inherent patient, 
injury, and secondary insult heterogeneity. In line with this, 
we suggest that future treatment should be directed towards 
pathophysiology-oriented treatment, of which neuroinflamma-
tion ought to be a core target that covers a range of possible 
mechanisms of injury [109].

To enable the eventual implementation of neuroinflam-
matory treatment, clinical routine warrants neuroinflamma-
tory monitoring tools. Current TBI management is centered 
around multimodality-based approaches that ultimately 
strive to assess secondary insults [129]. Future advances 
require neuromonitoring to be directed also beyond sec-
ondary insults towards pathophysiology and cellular injury 
mechanisms. One tentative technique that is feasible for 
early implementation is fluid biomarkers that are readily 
available to quantify across both CSF and cerebral microdi-
alysis. Numerous techniques are available and were recently 
reviewed [108]. This would naturally implement neuroin-
flammation in clinical decision making.

To enable the development of clinically beneficial treat-
ments, outcome assessment tools likely need to be refined. Tra-
ditionally, the Glasgow Outcome Scale [130] has been utilized. 
This five-level ordinal scale stretching from dead to complete 
recovery was made more granular by the implementation of the 
extended Glasgow Outcome Scale [131]. Even though these 
scores encompass an overarching long-term functional assess-
ment of patient status, they have been considered too crude [7], 
and the need for precise outcome metrics have been highlighted 
across international collaborative TBI efforts [7]. Within the 
clinical context, multi-dimensional outcome tools have been 
suggested [3]. Although these serve the purpose of a more com-
plete outcome portrayal, pathophysiology-oriented treatment 
likely warrants pathophysiology-relevant outcome metrics. In 
the case of neuroinflammatory modulation, a secondary out-
come (aside from safety, functional outcome) should likely be 
linked to the overarching neuroinflammatory response, as uti-
lized by Helmy and colleagues [121]. As it is expectedly dif-
ficult to assess inter-dependent parallel processes with a com-
mon trigger, complex, multidimensional statistical techniques 
are likely warranted [110].

The work on rhIL-1ra should be viewed as the starting 
point for neuroinflammatory modulation following TBI, and 
we advise researchers to initiate additional interventional 
studies targeted towards neuroinflammation. As highlighted 
within a recent systematic review [116], different caspases 
constitute eligible targets. For example, caspase-1 is respon-
sible for the cleavage of pro-IL-1β into its mature form [13]; 
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this aligns with the overall benefit of neuroinflammatory 
modulation. Other suggested treatment targets are IL-6 [117, 
118] and complement [58, 109]. The latter is in fact cur-
rently initiated as an ongoing trial [71]. Importantly, this 
review puts a clear focus in the domain of acute innate neu-
roinflammation, whereas there is a growing interest also in 
adaptive responses. Among else, the long-term development 
of autoantibodies [132] seems to be of importance, thus 
speaking in favor of continued neuroinflammatory vigilance 
following the acute trauma phase.

To summarize, TBI research holds the opportunity of 
entering a new era of pathophysiology-oriented treatment. 
Neuroinflammatory-focused treatment is feasible, as dem-
onstrated above, even though the tentative clinical benefit 
remains to be demonstrated in the clinical context.

Conclusion

Neuroinflammatory modulation following severe TBI is bio-
logically rational, as proven in a rich amount of experimental 
studies. However, to this point, only one interventional neuro-
inflammatory-modulating trial has been undertaken following 
severe TBI. Aside from showing clinical safety and feasibility, 
this treatment also demonstrates that the neuroinflammatory 
response can be modulated following severe TBI, thus initiat-
ing a new era of pathophysiology-oriented treatment. Future 
experimental and clinical studies specifically addressing target-
defined facets of secondary injury are warranted.
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