Skip to main content
Log in

Oxygen–Glucose Deprived Peripheral Blood Mononuclear Cells Protect Against Ischemic Stroke

  • Original Article
  • Published:
Neurotherapeutics

Abstract

Stroke is the leading cause of severe long-term disability. Cell therapy has recently emerged as an approach to facilitate functional recovery in stroke. Although administration of peripheral blood mononuclear cells preconditioned by oxygen–glucose deprivation (OGD-PBMCs) has been shown to be a therapeutic strategy for ischemic stroke, the recovery mechanisms remain largely unknown. We hypothesised that cell–cell communications within PBMCs and between PBMCs and resident cells are necessary for a polarising protective phenotype. Here, we investigated the therapeutic mechanisms underlying the effects of OGD-PBMCs through the secretome. We compared levels of transcriptomes, cytokines, and exosomal microRNA in human PBMCs by RNA sequences, Luminex assay, flow cytometric analysis, and western blotting under normoxic and OGD conditions. We also performed microscopic analyses to assess the identification of remodelling factor-positive cells and evaluate angiogenesis, axonal outgrowth, and functional recovery by blinded examination by administration of OGD-PBMCs after ischemic stroke in Sprague–Dawley rats. We found that the therapeutic potential of OGD-PBMCs was mediated by a polarised protective state through decreased levels of exosomal miR-155-5p, and upregulation of vascular endothelial growth factor and a pluripotent stem cell marker stage-specific embryonic antigen-3 through the hypoxia-inducible factor-1α axis. After administration of OGD-PBMCs, microenvironment changes in resident microglia by the secretome promoted angiogenesis and axonal outgrowth, resulting in functional recovery after cerebral ischemia. Our findings revealed the mechanisms underlying the refinement of the neurovascular unit by secretome-mediated cell–cell communications through reduction of miR-155-5p from OGD-PBMCs, highlighting the therapeutic potential carrier of this approach against ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

All miRNA microarray data were deposited in the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) database (accession number: miRNA data, GSE190407). All other relevant data and materials are available within the article file or Supplementary Information or are available from the authors on reasonable request.

Abbreviations

ANOVA:

Analysis of variance

CD:

Cluster of differentiation

CNS:

Central nervous system

DAPI:

4′,6′-Diamidino-2-phenylindole

GAP43:

Growth associated protein 43

GO:

Gene ontology

HIF-1α:

Hypoxia-inducible factor-1alpha

IL:

Interleukin

KEGG:

Kyoto Encyclopaedia of Genes and Genomes

MAP2:

Microtubule-associated protein 2

miRNA:

MicroRNA

NF-kB:

Nuclear factor-kappa B

OGD:

Oxygen–glucose deprivation

OGD-PBMC:

Peripheral blood mononuclear cell preconditioned by oxygen–glucose deprivation

PBMC:

Peripheral blood mononuclear cell

pNF-kB:

Phospho-NF-kB

RNAseq:

RNA sequencing

ROI:

Regions of interest

rRNA:

Ribosomal RNA

PPARγ:

Proliferator-activated receptor gamma

SD:

Standard deviation

SSEA-3:

Stage-specific embryonic antigen 3

TGF-β:

Transforming growth factor-beta

TNF-α:

Tumour necrosis factor-alpha

TMEM119:

Transmembrane protein 119

VEGF:

Vascular endothelial growth factor

vWF:

Von Willebrand factor

References

  1. Gorelick PB. The global burden of stroke: persistent and disabling. Lancet Neurol. 2019;18(5):417–8. https://doi.org/10.1016/S1474-4422(19)30030-4.

    Article  PubMed  Google Scholar 

  2. GBD 2016 Lifetime Risk of Stroke Collaborators, Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, Parmar PG, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018;379(25):2429–2437. https://doi.org/10.1056/NEJMoa1804492.

  3. Otsu Y, Namekawa M, Toriyabe M, et al. Strategies to prevent hemorrhagic transformation after reperfusion therapies for acute ischemic stroke: a literature review. J Neurol Sci. 2020;419:117217. doi: https://doi.org/10.1016/j.jns.2020.117217.

  4. RESCUE BT Trial Investigators, Qiu Z, Li F, Sang H, et al. Effect of intravenous tirofiban vs placebo before endovascular thrombectomy on functional outcomes in large vessel occlusion stroke: the RESCUE BT randomized clinical trial. JAMA. 2022;328(6):543–553. doi: https://doi.org/10.1001/jama.2022.12584.

  5. MacKenzie IER, Moeini-Naghani I, Sigounas D. Trends in endovascular mechanical thrombectomy in treatment of acute ischemic stroke in the United States. World Neurosurg. 2020;138:e839–46. https://doi.org/10.1016/j.wneu.2020.03.105.

    Article  PubMed  Google Scholar 

  6. Liu X, Ye R, Yan T, et al. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol. 2014;115:92–115. https://doi.org/10.1016/j.pneurobio.2013.11.007.

    Article  PubMed  Google Scholar 

  7. Park YJ, Niizuma K, Mokin M, Dezawa M, Borlongan CV. Cell-based therapy for stroke: musing with muse cells. Stroke. 2020;51(9):2854–62. https://doi.org/10.1161/STROKEAHA.120.030618.

    Article  PubMed  Google Scholar 

  8. Kanazawa M, Miura M, Toriyabe M, et al. Microglia preconditioned by oxygen-glucose deprivation promote functional recovery in ischemic rats. Sci Rep. 2017;7(1):42582. https://doi.org/10.1038/srep42582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hatakeyama M, Kanazawa M, Ninomiya I, et al. A novel therapeutic approach using peripheral blood mononuclear cells preconditioned by oxygen-glucose deprivation. Sci Rep. 2019;9(1):16819. https://doi.org/10.1038/s41598-019-53418-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang C, Wang J, Yu L, et al. Comparison of the therapeutic effects of bone marrow mononuclear cells and microglia for permanent cerebral ischemia. Behav Brain Res. 2013;250:222–9. https://doi.org/10.1016/j.bbr.2013.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ukai R, Honmou O, Harada K, et al. Mesenchymal stem cells derived from peripheral blood protects against ischemia. J Neurotrauma. 2007;24(3):508–20. https://doi.org/10.1089/neu.2006.0161.

    Article  PubMed  Google Scholar 

  12. Kanazawa M, Takahashi T, Ishikawa M, et al. Angiogenesis in the ischemic core: a potential treatment target? J Cereb Blood Flow Metab. 2019;39(5):753–69. https://doi.org/10.1177/0271678X19834158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA. 1986;83(12):4167–71. https://doi.org/10.1073/pnas.83.12.4167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jin K, Mao XO, Greenberg DA. Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical neurons via Rho kinase signaling. J Neurobiol. 2006;66(3):236–42. https://doi.org/10.1002/neu.20215.

    Article  CAS  PubMed  Google Scholar 

  15. Yi JJ, Barnes AP, Hand R, Polleux F, Ehlers MD. TGF-beta signaling specifies axons during brain development. Cell. 2010;142(1):144–57. https://doi.org/10.1016/j.cell.2010.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hatakeyama M, Ninomiya I, Kanazawa M. Angiogenesis and neuronal remodeling after ischemic stroke. Neural Regen Res. 2020;15(1):16–9. https://doi.org/10.4103/1673-5374.264442.

    Article  CAS  PubMed  Google Scholar 

  17. Hori E, Hayakawa Y, Hayashi T, et al. Mobilization of pluripotent multilineage-differentiating stress-enduring cells in ischemic stroke. J Stroke Cerebrovasc Dis. 2016;25(6):1473–81. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.12.033.

    Article  PubMed  Google Scholar 

  18. Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. Int J Mol Sci. 2017;18(10):2135. https://doi.org/10.3390/ijms18102135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hatakeyama M, Ninomiya I, Otsu Y, et al. Cell therapies under clinical trials and polarized cell therapies in pre-clinical studies to treat ischemic stroke and neurological diseases: a literature review. Int J Mol Sci. 2020;21(17):6194. https://doi.org/10.3390/ijms21176194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lo EH, Ning M. Mechanisms and challenges in translational stroke research. J Investig Med. 2016;64(4):827–9. https://doi.org/10.1136/jim-2016-000104.

    Article  PubMed  Google Scholar 

  21. Zhang L, Wei W, Ai X, et al. Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF-β/Smad2/3 pathway. Cell Death Dis. 2021;12(11):1068. https://doi.org/10.1038/s41419-021-04363-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang ZG, Buller B, Chopp M. Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol. 2019;15(4):193–203. https://doi.org/10.1038/s41582-018-0126-4.

    Article  PubMed  Google Scholar 

  23. Dabrowska S, Andrzejewska A, Strzemecki D, et al. Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflammation. 2019;16(1):216. https://doi.org/10.1186/s12974-019-1602-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dong P, Li Q, Han H. HIF-1α in cerebralischemia (review). Mol Med Rep. 2022;25(2):41. https://doi.org/10.3892/mmr.2021.12557.

    Article  CAS  PubMed  Google Scholar 

  25. Caballero-Garrido E, Pena-Philippides JC, Lordkipanidze T, et al. In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J Neurosci. 2015;35(36):12446–64. https://doi.org/10.1523/JNEUROSCI.1641-15.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ginouvès A, Ilc K, Macías N, et al. PHDs overactivation during chronic hypoxia “desensitizes” HIFalpha and protects cells from necrosis. Proc Natl Acad Sci U S A. 2008;105(12):4745–50. https://doi.org/10.1073/pnas.0705680105.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Song S, Park JT, Na JY, et al. Early expressions of hypoxia-inducible factor 1alpha and vascular endothelial growth factor increase the neuronal plasticity of activated endogenous neural stem cells after focal cerebral ischemia. Neural Regen Res. 2014;9(9):912–8. https://doi.org/10.4103/1673-5374.133136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Cereb Blood Flow Metab. 2020;40(9):1769–1777. https://doi.org/10.1177/0271678X20943823.

  29. Milner R, Hung S, Wang X, et al. Responses of endothelial cell and astrocyte matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit. Stroke. 2008;39(1):191–7. https://doi.org/10.1161/STROKEAHA.107.486134.

    Article  PubMed  Google Scholar 

  30. Kanazawa M, Kawamura K, Takahashi T, Miura M, Tanaka Y, Koyama M, et al. Multiple therapeutic effects of progranulin on experimental acute ischaemic stroke. Brain. 2015;138(Pt 7):1932–48. https://doi.org/10.1093/brain/awv079.

    Article  PubMed  Google Scholar 

  31. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.

    Article  CAS  PubMed  Google Scholar 

  32. Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–78. https://doi.org/10.1038/nprot.2012.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23(2):257–8. https://doi.org/10.1093/bioinformatics/btl567.

    Article  CAS  PubMed  Google Scholar 

  34. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007.

  35. Oosterhof N, Holtman IR, Kuil LE, et al. Identification of a conserved and acute neurodegeneration-specific microglial transcriptome in the zebrafish. Glia. 2017;65(1):138–49. https://doi.org/10.1002/glia.23083.

    Article  PubMed  Google Scholar 

  36. Matsuura Y, Wada H, Eguchi H, et al. Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells. Dig Dis Sci. 2019;64(3):792–802. https://doi.org/10.1007/s10620-018-5380-1.

    Article  CAS  PubMed  Google Scholar 

  37. Nakai W, Yoshida T, Diez D, et al. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep. 2016;6:33935. https://doi.org/10.1038/srep33935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanazawa M, Kakita A, Igarashi H, et al. Biochemical and histopathological alterations in TAR DNA-binding protein-43 after acute ischemic stroke in rats. J Neurochem. 2011;116(6):957–65. https://doi.org/10.1111/j.1471-4159.2010.06860.x.

    Article  CAS  PubMed  Google Scholar 

  39. Kanazawa M, Igarashi H, Kawamura K, et al. Inhibition of VEGF signaling pathway attenuates hemorrhage after tPA treatment. J Cereb Blood Flow Metab. 2011;31(6):1461–74. https://doi.org/10.1038/jcbfm.2011.9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Balkaya M, Kröber J, Gertz K, Peruzzaro S, Endres M. Characterization of long-term functional outcome in a murine model of mild brain ischemia. J Neurosci Methods. 2013;213(2):179–87. https://doi.org/10.1016/j.jneumeth.2012.12.021.

    Article  PubMed  Google Scholar 

  41. Wang R, Liu Y, Ye Q, et al. RNA sequencing reveals novel macrophage transcriptome favoring neurovascular plasticity after ischemic stroke. J Cereb Blood Flow Metab. 2020;40(4):720–38. https://doi.org/10.1177/0271678X19888630.

    Article  CAS  PubMed  Google Scholar 

  42. Freytes DO, Kang JW, Marcos-Campos I, Vunjak-Novakovic G. Macrophages modulate the viability and growth of human mesenchymal stem cells. J Cell Biochem. 2013;114(1):220–9. https://doi.org/10.1002/jcb.24357.

    Article  CAS  PubMed  Google Scholar 

  43. Bennett ML, Bennett FC, Liddelow SA, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA. 2016;113(12):E1738-1746. https://doi.org/10.1073/pnas.1525528113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–80. https://doi.org/10.1016/j.cell.2006.10.018.

    Article  CAS  PubMed  Google Scholar 

  45. Jain AK, Barton MC. p53: emerging roles in stem cells, development and beyond. Development. 2018;145(8):dev158360. doi: https://doi.org/10.1242/dev.158360.

  46. Wu C, Chen J, Chen C, et al. Wnt/β-catenin coupled with HIF-1α/VEGF signaling pathways involved in galangin neurovascular unit protection from focal cerebral ischemia. Sci Rep. 2015;5:16151. https://doi.org/10.1038/srep16151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423(6938):409–14. https://doi.org/10.1038/nature01593.

    Article  CAS  PubMed  Google Scholar 

  48. Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987–91. https://doi.org/10.1038/nn.4338.

    Article  CAS  PubMed  Google Scholar 

  49. Masuda T, Sankowski R, Staszewski O, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019;566(7744):388–92. https://doi.org/10.1038/s41586-019-0924-x.

    Article  CAS  PubMed  Google Scholar 

  50. Arderiu G, Peña E, Aledo R, et al. MicroRNA-145 regulates the differentiation of adipose stem cells toward microvascular endothelial cells and promotes angiogenesis. Circ Res. 2019;125(1):74–89. https://doi.org/10.1161/CIRCRESAHA.118.314290.

    Article  CAS  PubMed  Google Scholar 

  51. Kurtzwald-Josefson E, Zeevi-Levin N, Rubchevsky V, et al. Cardiac fibroblast-induced pluripotent stem cell-derived exosomes as a potential therapeutic mean for heart failure. Int J Mol Sci. 2020;21(19):7215. https://doi.org/10.3390/ijms21197215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hong Y, He H, Jiang G, et al. miR-155–5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction. Aging Cell. 2020;19(4):e13128. https://doi.org/10.1111/acel.13128.

  53. O’Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008;205(3):585–94. https://doi.org/10.1084/jem.20072108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hornick NI, Doron B, Abdelhamed S, et al. AML suppresses hematopoiesis by releasing exosomes that contain microRNAs targeting c-MYB. Sci Signal. 2016;9(444):ra88. https://doi.org/10.1126/scisignal.aaf2797.

  55. Bruning U, Cerone L, Neufeld Z, et al. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol. 2011;31(19):4087–96. https://doi.org/10.1128/MCB.01276-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang J, Zou Y, Du B, et al. SNP-mediated lncRNA-ENTPD3-AS1 upregulation suppresses renal cell carcinoma via miR-155/HIF-1α signaling. Cell Death Dis. 2021;12(7):672. https://doi.org/10.1038/s41419-021-03958-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L, et al. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009;132(Pt 8):2239–51. https://doi.org/10.1093/brain/awp174.

    Article  PubMed  Google Scholar 

  58. van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ. Mesenchymal stem cell transplantation changes the gene expression profile of the neonatal ischemic brain. Brain Behav Immun. 2011;25(7):1342–8. https://doi.org/10.1016/j.bbi.2011.03.021.

    Article  CAS  PubMed  Google Scholar 

  59. Froger N, Matonti F, Roubeix C, et al. VEGF is an autocrine/paracrine neuroprotective factor for injured retinal ganglion neurons. Sci Rep. 2020;10(1):12409. https://doi.org/10.1038/s41598-020-68488-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ogunshola OO, Antic A, Donoghue MJ, et al. Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem. 2002;277(13):11410–5. https://doi.org/10.1074/jbc.M111085200.

    Article  CAS  PubMed  Google Scholar 

  61. Uchida H, Niizuma K, Kushida Y, et al. Human muse cells reconstruct neuronal circuitry in subacute lacunar stroke model. Stroke. 2017;48(2):428–35. https://doi.org/10.1161/STROKEAHA.116.014950.

    Article  PubMed  Google Scholar 

  62. Närvä E, Pursiheimo JP, Laiho A, et al. Continuous hypoxic culturing of human embryonic stem cells enhances SSEA-3 and MYC levels. PLoS One. 2013;8(11):e78847. https://doi.org/10.1371/journal.pone.0078847.

  63. Cui P, Zhang P, Zhang Y, et al. HIF-1α/Actl6a/H3K9ac axis is critical for pluripotency and lineage differentiation of human induced pluripotent stem cells. FASEB J. 2020;34(4):5740–53. https://doi.org/10.1096/fj.201902829RR.

    Article  CAS  PubMed  Google Scholar 

  64. Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7(3):391–402. https://doi.org/10.1016/j.stem.2010.06.020.

    Article  CAS  PubMed  Google Scholar 

  65. Shyh-Chang N, Daley GQ, Cantley LC. Stem cell metabolism in tissue development and aging. Development. 2013;140(12):2535–47. https://doi.org/10.1242/dev.091777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weinberger L, Ayyash M, Novershtern N, Hanna JH. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol. 2016;17(3):155–69. https://doi.org/10.1038/nrm.2015.28.

    Article  CAS  PubMed  Google Scholar 

  67. Carmichael ST, Kathirvelu B, Schweppe CA, Nie EH. Molecular, cellular and functional events in axonal sprouting after stroke. Exp Neurol. 2017;287(Pt 3):384–94. https://doi.org/10.1016/j.expneurol.2016.02.007.

    Article  CAS  PubMed  Google Scholar 

  68. Jin K, Wang X, Xie L, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci USA. 2006;103(35):13198–202. https://doi.org/10.1073/pnas.0603512103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Srivastava D, DeWitt N. In vivo cellular reprogramming: the next generation. Cell. 2016;166(6):1386–96. https://doi.org/10.1016/j.cell.2016.08.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a Grant-in-Aid for Scientific Research (Research Project Number: 18K07493, 21K19441, 22H03183), the Translational Research program, Strategic Promotion for practical application of Innovative Medical Technology (TR-SPRINT) supported by the Japan Agency for Medical Research and Development (AMED) under Grant Number JP19lm0203023, a grant from Takeda Science Foundation and SENSHIN Medical Research Foundation, and Moriyama Award of Japan Brain Foundation (Dr. Kanazawa). This work was also supported by a Grant-in-Aid for Scientific Research (Research Project Number: 20K16485) (Dr. Hatakeyama) and a grant from the Tsubaki Memorial Foundation (Dr. Otsu).

Author information

Authors and Affiliations

Authors

Contributions

Y.O. and M. H. performed the experiments, analysed the data, and drafted the manuscript. T.K., N. A., and I.N. performed the experiments and analysed the data. T.K. and O.O. advised experiments. K.O., M.F., and T.S. analysed the data and supervised all aspects of this project. M. K. performed the experiments, analysed the data, developed the concept, designed the experiments, wrote the manuscript, and supervised all aspects of this project. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Masato Kanazawa.

Ethics declarations

Ethical Approval and Consent to Participate

This study was conducted in strict accordance with the recommendations of the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (Bethesda, MD). The protocol (#SA00706) was approved by the Niigata University Administrative Panel on Laboratory Animal Care and the Ethical Committee of Niigata University. Ethical approval for the present study (#2019–0374) was provided by the Institutional Ethics Committee of Niigata University Medical and Dental Hospital. Informed consent was obtained healthy donors.

Consent for Publication

We have obtained consent to publish from the participant to report individual data.

Conflict of Interests

Prof. Shimohata is an academic advisor, Shimojani LLC. The authors declare no financial interests related to the materials in this manuscript. Drs. Otsu, Hatakeyama, Kanayama, Akiyama, Ninomiya, Omae, Kato, Onodera, Fukushima, and Kanazawa declare no competing interests.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsu, Y., Hatakeyama, M., Kanayama, T. et al. Oxygen–Glucose Deprived Peripheral Blood Mononuclear Cells Protect Against Ischemic Stroke. Neurotherapeutics 20, 1369–1387 (2023). https://doi.org/10.1007/s13311-023-01398-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-023-01398-w

Keywords

Navigation